首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Following fertilization, zygotes of the green alga Coleochaete orbicularis, which are retained on the haploid thallus, first enlarge, then become covered with a layer of vegetative cells. Light microscopy and high-voltage electron microscopy revealed the presence of localized wall ingrowths in vegetative cells adjacent to zygotes. These covering cells resemble the gametophytic placental transfer cells of embryophytes in their morphology, location, and time of development. If Coleochaete cells with wall protuberances function as do placental transfer cells of embryophytes, their presence is evidence that photosynthates may be transported between haploid thallus cells and zygotes. Thus, a nutritional relationship between different phases of the life cycle, similar to that which occurs in embryophytes, may also have evolved in green algae. This first report of putative placental transfer cells in a green alga supports Bower's (1908) ideas concerning the origin of land plant sporophytes and alternation of generations. The presence or absence of cells with wall ingrowths in several species of Coleochaete was correlated with estimates of zygote-plant area ratios.  相似文献   

2.
Complete nuclear-encoded (18S) small subunit rRNA gene sequences were determined for four charophycean green algae, Chlorokybus atmophyticus, Coleochaete orbicularis, Klebsormidium flaccidum, and Nitella sp. Chlorokybus atmophyticus and Coleochaete orbicularis have been previously suggested to represent the most basal and most derived taxa within the charophytes, respectively. However, parsimony analysis of our 18S rDNA sequences along with a selection of other complete green algal and land plant 18S rDNA sequences yields a gene tree topology in which Chlorokybus is the most basal taxon, followed by the branching of Coleochaete and Klebsormidium. Two “sister” clades then diverge, one including Nitella and the land plants, and the second, members of the Chlorophyceae and Pleurastrophyceae. Despite producing slightly diiferent gene tree topologies than those inferred from parsimony, distance analyses of the 18S rDNA sequences also do not indicate a strong affinity between the land plants and Coleochaete. Rather, Klebsormidium and Coleochaete are virtually equidistant from the land plant taxa. Other data are needed in order to assess the unexpected findings reported here, particularly the position of Coleochaete.  相似文献   

3.
The genus Coleochaete Bréb. is considered to be a key taxon in the evolution of green algae and embryophytes (land plants), but only a few of the approximately 15 species have been studied with molecular phylogenetic methods. We report here the sequences of the gene rbcL from six new cultures of Coleochaete and two of Chaetosphaeridium Klebahn. These sequences were combined with 32 additional sequences, and phylogenetic analyses were performed with maximum likelihood, distance optimality, and parsimony methods. Important subgroups within Coleochaete include two primary lineages, one marked by fully corticated zygotes and the other by naked or weakly corticated zygotes. In the first lineage there is a subclade with tightly joined filaments and distinctive (“T‐shaped”) cell division, an assemblage of strains that resembles the endophytic species Coleochaete nitellarum Jost, and a clade with loosely joined filaments and “Y‐shaped” cell divisions. Consistent with recent multigene phylogenies, these analyses support the monophyly of the Coleochaetales, place the Charales as the sister taxon to land plants, and indicate that Chaetosphaeridium is far more closely related to Coleochaete than to Mesostigma Lauterborn.  相似文献   

4.
Thalli of four species of the charophycean green alga Coleochaete Bréb.; C. irregularis, C. soluta, C. orbicularis, and C. scutata, were examined using light and electron microscopy. The parenchymatous nature of the plant bodies of C. orbicularis and C. scutata became apparent when the degree of cellular association in these species was compared with that of parenchymatous land plant tissues, the pseudoparenchymatous thalli of C. soluta, and the branched filaments of C. irregularis. Coleochaete soluta was shown to be morphologically and phylogenetically transitional between the more primitive branched filamentous species (C. irregularis) and the more advanced discoid species (C. orbicularis and C. scutata). The branching patterns observed in C. soluta suggested a possible pathway for the evolutionary development of land plant parenchyma from branched, filamentous charophycean green algae.  相似文献   

5.
This study provides data on cell division in Coleochaete orbicularis, an important taxon in evolutionary theories deriving land plants from green algae. Vegetative growth in discoid species of Coleochaete results from marginal cell division in two planes—radial and circumferential. Like many algae and certain of the simple land plants, Coleochaete is monoplastidic. Prior to mitosis, the single plastid migrates to a position where it will divide and be distributed into the daughter cells. Unlike monoplastidic cell division in hornworts, mosses, and lycopsids; microtubule nucleation is not intimately associated with the plastids. Instead, microtubule organization is associated with centriolar centrosomes throughout the cell cycle, as is common in algae. The cytokinetic apparatus lacks preprophase bands of microtubules, but includes typical phragmoplasts consisting of brushlike arrays of microtubules on either side of a dark zone. However, the origin and role of phragmoplasts is unusual. Phragmoplasts appear to develop among microtubules that emanate from the polar centrosomes rather than from nuclear envelopes and/or plastids. The function of phragmoplasts in Coleochaete is unclear, as the process of cytokinesis is not strictly centrifugal. Some infurrowing occurs in radial division, and cytokinesis appears to be entirely centripetal by infurrowing in circumferential division. The cortical arrays of microtubules differ from those typical of land plants in that they develop as a network in association with centrosomes after mitosis.  相似文献   

6.
An ultrastructural study of motile cell development in the green alga Trentepohlia aurea has revealed the presence of multilayered structures (MLS) associated With flagellar bases. These MLS are ultrastructurally similar to MLS described in pteridophyte and bryophyte sperm and in the zoospore of the green algae Coleochaete and Klebsormidium. However, 2 MLS are found in each biflagellate motile cell of T. aurea, while other previously described MLS occur singly in biflagellate motile cells. In addition, the MLS of T. aurea consist of fewer microtubules and are structurally simpler than most other MLS described. The MLS of Trentepohlia may represent a stage in the evolutionary development of the MLS of land plants. The presence or absence of the MLS in motile cells of green algae may be a useful character in phylogenetic studies.  相似文献   

7.

Background  

The Streptophyta comprise all land plants and six monophyletic groups of charophycean green algae. Phylogenetic analyses of four genes from three cellular compartments support the following branching order for these algal lineages: Mesostigmatales, Chlorokybales, Klebsormidiales, Zygnematales, Coleochaetales and Charales, with the last lineage being sister to land plants. Comparative analyses of the Mesostigma viride (Mesostigmatales) and land plant chloroplast genome sequences revealed that this genome experienced many gene losses, intron insertions and gene rearrangements during the evolution of charophyceans. On the other hand, the chloroplast genome of Chaetosphaeridium globosum (Coleochaetales) is highly similar to its land plant counterparts in terms of gene content, intron composition and gene order, indicating that most of the features characteristic of land plant chloroplast DNA (cpDNA) were acquired from charophycean green algae. To gain further insight into when the highly conservative pattern displayed by land plant cpDNAs originated in the Streptophyta, we have determined the cpDNA sequences of the distantly related zygnematalean algae Staurastrum punctulatum and Zygnema circumcarinatum.  相似文献   

8.
The genus Coleochaete Bréb. is a relatively small group of freshwater microscopic green algae with about 15 recognized species. Although Coleochaete has long been considered to be a close relative of embryophytes, a comprehensive study of the genus has not been published since Pringsheim's 1860 monograph. As part of a systematic study of Coleochaete, we investigated four accessions of the genus that are morphologically similar to the endophytic species C. nitellarum Jost. Each of the four cultures was determined to be capable of endophytic growth in Nitella C. A. Agardh, a member of the closely related order Charales. Maximum likelihood and maximum parsimony analyses were performed on nucleotide data from the chloroplast genes atpB and rbcL that were sequenced from 16 members of the Coleochaetales and from other members of the Charophyceae, embryophytes, and outgroup taxa. These analyses indicate that the Coleochaetales are monophyletic and that the endophytic accessions are members of the scutata group of species. In addition, cell size and nucleotide data suggest that at least three different endophytic species may be represented. Herbivory, nutritional benefits, and substrate competition are three hypotheses that could explain the evolution and maintenance of the endophytic habit in Coleochaete. These data also imply that diversity in the genus may be markedly underestimated.  相似文献   

9.

Background  

The Viridiplantae (land plants and green algae) consist of two monophyletic lineages, the Chlorophyta and the Streptophyta. The Streptophyta include all embryophytes and a small but diverse group of freshwater algae traditionally known as the Charophyceae (e.g. Charales, Coleochaete and the Zygnematales). The only flagellate currently included in the Streptophyta is Mesostigma viride Lauterborn. To gain insight into the genome evolution in streptophytes, we have sequenced 10,395 ESTs from Mesostigma representing 3,300 independent contigs and compared the ESTs of Mesostigma with available plant genomes (Arabidopsis, Oryza, Chlamydomonas), with ESTs from the bryophyte Physcomitrella, the genome of the rhodophyte Cyanidioschyzon, the ESTs from the rhodophyte Porphyra, and the genome of the diatom Thalassiosira.  相似文献   

10.
The freshwater green alga Coleochaete Breb. (Coleochaetaceae; Coleochaetales) is a key streptophyte genus and is important to the understanding of the evolutionary origin of embryophytes (land plants). To date only a few species have been available from public culture collections. To facilitate research on this genus we have isolated 17 previously uncultured species of Coloechaete from material collected in the United States, Puerto Rico, and the Dominican Republic. Sequences for the genes rbcL and atpB were determined for these new isolates of Coleochaete (and for existing cultures) and combined with sequences from representative other streptophytes. Phylogenetic analyses indicate that Coleochaete, along with Chaetosphaeridium and Chara, are closely related to embryophytes and constitute a ‘higher streptophyte’ clade. At least four well‐supported lineages exist within Coleochaete. Characteristic growth forms have been identified for these four lineages, with important characters including aspects of thallus establishment, thallus habit, zygote development and hair sheath position. These data provide an improved understanding of species diversity and character evolution in the genus Coleochaete, and facilitate examination of hypotheses concerning character evolution in the streptophytes.  相似文献   

11.
Study of charophycean green algae, including the Coleochaetales, may shed light on the evolutionary history of characters they share with their land plant relatives. We examined the tubulin cytoskeleton during mitosis, cytokinesis, and growth in members of the Coleochaetales with diverse morphologies to determine if phragmoplasts occurred throughout this order and to identify microtubular patterns associated with cell growth. Species representing three subgroups of Coleochaete and its sister genus Chaetosphaeridium were studied. Cytokinesis involving a phragmoplast was found in the four taxa examined. Differential interference contrast microscopy of living cells confirmed that polar cytokinesis like that described in the model flowering plant Arabidopsis occurred in all species when the forming cell plate traversed a vacuole. Calcofluor labeling of cell walls demonstrated directed growth from particular cell regions of all taxa. Electron microscopy confirmed directed growth in the unusual growth pattern of Chaetosphaeridium. All four species exhibited unordered microtubule patterns associated with diffuse growth in early cell expansion. In subsequent elongating cells, Coleochaete irregularis Pringsheim and Chaetosphaeridium globosum (Nordstedt) Klebahn exhibited tubulin cytoskeleton arrays corresponding to growth patterns associated with tip growth in plants, fungi, and other charophycean algae. Hoop‐shaped microtubules frequently associated with diffuse growth of elongating cells in plants were not observed in any of these species. Presence of phragmoplasts in the diverse species studied supports the hypothesis that cytokinesis involving a phragmoplast originated in a common ancestor of the Coleochaetales, and possibly in a common ancestor of Charales, Coleochaetales, Zygnematales, and plants.  相似文献   

12.
Transmission electron microscopy of serial thin sections was used to reconstruct several early developmental stages of the blepharoplast in Coleochaete pulvinata spermatids. These were compared to published studies of blepharoplast development in Charales and the closest relatives of charophycean green algae among embryophytes, i.e., hornworts and liverworts. Bicentriolar centrosomes such as occur in bryophytes and fern allies were not observed in Coleochaete. Centriole replication in C. pulvinata was orthogonal as in Charales. The resulting two daughter centrioles were oriented perpendicularly and joined proximally by electron-dense material. Their orthogonal relationship was maintained throughout blepharoplast development by a massive, banded connective which appeared early. In spermatids of hornworts and liverworts, a multilayered structure (MLS) develops in association with two centrioles destined to become flagellar basal bodies. When the MLS of these lower land plants is sectioned at right angles to the long axis of the microtubular layer, the MLS is observed to lie beneath cross sections of both centrioles. In contrast, when developing MLSs of C. pulvinata and Charales are similarly sectioned, they occur beside a cross section of just one of the two centrioles. In C. pulvinata (as in other charophytes), MLS lamellae are oriented at a 90-degree angle to the long axis of the S1 microtubules from the beginning. This contrasts with the 40–45 degree angle between the MLS lamellae and S1 microtubules universally reported for archegoniates. In early C. pulvinata spermatids, spline microtubules are closely associated with an anterior mitochondrion having a low stromal density and few cristae. An anterior mitochondrion is typically associated with blepharoplast development in hornworts and liverworts, but has not previously been reported to occur in Coleochaete or any other charophycean alga. In Coleochaete, as in hornworts and liverworts, but unlike Charales, structure of mature blepharoplasts reflects early blepharoplast ontogeny. Very little change in positional relationships among blepharoplast components (flagella, connective, MLS) occurs during development. These character-state differences are of importance in cladistic analyses of charophycean algae and lower land plants.  相似文献   

13.
The late-nineteenth/early-twentieth century debate over homologous versus antithetic alternation of generations is reviewed. Supporters of both theories, at first, used Coleochaete as a model for the origin of land-plant life cycles. The early debate focused on the morphological interpretation of the sporophyte and on whether vascular cryptogams had bryophyte-like ancestors. The terms of the debate shifted after the discovery that the alternation of morphological generations was accompanied by an alternation of chromosome number. Supporters of homologous alternation now promoted a model in which land plants had been derived from an algal ancestor with an isomorphic alternation of haploid and diploid generations whereas supporters of antithetic alternation favored a model in which land plants were derived from a haploid algal ancestor with zygotic meiosis. Modern evidence that embryophytes are derived from charophycean green algae is more compatible with an updated version of the antithetic theory.  相似文献   

14.
Septins are a group of GTP‐binding proteins that are multi‐functional, with a well‐known role in cytokinesis in animals and fungi. Although the functions of septins have been thoroughly studied in opisthokonts (fungi and animals), the function and evolution of plant/algal septins are not as well characterized. Here we describe septin localization and expression in the green algae Nannochloris bacillaris and Marvania geminata. The present data suggest that septins localize at the division site when cytokinesis occurs. In addition, we show that septin homologs may be found only in green algae, but not in other major plant lineages, such as land plants, red algae and glaucophytes. We also found other septin homolog‐possessing organisms among the diatoms, Rhizaria and cryptomonad/haptophyte lineages. Our study reveals the potential role of algal septins in cytokinesis and/or cell elongation, and confirms that septin genes appear to have been lost in the Plantae lineage, except in some green algae.  相似文献   

15.
Land plants possess some of the most unusual mitochondrial genomes among eukaryotes. However, in early land plants these genomes resemble those of green and red algae or early eukaryotes. The question of when during land plant evolution the dramatic change in mtDNAs occurred remains unanswered. Here we report the first completely sequenced mitochondrial genome of the hornwort, Megaceros aenigmaticus, a member of the sister group of vascular plants. It is a circular molecule of 184,908 base pairs, with 32 protein genes, 3 rRNA genes, 17 tRNA genes, and 30 group II introns. The genome contains many genes arranged in the same order as in those of a liverwort, a moss, several green and red algae, and Reclinomonas americana, an early-branching eukaryote with the most ancestral form of mtDNA. In particular, the gene order between mtDNAs of the hornwort and Physcomitrella patens (moss) differs by only 8 inversions and translocations. However, the hornwort mtDNA possesses 4 derived features relative to green alga mtDNAs—increased genome size, RNA editing, intron gains, and gene losses—which were all likely acquired during the origin and early evolution of land plants. Overall, this genome and those of other 2 bryophytes show that mitochondrial genomes in early land plants, unlike their seed plant counterparts, exhibit a mixed mode of conservative yet dynamic evolution. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Libo Li and Bin Wang contributed equally to this work.  相似文献   

16.
Mesostigma viride Lauterborn (Prasinophyceae) is the first green flagellate found to have multilayered structures (MLS) in its flagellar apparatus. MLS's were previously known from green algae only in charophycean swarmers, linking theCharophyceae to the origin of land plants, whose male gametes (when flagellated) also possess an MLS.M. viride is, therefore, probably more closely related to the origin of theCharophyceae than any other green flagellate that has been thoroughly studied so far. The occurrence of MLS's in green flagellates and apparently in other algae and protozoans suggests that an MLS occurred in an ancient group of flagellates and has survived in various protistan lines, including the line of green algae related to land plants. The occurrence of a synistosome inM. viride and other of its characteristics suggest that it is more closely related toPyramimonas than to other genera of scaly green flagellates.This work was supported by National Science Foundation Grant DEB-78-03554.  相似文献   

17.
18.
Polyclonal antiserum specific for ferredoxin-nitrite reductase (EC 1.7.7.1) from the green alga Chlamydomonas reinhardii recognized the nitrite reductase from other green algae, but did not cross-react with the corresponding enzyme from different cyanobacteria or higher plant leaves. An analogous situation was also found for ferredoxin-glutamate synthase (EC 1.4.7.1), using its specific antiserum. Besides, the antibodies raised against C. reinhardii ferredoxin-glutamate synthase were able to inactivate the ferredoxin-dependent activity of nitrite reductase from green algae.These results suggest that there exist similar domains in ferredoxin-nitrite reductases and ferredoxin-glutamate synthases from green algae. In addition, both types of enzymes share common antigenic determinants, probably located at the ferredoxin-binding domain. In spite of their physicochemical resemblances, no apparent antigenic correlation exists between the corresponding enzymes from green algae and those from higher plant leaves or cyanobacteria.Abbreviations Fd ferredoxin - GOGAT glutamate synthase - MV+ reduced methyl viologen (radical cation) - NiR nitrite reductase - PMSF phenylmethylsulphonyl fluoride - SDS sodium dodecyl sulfate  相似文献   

19.
The str operon consists fo four genes in eubacteria. Portions of his operon are conserved in the chloroplast genomes of green algae and land plants. In land plant chloroplasts, the str operon comprises only two genes, rps12 and rps7, and is arranged in a trans-spliced state. Since no other previously studied chloroplast genome contains this arrangement, and because the charophyte lineage is the sister group of land plants, we chose to look for this arrangement in the Charophyceae. The two str genes, rps12 and rps7, present in the chloroplasts of Spirogyra maxima Hanssall, were identified by hybridization of a Southern blot and requenced. The results indicate that Spirogyra contains a str operon almost identical to that of land plant chloroplasts. Based upon the structure of the operon in other chloroplasts and eubacterial genomes, the trans-spliced state most likely evolved early within the charophyte lineage.  相似文献   

20.

Background  

The Viridiplantae comprise two major phyla: the Streptophyta, containing the charophycean green algae and all land plants, and the Chlorophyta, containing the remaining green algae. Despite recent progress in unravelling phylogenetic relationships among major green plant lineages, problematic nodes still remain in the green tree of life. One of the major issues concerns the scaly biflagellate Mesostigma viride, which is either regarded as representing the earliest divergence of the Streptophyta or a separate lineage that diverged before the Chlorophyta and Streptophyta. Phylogenies based on chloroplast and mitochondrial genomes support the latter view. Because some green plant lineages are not represented in these phylogenies, sparse taxon sampling has been suspected to yield misleading topologies. Here, we describe the complete chloroplast DNA (cpDNA) sequence of the early-diverging charophycean alga Chlorokybus atmophyticus and present chloroplast genome-based phylogenies with an expanded taxon sampling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号