首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sixteen natural stands of Abies lasiocarpa (Hook.) Nutt. were sampled from British Columbia and Washington to investigate patterns of intraspecific variation in this species and to evaluate Hunt and von Rudloff's recognition of two species of subalpine fir. Principal components analysis and canonical variates analysis were performed separately on seed-cone data, needle morphology data, and needle flavonoid data. Analysis of cone data indicated no geographical patterning of populations, but eastern and western groups of populations were segregated in both the needle morphology and flavonoid analyses. With the exception of the Vancouver Island population, three geographic groups were discerned based on their needle morphology: 1) populations from the coastal mountains of British Columbia, 2) those from the Cascade Mountains of Washington, and 3) those from the eastern interior of British Columbia. Although the Vancouver Island population was grouped with the interior British Columbia populations based on needle morphology, it was similar to the other coastal populations based on flavonoid data. These inconsistent results among the three different types of taxonomic evidence underscore the need to consider a variety of traits when drawing taxonomic conclusions in Abies. Although the delineation of eastern and western groups is not wholly consistent for the different data sets, the results support recognition of coastal and interior varieties of subalpine fir.  相似文献   

2.
Population divergence in sexual traits is affected by different selection pressures, depending on the mode of reproduction. In allopatric sexual populations, aspects of sexual behavior may diverge due to sexual selection. In parthenogenetic populations, loss‐of‐function mutations in genes involved in sexual functionality may be selectively neutral or favored by selection. We assess to what extent these processes have contributed to divergence in female sexual traits in the parasitoid wasp Leptopilina clavipes in which some populations are infected with parthenogenesis‐inducing Wolbachia bacteria. We find evidence consistent with both hypotheses. Both arrhenotokous males and males derived from thelytokous strains preferred to court females from their own population. This suggests that these populations had already evolved population‐specific mating preferences when the latter became parthenogenetic. Thelytokous females did not store sperm efficiently and fertilized very few of their eggs. The nonfertility of thelytokous females was due to mutations in the wasp genome, which must be an effect of mutation accumulation under thelytoky. Divergence in female sexual traits of these two allopatric populations has thus been molded by different forces: independent male/female coevolution while both populations were still sexual, followed by female‐only evolution after one population switched to parthenogenesis.  相似文献   

3.
Variations of sex inconstancy were examined for vegetative and seed samples from eight natural populations of buffalograss located along two east-west transects crossing the shortgrass prairies of Oklahoma, New Mexico, and Texas. Each of the eight populations was found to contain inconstant (monoecious) sex forms. Sex form distributions ranged from the Guymon vegetative sample, having no inconstant sex forms, to the Chillicothe seed sample in which the frequency of inconstant sex forms was nearly 70%. Frequencies of inconstant sex forms were generally higher for seed samples than for vegetative samples. Male to female sex ratio of constant (dioecious) sex forms generally did not differ from 1:1 expectations. Inconstant sex forms were more common among peripheral populations where buffalograss vegetation coverage was sparse than for more central populations having a higher concentration of buffalograss vegetation. Quantitative measures of sex inconstancy from artificial crosses were significantly (P < 0.001) correlated with the additive linear model of general combining ability, suggesting that sex determination in buffalograss has high heritability. The possible selection forces affecting the frequency of monoecious sex forms among natural populations are discussed.  相似文献   

4.
The raw material for evolution is variation. Consequently, identifying the factors that generate, maintain, and erode phenotypic and genetic variation in ecologically important traits within and among populations is important. Although persistent directional or stabilizing selection can deplete variation, spatial variation in conflicting directional selection can enhance variation. Here, we present evidence that phenotypic variation in limber pine (Pinus flexilis) cone structure is enhanced by conflicting selection pressures exerted by its mutualistic seed disperser (Clark's nutcracker Nucifraga columbiana) and an antagonistic seed predator (pine squirrel Tamiasciurus spp.). Phenotypic variation in cone structure was bimodal and about two times greater where both agents of selection co‐occurred than where one (the seed predator) was absent. Within the region where both agents of selection co‐occurred, bimodality in cone structure was pronounced where there appears to be a mosaic of habitats with some persistent habitats supporting only the seed disperser. These results indicate that conflicting selection stemming from spatial variation in community diversity can enhance phenotypic variation in ecologically important traits.  相似文献   

5.
Clonal spread is favoured in many plants at the expense of seed production in order to expand rapidly into open habitats or to occupy space by forming dense patches. However, for the dynamics of a population in a patchy landscape seed dispersal remains important even for clonal plants. We used a spatially explicit individual-based metapopulation model to examine the consequences of two trade-offs in Hieracium pilosella L: first, between vegetative and sexual reproduction, and second, between short and far-distance dispersal of seeds. Our main question was, what are the environmental conditions that cause a mixed strategy of vegetative and sexual reproduction to be optimal. The model was parameterised with field data on local population dynamics of H. pilosella. Patch dynamics were given firstly by disturbance events that opened patches in a matrix of a clonal grass that were colonisable for H. pilosella, and secondly by the gradual disappearance of H. pilosella patches due to the expanding grass. Simulations revealed opposing selection pressures on traits determined by the two trade-offs. Vegetative reproduction is favoured by local dynamics, i.e. the need for maintenance and expansion of established populations, whereas seed production is favoured by the necessity to colonise empty habitats. Similar pressures act on the proportion of seeds dispersed over short and far distances. Optimum reproductive and dispersal strategies depended on habitat quality (determined by seedling establishment probability), the fraction of dispersed seeds, and the fraction of seeds lost on unsuitable ground. Under habitat conditions supporting moderate to low seedling establishment, between 20% and 40% of reproductive effort in H. pilosella should be devoted to sexual reproduction with at least 10% of the seeds dispersed over distances suitable to attain empty patches. We conclude that in a spatially heterogeneous landscape sexual seed production in a clonal plant is advantageous even at the expense of local vegetative growth.  相似文献   

6.
Gene flow can effectively suppress genetic divergence among widely separated populations in highly mobile species. However, the same may not be true of species that typically disperse over shorter distances. Using mtDNA restriction-site and sequence analyses, we evaluate the extent of divergence among populations of two small relatively sedentary North American canids, the kit and swift foxes (genus Vulpes). We determine the significance of genetic differentiation among populations separated by distance and those separated by discrete topographic barriers. Our results show the among-population component of genetic variation in kit and swift foxes is large and similar to that of small rodents with limited dispersal ability. In addition, we found two distinct groupings of genotypes, separated by the Rocky Mountains, corresponding to the traditional division between kit and swift fox populations. Previous workers have characterized these morphologically similar populations either as separate species or subspecies. Our mtDNA data also suggest that kit and swift fox populations hybridize over a limited geographic area. However, the sequence divergence between kit and swift foxes is similar to that between these taxa and the arctic fox (Alopex lagopus), a morphologically distinct species commonly placed in a separate genus. This result presents a dilemma for species concepts, and we conclude that kit and swift foxes should be recognized as separate species.  相似文献   

7.
Serotiny, the retention of seeds in a canopy seed bank until high temperatures cause seeds to be released, is an important life history trait for many woody plants in fire‐prone habitats. Serotiny provides a competitive advantage after fire but increases vulnerability to predispersal seed predation, due to the seeds being retained in clusters in predictable locations for extended periods. This creates opposing selection pressures. Serotiny is favored in areas of high fire frequency, but is selected against by predispersal seed predators. However, predation also selects for cone traits associated with seed defense that could reduce predation on serotinous cones and thereby relax selection against serotiny. This helps explain the elevated defenses in highly serotinous species. However, whether such interactions drive variation in seed defenses within variably serotinous populations has been studied rarely. We investigated the effects of phenotypic selection exerted by red squirrel (Tamiasciurus hudsonicus) predation on Rocky Mountain lodgepole pine (Pinus contorta latifolia) seeds. Squirrels preferentially harvested cones with more and larger seeds, indicating a preference for a higher food reward. We found evidence for stronger selection on trees with serotinous cones, which presumably accounts for the elevated defenses of and lower predation on serotinous compared to non‐serotinous cones. Lower levels of predation on serotinous cones in turn lessen selection against serotiny by squirrels. This has important implications because the frequency of serotiny in lodgepole pine has profound consequences for post‐fire communities and ecosystems widespread in the Rocky Mountains.  相似文献   

8.
Muller (1942) and Mayr (1963) hypothesized that natural selection indirectly causes the evolution of reproductive barriers between allopatric populations by causing adaptive genetic divergence that pleiotropically promotes prezygotic or postzygotic incompatibility. Under this mechanism, herbivorous insect populations should be more prone to speciate if they are adapting to different host plants, because the evolution of reproductive isolation will be accelerated above the rate promoted by genetic drift and host-independent sources of selection alone. Although the Muller-Mayr hypothesis is widely accepted, little direct evidence has been collected in support of selection's role in allopatric speciation. This paper offers a method for isolating and evaluating the contribution of host plant-related natural selection pressures to the reproductive isolation between allopatric herbivore populations. The host-related selection hypothesis (HRSH) predicts that herbivore populations using different host plants should be more reproductively isolated than those using the same host, other things being equal. Here, I test this hypothesis using Neochlamisus bebbianae, an oligophagous leaf beetle with a geographically variable host range. In each of two sets of experiments (contrast I, contrast II), I compared two beetle populations (Georgia and New York) that use the same host (Acer) in nature and a third population that natively uses a different host (Betula in Oklahoma [CI], Salix in Ontario [CII]). Experiments showed that “different-host” populations were more strongly differentiated in host-use traits (oviposition, host fidelity, feeding response, larval performance) than were “same-host” populations and that each population most readily uses foliage from its native host. As predicted by the HRSH, sexual isolation was also greater between the adaptively divergent different-host populations (from Betula vs. Acer, from Salix vs. Acer) than between the same-host populations (from Acer), which were undifferentiated in host-use traits. Interpreting these results in a historical context provided by mtDNA sequences from test populations indicated: (1) that Acer- and Betula-associated N. bebbianae represent separate sibling species whose causal origins have been lost to history, and whose incomplete sexual isolation is fortified by host-associated ecological and “physiological” isolation; and (2) that incipiently speciating Acer- and Salix-associated populations are more closely related to each other than are the two Acer-associated populations, which is consistent with the HRSH. This study thus illustrates the consequences of host-related selection for both the origin and maintenance of reproductive isolation. More important, it provides evidence that the pleiotropic effects of natural selection promote allopatric speciation.  相似文献   

9.
Male and female cone crop patterns and gender expression inPinus densiflora were examined in three adjacent Korean populations over four to five years. Three parameters — cone ratio, sexual system, and standardized phenotypic gender — were assessed according to cone production. Both male and female cone crops and cone ratios varied by year and by site. After controlling for plant size, population differences in cone crops and cone ratios became stronger. At all three sites, the proportion of trees with differing sexual systems tended to fluctuate among years. Overall, 37% of all tagged trees changed their sexual system at least once, mostly ranging between monoecy and male. These particular trees were relatively small and exhibited slow radial growth compared with the non-sex-changing trees, suggesting a trade-off between vegetative and reproductive growth. Despite annual variations in their standardized phenotypic genders, the rankings of trees remained concordant between successive years at all sites. These results indicate that, inP. densiflora, male and female cone crops and, consequently, gender expression, may be affected by diverse factors that include plant size, trade-offs between vegetative and reproductive growth, and genetic components.  相似文献   

10.
Darwin recognized that biological diversity has accumulated as a result of both adaptive and nonadaptive processes. Very few studies, however, have addressed explicitly the contribution of nonadaptive processes to evolutionary diversification, and no general procedures have been established for distinguishing between adaptive and nonadaptive processes as sources of trait diversity. I use the diversification of flower colour as a model system for attempting to identify adaptive and nonadaptive causes of trait diversification. It is widely accepted that variation in flower colour reflects direct, adaptive response to divergent selective pressures generated by different pollinators. However, diversification of flower colour may also result from the effects of nonadaptive, pleiotropic relationships with vegetative traits. Floral pigments that have pleiotropic relationships to vegetative pigments may evolve and diversify in at least two nonadaptive ways. (1) Indirect response to selection on the pleiotropically related nonfloral traits may occur (indirect selection). (2) Divergent evolution in response to parallel selective pressures (e.g. selection by pollinators for visually obvious flowers) may occur because populations are at different genetic starting points, and each population follows its own genetic `line of least resistance.' A survey of literature suggests that pleiotropic relationships between flower colour and vegetative traits are common. Phylogenetically informed analyses of comparative data from Dalechampia (Euphorbiaceae) and Acer (Aceraceae), based on trait‐transition probabilities and maximum likelihood, indicated that floral and vegetative pigments are probably pleiotropically related in these genera, and this relationship better explains the diversification of floral colour than does direct selection by pollinators. In Dalechampia pink/purple floral bract colour may have originated by indirect response to selection on stem and leaf pigments. In Acer selection by pollinators for visually obvious flowers may to have led to the evolution of red or purple flowers in lineages synthesizing and deploying red anthocyanins in leaves, and pale‐green or yellow flowers in species not deploying red anthocyanins in vegetative structures. This study illustrates the broader potential of indirect selection and parallel selection on different genetic starting points to contribute to biological diversity, and the value of testing directly for the operation of these nonadaptive diversifying processes.  相似文献   

11.
Using a combination of mitochondrial and z‐linked sequences, microsatellite data, and spatio‐geographic modeling, we examined historical and contemporary factors influencing the population genetic structure of the purple finch (Haemorhous purpureus). Mitochondrial DNA data show the presence of two distinct groups corresponding to the two subspecies, H. p. purpureus and H. p. californicus. The two subspecies likely survived in separate refugia during the last glacial maximum, one on the Pacific Coast and one east of the Rocky Mountains, and now remain distinct lineages with little evidence of gene flow between them. Southwestern British Columbia is a notable exception, as subspecies mixing between central British Columbia and Vancouver Island populations suggests a possible contact zone in this region. Z‐linked data support two mitochondrial groups; however, Coastal Oregon and central British Columbia sites show evidence of mixing. Contemporary population structure based on microsatellite data identified at least six genetic clusters: three H. p. purpureus clusters, two H. p. californicus clusters, and one mixed cluster, which likely resulted from high site fidelity and isolation by distance, combined with sexual selection on morphological characters reinforcing subspecies differences.  相似文献   

12.
Carex lasiocarpa and C. pellita (sect. Carex) share a very similar morphology and have overlapping ranges in North America, but are found in different habitats characterized by contrasting soil types and pH. We studied allozyme variation and chromosome numbers to assess genetic differentiation between the two taxa. Both principal components analysis on the allele frequencies from 12 putative enzyme-coding loci and cluster analysis of genetic identities separated 51 sampled populations into two groups that were consistent with recognized structural differences between C. lasiocarpa and C. pellita. Mean within-group genetic identities were 0.95 for C. lasiocarpa and 0.93 for C. pellita; mean between-group genetic identity was 0.81. With the exception of two rare alleles, the alleles of C. pellita were a subset of those found in C. lasiocarpa. Principal components analysis of measurements of structural characters from voucher specimens representing 46 populations also separated the two species with minimal overlap. Meiotic squashes of microsporocytes revealed haploid chromosome numbers of 38 and 38 + 1 for C. lasiocarpa and 41 and 40 + 1 for C. pellita. These data support the continued recognition of the two taxa as distinct species, and suggest that C. pellita may be a daughter species still in the process of divergence from C. lasiocarpa.  相似文献   

13.
Phenotypic selection that is sustained over time underlies both anagenesis and cladogenesis, but the conditions that lead to such selection and what causes variation in selection are not well known. We measured the selection exerted by three species of predispersal seed predators of lodgepole pine (Pinus contorta latifolia) in the South Hills, Idaho, and found that net selection on different cone and seed traits exerted by red crossbills (Loxia curvirostra) and cone borer moths (Eucosma recissoriana) over 10 years of seed crops was similar to that measured in another mountain range. We also found that the strength of selection increased as seed predation increased, which provides a mechanism for the correlation between the escalation of seed defenses and the density of seed predators. Red crossbills consume the most seeds and selection they exert accounts for much of the selection experienced by lodgepole pine, providing additional support for a coevolutionary arms race between crossbills and lodgepole pine in the South Hills. The third seed predator, hairy woodpeckers (Picoides villosus), consumed less than one‐sixth as many seeds as crossbills. Across the northern Rocky Mountains, woodpecker abundance and therefore selective impact appears limited by the elevated seed defenses of lodgepole pine.  相似文献   

14.
Sexual selection plays a key role in the diversification of numerous animal clades and may accelerate trait divergence during speciation. However, much of our understanding of this process comes from phylogenetic comparative studies, which rely on surrogate measures such as dimorphism that may not represent selection in wild populations. In this study, we assess sexual selection pressures for multiple male visual signals across four barn swallow (Hirundo rustica) populations. Our sample encompassed 2400 linear km and two described subspecies: European H. r. rustica (in the Czech Republic and Romania) and eastern Mediterranean H. r. transitiva (in Israel), as well as a potential area of contact (in Turkey). We demonstrate significant phenotypic differentiation in four sexual signalling axes, despite very low‐level genomic divergence and no comparable divergence in an ecological trait. Moreover, the direction of phenotypic divergence is consistent with differences in sexual selection pressures among subspecies. Thus, H. r. transitiva, which have the darkest ventral plumage of any population, experience directional selection for darker plumage. Similarly, H. r. rustica, which have the longest tail feathers of any population, experience directional selection for elongated tail feathers and disruptive selection for ventral plumage saturation. These results suggest that sexual selection is the primary driver of phenotypic differentiation in this species. Our findings add to growing evidence of phenotypic divergence with gene flow. However, to our knowledge, this is the first study to relate direct measures of the strength and targets of sexual selection to phenotypic divergence among closely related wild populations.  相似文献   

15.
Summary Small trees ofAbies lasiocarpa (Hook.) Nutt. andPicea engelmannii Parry were collected along two elevational transects in the central Rocky Mountains, and the effects of low temperature on their root respiration activity were measured after growth in cool and warm soil temperature treatments.Picea engelmannii roots respired significantly faster than those ofA. lasiocarpa, and trees of both species collected from high elevations respired significantly faster than those from lower elevations. The mean Q10 and mean activation energy of respiration were 2.0 and 47.2 kJ mol–1, respectively; they did not differ between transects, species, elevations of collection, or the soil temperature treatments. The results suggest ecotypic differentiation has occurred along these transects resulting in higher root respiration rates at higher elevations.  相似文献   

16.
I used a new quantitative genetics model to predict relationships between sex-specific body size and sex-specific relative variability when populations experience differences in relative intensity of sex-specific selection pressures—stronger selection on males or females—and direction of selection: increase or decrease in size. I combined Lande's (Evolution 34: 292–305) model for the response of sex-specific means to selection with a newly derived generalization of Bulmer's (Am. Nat. 105: 201–211) model for the response of relative variability to selection. I used this combined response model to predict correlations of sex-specific size and relative variability under various starting conditions, which one can compare to correlations between closely related primate populations. One can then compare predicted patterns of sex-specific selection pressures to social and ecological variables pertaining to those populations to identify likely forces producing microevolutionary change in sexual size dimorphism (SSD). I provide examples of this approach for populations representing three taxa: Papio anubis, Saguinus mystax, and Cercopithecus aethiops pygerythrus. Model results suggest that microevolutionary changes in SSD can result from greater selection acting on males or females, and that natural selection or natural and sexual selection combined, rather than sexual selection alone, may sometimes explain sex-specific selection differentials.  相似文献   

17.
The evolution of sexual dimorphism in species with separate sexes is influenced by the resolution of sexual conflicts creating sex differences through genetic linkage or sex‐biased expression. Plants with different degrees of sexual dimorphism are thus ideal to study the genetic basis of sexual dimorphism. In this study we explore the genetic architecture of sexual dimorphism between Silene latifolia and Silene dioica. These species have chromosomal sex determination and differ in the extent of sexual dimorphism. To test whether QTL for sexually dimorphic traits have accumulated on the sex chromosomes and to quantify their contribution to species differences, we create a linkage map and performed QTL analysis of life history, flower and vegetative traits using an unidirectional interspecific F2 hybrid cross. We found support for an accumulation of QTL on the sex chromosomes and that sex differences explained a large proportion of the variance between species, suggesting that both natural and sexual selection contributed to species divergence. Sexually dimorphic traits that also differed between species displayed transgressive segregation. We observed a reversal in sexual dimorphism in the F2 population, where males tended to be larger than females, indicating that sexual dimorphism is constrained within populations but not in recombinant hybrids. This study contributes to the understanding of the genetic basis of sexual dimorphism and its evolution in Silene.  相似文献   

18.
The integration of ecological niche modelling into phylogeographic analyses has allowed for the identification and testing of potential refugia under a hypothesis‐based framework, where the expected patterns of higher genetic diversity in refugial populations and evidence of range expansion of nonrefugial populations are corroborated with empirical data. In this study, we focus on a montane‐restricted cryophilic harvestman, Sclerobunus robustus, distributed throughout the heterogeneous Southern Rocky Mountains and Intermontane Plateau of southwestern North America. We identified hypothetical refugia using ecological niche models (ENMs) across three time periods, corroborated these refugia with population genetic methods using double‐digest RAD‐seq data and conducted population‐level phylogenetic and divergence dating analyses. ENMs identify two large temporally persistent regions in the mid‐latitude highlands. Genetic patterns support these two hypothesized refugia with higher genetic diversity within refugial populations and evidence for range expansion in populations found outside hypothesized refugia. Phylogenetic analyses identify five to six genetically divergent, geographically cohesive clades of S. robustus. Divergence dating analyses suggest that these separate refugia date to the Pliocene and that divergence between clades pre‐dates the late Pleistocene glacial cycles, while diversification within clades was likely driven by these cycles. Population genetic analyses reveal effects of both isolation by distance (IBD) and isolation by environment (IBE), with IBD more important in the continuous mountainous portion of the distribution, while IBE was stronger in the populations inhabiting the isolated sky islands of the south. Using model‐based coalescent approaches, we find support for postdivergence migration between clades from separate refugia.  相似文献   

19.
We constructed a model for the evolution of sexual isolation by extending Lande's (1981) model of sexual selection. The model predicts that asymmetric sexual isolation is a transient phenomenon, characteristic of intermediate stages of divergence in sexually selected traits. Unlike the Kaneshiro (1976, 1980) proposal, our model does not depend upon drift and the loss of courtship elements to produce asymmetries in sexual isolation. According to our model, the direction of evolution cannot be predicted from asymmetry in sexual isolation. We tested some features of the model using data from an experimental study of sexual isolation in the salamander Desmognathus ochrophaeus. We tested for sexual isolation between 12 allopatric populations and found significant asymmetry in sexual isolation in about a quarter of the test cases. The highest degrees of asymmetry were associated with intermediate levels of divergence. A curvilinear relationship between isolation asymmetry and divergence was predicted by our model and was supported by statistical analysis of the salamander data.  相似文献   

20.
In this study morphological variation and the potential for competition to affect biomass and seedling selection of the families of five populations of Rumex acetosella L. sampled along a successional old-field gradient have been investigated. Seeds from 25 families were submitted to four competitive regimes: no competition (one plant per pot), medium competition (two plants/ pot taking plants from the same population), high within-population competition (four individuals from the same population in a pot) and high between-population competition (four individuals from two different populations in a pot). Eight traits were analysed after 3 months of growth for variation among families within populations. A significant difference among families within the two older populations was recorded for sexual biomass and related components. High sensitivity of these traits to density was observed in all populations except the youngest, suggesting specialization to particular environmental conditions in late successional populations, and a good adaptive capacity to buffer environmental variation in the pioneer population. Little significant interaction between competitive regimes and families within populations was found, i.e. genotypes within each population showed little variation in their response to environmental variation. Genotypic variance decreased with increasing competitive conditions for the majority of the traits. However, the percentage of variance in sexual reproduction explained by family was stable among treatments. Tradeoffs between vegetative reproduction and sexual reproduction were recorded at the population level along the successional gradient, with increasing competitive conditions. As succession proceeds, we observed a decrease in sexual reproduction and an increase in vegetative reproduction. At the family level, correlation among traits were similar when plants were grown in the absence of competition and at high density, with a significant negative correlation between sexual reproduction and vegetative reproduction. For both sprout number and sexual biomass, the performance of families grown under all the treatments was positively correlated. Together these results indicate allocational constraints on the reproductive biology of R. acetosella that may be favoured by natural selection and have influenced population differentiation along the successional gradient. However, they also revealed that the potential exists for evolutionary specialization through plasticity, in response to variation in environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号