首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The genus Tripsacum is widely distributed between 42°N and 24°S latitude. In South America, the genus extends around the Amazon and Orinoco basin, and from the Caribbean coast south to Brazil and Paraguay. The most common South American taxon is T. dactyloides (L.) L. var. meridonale de Wet and Timothy (2n = 36), which differs from North American representatives of the species in having subdigitate recemes usually appressed with the apical male sections typically curved. Closely related to T. dactyloides, but usually occupying more seasonally moist and dry habitats, is T. australe Cutler and Anderson. This species is typically robust with the basal leaf sheaths tomentose, and the much elongated culms becoming decumbent in older plants. Smaller plants, with essentially erect culms and leaf sheaths on the culms hirsute rather than tomentose, are recognized as T. australe var. hirsutum de Wet and Timothy. The two varieties of T. australe are both diploid (2n = 36) and they cross to produce fertile hybrids. They also cross with T. dactyloides var. meridonale (2n = 36), but these hybrids are partially sterile. Tripsacum cundinamarce de Wet and Timothy (2n = 36) is a robust species with glaucus leaves. It resembles robust specimens of T. dactyloides in having glabrous leaf sheaths, but can always be recognized by inflorescences that are composed of racemes arranged along a several-noded primary axis. This species is confined to moist habitats, while T. dactyloides occupies a range of habitats in South America. Tripsacum peruvianum de Wet and Timothy is a gametophytic apomict with 2n = 72, 90 or 108 chromosomes. It is characterized by an erect growth habit and strongly hirsute leaf sheaths. The cultivated Guatemala grass, T. andersonii Gray, occurs spontaneously in the mountains of Venezuela, Colombia, and Peru. This sexually sterile species is characterized by 2n = 64, and may combine 54 Tripsacum and 10 Zea chromosomes in its genome. Electrophoretic patterns of seed storage proteins confirm the validity of recognizing T. cundinamarce as distinct from T. dactyloides, and T. peruvianum as distinct from T. australe.  相似文献   

2.
Diploid (2n = 36) Tripsacum australe Cutler and Anderson var. hirsutum de Wet and Timothy, T. cundinamarce de Wet and Timothy, T. dactyloides (L.) L. var. dactyloides and var. meridonale de Wet and Timothy, and T. laxum Nash were crossed with Zea mays L. (2n = 20) as the pollen parent. True hybrids combine the cytologically nonreduced genome of Tripsacum (36 chromosomes) with the haploid (10 chromosomes) or more rarely diploid (20 chromosome) genome of Zea. Maternal offspring with 2n = 36 Tripsacum chromosomes commonly result from parthenogenetic development of cytologically nonreduced eggs. Some individuals with 2n = 36 Tripsacum chromosomes, however, resemble true hybrids in phenotype. These counterfeit hybrids incorporated Zea genetic material into their Tripsacum genomes without true fertilization having taken place. Offspring of counterfeit hybrids that were grown to maturity resembled their mothers in phenotype, and must have originated parthenogenetically. It is proposed that counterfeit hybrids are also produced in nature, and that this process contributes to origins of variation in gametophytic apomicts, and perhaps also in sexually reproducing species.  相似文献   

3.
Essential oil components and gross morphological characters are closely correlated in Dichanthium parviflorum (R. Br.) de Wet et Harlan (Gramineae) and related species. Different species, varieties, and geographical races, as well as hybrids between them, can be identified on the basis of absence or presence and quantity of essential oil components. The morphologically variable D. parviflorum was subdivided into four varieties: var. parviflorum, var. capilliflorum (Steud.) de Wet et Harlan comb. nov., var. mutispiculum (Ohwi) de Wet et Harlan comb. nov., and var. spicigerum (S. T. Blake) de Wet et Harlan comb. nov. These varieties differ from each other morphologically in having respectively racemes with 1-4 and awned, 3-5 and awned, 1-2 and awnlass, and 4-10 and awned spikelet pairs per raceme.  相似文献   

4.
The New World species of Bothriochloa O. Kuntze are polyploids with 2n = 60, 120, 180 and 220 chromosomes and they reproduce sexually. Plants with 2n = 180 chromosomes constitute the extremely variable B. barbinodis (Lag.) Herter, which is subdivided into var. barbinodis, var. palmeri (Hack.) de Wet comb. nov., and var. schlumbergeri (Fourn.) de Wet comb. nov. The single collection with 2n = 220 chromosomes belongs with var. schlumbergeri. Plants resembling B. barbinodis in inflorescence structure but having well-developed pedicellate spikelets and 2n = 120 chromosomes are included in B. campii (Swallen) de Wet comb. nov. South American collections of B. springfieldii (Gould) Parodi differ from North American collections in having 2n = 60 rather than 120 chromosomes and in having larger inflorescences as does B. barbinodis. Variety australis de Wet. var. nov. is described to include them.  相似文献   

5.
Tripsacum dactyloides (L.) L. extends across the range of this genus from about 42°N to 24°S latitude in the New World. It is recognized to include T. dactyloides var. dactyloides (North America), var. meridonale deWet et Timothy (South America), var. hispidum (Hitchc.) deWet et Harlan comb. nov. (Mesoamerica) and var. mexicanum deWet et Harlan var. nov. (Mesoamericana). The genus is divided into sections Tripsacum and Fasciculatum. Mesoamerican members of section Tripsacum are classified into T. bravum Gray, T. dactyloides (L.) L., T. intermedium deWet et Harlan spec, nov., T. latifolium Hitchc., T. manisuroides deWet et Harlan spec. nov. and T. zopilotense Hern,*** et Randolph. A key to the species of section Tripsacum is presented.  相似文献   

6.
7.
Dioscorea pseudocleistogama from the Guamuhaya Massif in central Cuba is described and illustrated. The species is assigned to Dioscorea section Rajania. It can be distinguished from other species of section Rajania by its staminate inflorescences possessing racemes of sessile to subsessile cymes bearing narrowly-tubular staminate flowers with strongly imbricate ligulate tepals, and pollen with the exine rugulate.  相似文献   

8.
Tripsacum andersonii Gray (Gramineae) is a species with 2n = 64 chromosomes. Chromosome behaviour during meiosis of microsporogenesis suggests that the species combines three homologous haploid Tripsacum genomes of x = 18 (54 chromosomes), and an alien haploid genome of x = 10 chromosomes. Cytogenetic studies indicate that T. andersonii originated as a hybrid between a species of Tripsacum (2n = 36) and a species of Zea (2n = 20). Comparative morphology and flavonoid chemistry fail to identify the Zea species involved in this intergeneric hybrid. Chromosome morphology suggests that it was either Z. mays L. subsp. mays (domesticated maize) or subspecies mexicana (Schrad.) Iltis (annual teosinte). The Tripsacum parent probably was T. latifolium Hitchc. of Central America. It resembles T. andersonii in vegetative morphology. Tripsacum maizar Hernandez et Randolph and T. laxum Nash, which resemble T. andersonii in flavonoid chemistry, are eliminated as possible parents on the basis of growth habit and the morphology of their hybrids with maize.  相似文献   

9.
The genus Tripsacum (Gramineae) is distributed between the latitude 42°N and 24°S in the New World. It is divided into two sections. Section Tripsacum includes 11 species with T. dectyloides (L) L. extending across the range of the genus. Section Fasciculata includes five Meso-American species with T. lanceolatum Rupr. ex Fourn. extending into southern Arizona. The genus displays considerable diversity in seed proteins. Variation patterns are of limited use in distinguishing sections, but are species and habitat specific. Protein data are particularly useful in subspecific classification, and consistently distinguish diploid from polyploid races of T. zopilotense Hern. and Randolph and T. bravum Gray. The tetraploid ectotype of T. bravum deserves specific rank and the robust ecotype of T. dactyloides var. meridonate de Wet and Timothy deserves varietal rank.  相似文献   

10.
Derivatives of a cross between diploid Zea mays L. and Tripsacum dactyloides (L.) L. (2n = 72) were compared cytologically and morphologically. The objective of this study was to detect introgression from Tripsacum to maize that might have occurred during seven backcross generations with maize. Thirty-three morphological characters were used to analyze variation among aneuploid (20Zm + 2Td), 20-chromosome recovered maize, and the recurrent maize parent plants. Aneuploid and maize checks were extreme types, with 20-chromosome hybrid derivatives being morphologically intermediate. Several recovered maizes clustered with aneuploid plants and these hybrid derivatives have the greatest chance of Tripsacum introgression. Many traits such as endosperm abnormalities, tassel seed, albinos, tunicate glumes, tassel-tipped ears, fasciated and branched ear, and male spikelets between rows of kernels were observed. Although the genetic basis of many traits is unknown, mutations, epistatic effects or expression of Tripsacum chromatin are possible causes. The number of abnormal and tripsacoid traits observed in 20-chromosome recovered maizes indicates genetic transfer from Tripsacum to the maize genome.  相似文献   

11.
Two new species, Elatostema planinerve W. T. Wang & Y. G. Wei sp. nov. and E. longicuspe W. T. Wang & Y. G. Wei sp. nov. are described and illustrated from the Guizhou province, China. The former resembles E. bracteosum but differs in leaves, pistillate bracts and pistillate bracteoles; the latter is similar to E. tenuicornutum, but differs in stem surface, leaf shape, venation, cystoliths, staminate inflorescence bracts, bracteolate and staminate flowers.  相似文献   

12.
Cytogenetic evidence suggests that Tripsacum andersonii may be a natural hybrid between Zea and Tripsacum. In this paper we show sequences that hybridize to the transposable elements Mul and Spm are found in T. andersonii and all Zea species examined. However, no hybridizable sequences are observed in the five other Tripsacum species surveyed. These results suggest that Mu and Spm elements became components of the Zea genome after the divergence of Zea and Tripsacum, and they strongly support the cytological evidence that T. andersonii is a Zea-Tripsacum hybrid. Examination of nuclear ribosomal genes of T. andersonii also supports the hybridization hypothesis and identifies the Zea parent as Zea luxurians. The Tripsacum parent could not be conclusively identified, but the ribosomal gene data suggest that the species of Tripsacum section Fasiculata most closely resemble T. andersonii. Restriction site patterns of two chloroplast DNA sequences indicate that the maternal parent was a species of Tripsacum. These results are complemented by morphological evidence regarding the origin of T. andersonii.  相似文献   

13.
Random samples, consisting of at least 100 individual seedlings, were taken from the diploid (2n=2x=36) eastern gamagrass (Tripsacum dactyloides var.dactyloides) and assayed to determine which of 12 enzyme marker loci and isozyme systems would be most informative in providing satisfactory resolution of both maize andTripsacum isozyme systems. For comparison, eight maize inbreds were included in the study to aid evaluation and comparison of the various isozyme systems. In addition, evaluations were conducted to identify if the identified optimum isozyme system could be used to detectTripsacum introgression in maize following a maize ×Tripsacum backcrossing scheme. Using the established isozyme techniques for maize (Zea mays L.), theAdh, Pgd, Cat, Est, B-Glu, Got, Idh, Tpi isozyme systems detected no polymorphism among theTripsacum individuals assayed. TheEst andB-Glu systems forTripsacum were unscorable due to poor staining and resolution. TheAcp, Mdh, Pgm, andPhi isozyme systems were found to be satisfactory markers for differentiating between eastern gamagrass individuals as well as detectingTripsacum introgression in maize. The availability of useful isozyme systems which can simultaneously provide significant isozyme resolution of maize,Tripsacum and maize-Tripsacum backcross hybrids, on a single gel system, will be useful for the detection of marker assistedTripsacum introgression into maize. In addition, the identification of a set of variable biochemical markers should also assist breeding, selection and genetic manipulations in eastern gamagrass.The use of company names in this publication does not imply endorsement by the USDA-ARS, or the product names of criticism of similar ones not mentioned. All programs and services of the U.S. Department of Agriculture are offered on a nondiscriminatory basis without regard to race, color, national origin, religion, sex, age, marital status, or handicap.  相似文献   

14.
Genetic Relationships within Tripsacum as Detected by RAPD Variation   总被引:3,自引:0,他引:3  
Genetic diversity within species of Tripsacum was surveyed basedon randomly amplified polymorphic DNA (RAPD) variation, as detectedwith the polymerase chain reaction (PCR). Thirteen of the 16Tripsacum species, including both temperate and tropical species,were included in this study using 56 decamer oligonucleotideprimers. All of the 56 primers generated repeatable RAPD profilesand 53 of them detected polymorphic bands among the Tripsacumspecies. These 53 primers generated 350 repeatable bands rangingin size from 150–1600 bp, each primer generating an averageof seven scoreable bands. Cluster analysis of polymorphic RAPDsindicated four major clusters. Cluster 1 consists of North AmericanTripsacum species, cluster 2 consists of South American Tripsacumspecies, cluster 3 includes T. zopilotense and T. latifoliumfrom Mexico, and cluster 4 consists of Mesoamerican Tripsacumspecies. Cluster analysis does not reveal the division of twotaxonomic sections (Fasciculata and Tripsacum). Copyright 1999Annals of Botany Company Tripsacum, RAPD, genetic relationships, genetic diversity.  相似文献   

15.
 DNA fingerprinting verified hybrid plants obtained by crossing Eastern gamagrass, Tripsacum dactyloides L., and perennial teosinte, Zea diploperennis Iltis, Doebley & R. Guzmán. Pistillate inflorescences on these hybrids exhibit characteristics intermediate to the key morphological traits that differentiate domesticated maize from its wild relatives: (1) a pair of female spikelets in each cupule; (2) exposed kernels not completely covered by the cupule and outer glumes; (3) a rigid, non-shattering rachis; (4) a polystichous ear. RFLP analysis was employed to investigate the possibility that traits of domesticated maize were derived from hybridization between perennial teosinte and Tripsacum. Southern blots of restriction digested genomic DNA of parent plants, F1, and F2 progeny from two different crosses were probed with RFLP markers specifically associated with changes in pistillate inflorescence architecture that signal maize domestication. Pairwise analysis of restriction patterns showed traits considered missing links in the origin of maize correlate with alleles derived from Tripsacum, and the same alleles are stably inherited in second generation progeny from crosses between Tripsacum and perennial teosinte. Received: 11 October 1996/Accepted:8 November 1996  相似文献   

16.
The patterns of esterase and peroxidase isoenzymes, subunits of zein-2 fraction and protomers of SDS-protein complex of Zea mays L. × Tripsacum dactyloides L. hybrids and their parents were compared. The study has been made to detect specific to Tripsacum isoesterases and isoperoxidases, zein subunits and SDS-protein protomers which could be used as markers for introgression of gene loci encoding these proteins from Tripsacum into hybrids of Tripsacum with Zea mays. Isoesterases and isoperoxidases as well protomers of SDS-protein complex specific to Tripsacum were detected in all hybrids analyzed. Zein subunits, specific to Tripsacum were detected in some of the analyzed hybrids which i that introgression frequency of the loci encoding proteins studied was different. Chromosome counts taken on the examined hybrids showed the addition of 9 – 13 Tripsacum chromosomes to maize chromosome complement.  相似文献   

17.
Some of the derivatives of a cross of maize (Zea mays L.) × Tripsacum dactyloides (L) L (2n = 72) have abnormal development leading to strange and striking morphologies. The Tripsacum chromosomes in these “tripsacoid” maize plants (with Tripsacum-like characteristics) were eliminated and the maize chromosomes were recovered through repeated backcrossing to maize. As an initial attempt to analyze the DNA alterations in tripsacoid maize, we have detected a few restriction site changes in the ribosomal DNA repeat of these plants (Hpa II, Bal I, Sst I, Mbo II, and Sph I) and a new Sph I site was mapped to the spacer region between the 26S and 17S genes. Several possible mechanisms for the generation of a new restriction site are discussed, and we propose that the transient presence of Tripsacum genome during the backcrossing in some way induced a rapid amplification and fixation of new restriction sites in a relatively short period of time.  相似文献   

18.
Diploid (2n = 20) and tetraploid (2n = 40) Zea mays L. were crossed with diploid (2n = 36) and tetraploid (2n = 72) Tripsacum dactyloides (L.) L. to produce a series of hybrids combining different numbers of haploid genomes from each parent. Eight hybrid groups and three parental groups were studied morphologically. Twenty-nine quantitative characters were recorded for each sample. Data were analyzed by univariate analysis of variance, multivariate analysis of variance, and discriminant function analysis, in an attempt to evaluate hybrid differences objectively and determine which morphological characters contribute statistically to group separation. The overall MANOVA F test was significant, establishing the presence of real differences between the hybrids; discriminant function analysis indicated that the percent of paired pistillate spikelets/cupule in the lateral inflorescence was the main variable which differentiated hybrids. Duncan's Multiple Range Tests for significant differences between means were applied to five variables contributing maximally to group discrimination, using the appropriate univariate ANOVAs. Pronounced maize-like attributes of backcross hybrids, as compared with corresponding F1's possessing similar genome constitutions, gave possible evidence of gene transfer between Zea mays and Tripsacum during backcrossing to maize.  相似文献   

19.
Sagittaria papillosa Buch. is monoecious with unisexual flowers, pistillate below, staminate above, typically with an unbranched scape. A large population with unusual numbers of staminate and bisexual flowers on the lowest whorl of the inflorescence and many particles was quantitatively evaluated. First-formed inflorescences had more staminate and bisexual flowers than those produced later. Branched scapes were predominantly found to be the second inflorescence produced by a given plant. Genetic crosses between flowers on recemes and panicles produced no branched inflorescences. When grown under greenhouse conditions all tested plants had racemes with pistillate flowers in the lower whorls and staminate ones above. Data from soil parameters, daylengths and air temperatures are compared to reported information on modification of flower sexuality by these factors.  相似文献   

20.
高粱属植物的地理分布   总被引:1,自引:0,他引:1  
为探讨高粱属(Sorghum Moench)的系统发育关系,通过野外调查及查阅标本和文献资料,对高粱属植物的地理分布进行了整理和研究。高粱属植物约有29种,分布于全世界热带到温带地区,其中澳大利亚22种,亚洲15种,非洲9种,欧洲3种,地中海2种,美洲6种。中国有5种,分布在东北、西南到华南各省(区)。高粱属有5亚属,仅高粱亚属(subgen.Sorghum)延伸至新世界,其他亚属均分布在旧世界,高粱亚属覆盖非洲并扩散到全世界热带到温带地区;拟高粱亚属(subgen.Parasorghum)分布在非洲、亚洲、澳大利亚;有柄高粱亚属(subgen.Stiposorghum)主要分布在澳大利亚,个别种分布到亚洲;多毛高粱亚属(subgen.Chaetosorghum)分布在澳大利亚;异高粱亚属(subgen.Heterosorghum)分布在澳大利亚和亚洲。这表明澳大利亚东北部是高粱属的现代分布中心和多样化中心,非洲东北部和热带亚洲是否是高粱属的起源地尚需确证。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号