首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Populations of Eichhornia paniculata (Pontederiaceae) exhibit a wide range of mating systems, from predominant outcrossing to high levels of self-fertilization. The origin of self-fertilization in this tristylous species is associated with the loss of style-length morphs from populations and the spread of self-pollinating, floral variants. We examined geographic variation in style morph and allozyme frequencies to determine whether the loss of style morphs and transition to selfing could have multiple origins in E. paniculata. Surveys of floral variation in 167 populations from six states in northeastern Brazil revealed that at least one style morph was absent from 29.3%. Non-trimorphic populations occurred in all states and ranged in frequency from 9% in Ceará to 68% in Alagoas. Selfing variants occurred in 8.5% and 55% of trimorphic and non-trimorphic populations, respectively, and were distributed among five of six states with primary concentrations in Alagoas and Pernambuco. A comparison of electrophoretic variation at 24 isozyme loci in 28 trimorphic, 13 dimorphic and 3 monomorphic populations indicated that non-trimorphic populations contained 84% of the allelic variation present in trimorphic populations and were markedly differentiated from one another. Analyses of genetic distance and the distribution of rare alleles indicated that non-trimorphic populations were often more similar to neighbouring trimorphic populations than to one another. Populations with selfing variants occurred at low frequency in three genetically distinct parts of the range. These results, in combination with genetic and morphological evidence suggest that style morphs are lost repeatedly from populations of E. paniculata and that selfing variants may have originated on at least three separate occasions in northeastern Brazil.  相似文献   

2.
Floral traits that increase self-fertilization are expected to spread unless countered by the effects of inbreeding depression, pollen discounting (reduced outcross pollen success by individuals with increased rates of self-fertilization), or both. Few studies have attempted to measure pollen discounting because to do so requires estimating the male outcrossing success of plants that differ in selfing rate. In natural populations of tristylous Eichhornia paniculata, selfing variants of the mid-styled morph are usually absent from populations containing all three style morphs but often predominate in nontrimorphic populations. We used experimental garden populations of genetically marked plants to investigate whether the effects of population morph structure on relative gamete transmission by unmodified (M) and selfing variants (M‘) of the mid-styled morph could explain their observed distribution. Transmission through ovules and self and outcross pollen by plants of the M and M’ morphs were compared under trimorphic, dimorphic (S morph absent), and monomorphic (L and S morphs absent) population structures. Neither population structure nor floral morphology affected female reproductive success, but both had strong effects on the relative transmission of male gametes. The frequency of self-fertilization in the M' morph was consistently higher than that of the M morph under all morph structures, and the frequency of self-fertilization by both morphs increased as morph diversity of experimental populations declined. In trimorphic populations, total transmission by the M and M' morphs did not differ. The small, nonsignificant increase in selfing by the M' relative to the M morph was balanced by decreased outcross siring success, particularly on the S morph. In populations lacking the S morph, male gamete transmission by the M' morph was approximately 1.5 times greater than that by the M morph because of both increased selfing and increased success through outcross pollen donation. Therefore, gamete transmission strongly favored the M' morph only in the absence of the S morph, a result consistent with the distribution of the M' morph in nature. This study indicates that floral traits that alter the selfing rate can have large and context-dependent influences on outcross pollen donation.  相似文献   

3.
Eichhornia paniculata (Pontederiaceae) displays a wide range of outcrossing levels as a result of the dissolution of the tristylous genetic polymorphism and the evolution of semihomostyly. Population surveys, comparison of fitness components of the style morphs, and computer simulations were used to investigate the breakdown of tristyly and the selective mechanisms responsible for the evolution of self-fertilization. Of 110 populations surveyed in northeast Brazil and Jamaica, 53% were trimorphic, 25% were dimorphic, and 22% were monomorphic for style morph. The short (S) morph was underrepresented in trimorphic populations and absent from nontrimorphic populations. The mid (M) morph predominated in dimorphic populations and was the only morph in monomorphic populations. Stamen modifications promoting selfing, associated with semihomostyle evolution, were largely confined to the M morph. They were rare in trimorphic populations, common in dimorphic populations, and often fixed in monomorphic populations. Stochastic simulations and comparisons of fruit set in natural populations indicate that founder events, population bottlenecks, and lowered fertility of the S morph due to an absence of long-tongued pollinators can each account for loss of the S morph from trimorphic populations. A reduced level of disassortative mating can accentuate the rate at which the S morph is lost by both random and deterministic processes. Nontrimorphic populations occur at the geographical margins of the region surveyed and tend to be smaller and less dense than trimorphic populations. These observations and the higher fruit set of the M morph relative to the L morph in dimorphic populations suggest that reproductive assurance, favoring selfing variants of the M morph under conditions of low pollinator service, has been of primary importance in the origin of most monomorphic populations. Where pollinator service is reliable, however, automatic selection of selfing genes, aided by mating asymmetries between the morphs, can cause the M morph to spread to fixation in dimorphic populations.  相似文献   

4.
Heterostyly has been viewed as both an antiselfing device and a mechanism that increases the proficiency of pollen transfer between plants. We used experimental manipulation of the morph structure of garden populations of self-compatible, tristylous Eichhornia paniculata to investigate the function of floral polymorphism. Outcrossing rates (t), levels of intermorph mating (d), and morph-specific male and female reproductive success were compared in replicate trimorphic and monomorphic populations. In trimorphic populations, t and d averaged 0.81 (2 SE = 0.03) and 0.77 (2 SE = 0.03) respectively, with no difference in either parameter among morphs. Ninety-five percent of outcrossed seeds were therefore the result of intermorph fertilizations. Male reproductive success of the long-styled morph was low, especially in comparison with plants of the short-styled morph. Outcrossing rates for each morph were higher in trimorphic than monomorphic populations where t averaged 0.71 (2 SE = 0.01), 0.30 (2 SE = 0.04) and 0.43 (2 SE = 0.1) for the long-, mid-, and short-styled morphs, respectively. Seed set was lower in monomorphic populations, particularly those composed of the L morph, reflecting reduced pollen deposition. Floral polymorphism therefore increased both outcrossing rate and fecundity but the magnitude of the differences varied among morphs. If the ancestral condition in heterostylous groups resembled the L morph, as has been suggested, data from this study suggests that the selective basis for the establishment of floral polymorphism could have been increased pollen transfer rather than higher levels of outcrossing.  相似文献   

5.
Eichhornia paniculata (Spreng.) Solms. (Pontederiaceae) is a short-lived perennial or annual of marshes, seasonal pools and ditches of lowland tropical South America, primarily NE Brazil, and the Caribbean islands of Cuba and Jamaica. Comparisons, made under uniform glasshouse conditions, of populations originating from seed collected in the two regions revealed striking differences in their floral biology and breeding systems. The majority of populations sampled in NE Brazil are tristylous. Floral trimorphism is associated with pollen trimorphism and minor differences in anther size and pollen production among the three stamen levels. Unlike the majority of heterostylous plants the floral morphs of E. paniculata are highly self-fertile. Populations sampled on the island of Jamaica are composed exclusively of self-pollinating, semi-homostylous, mid-styled forms. Flowers from these populations are smaller and less showy, with reduced pollen heteromorphism and significantly fewer pollen grains and ovules per flower, in comparison with trimorphic populations from Brazil. Individual genotypes from Jamaican populations display considerable developmental instability in floral expression, particularly with respect to filament elongation of the lower stamen level. It is proposed that self-pollinating populations of E. paniculata are evolutionarily derived from tristylous ancestors and that the shift in breeding system is favoured at low density, following population bottlenecks, where pollinator service is unreliable.  相似文献   

6.
The evolution of distyly from tristyly has occurred repeatedly, especially in the Lythraceae. However, the evolutionary forces involved remain unclear since species exhibiting transitional stages between tristyly and distyly have rarely been studied. The self-compatible, wetland perennial Decodon verticillatus (Lythraceae) may provide this transitional variation since populations commonly lack style morphs, particularly the mid-styled (M) morph. In dimorphic populations lacking the M morph, anthers positioned at the mid level in both the long- (L) and short-styled (S) morphs have lost their target stigma, setting the stage for either evolutionary repositioning of mid-level anthers to increase pollen export to L and S stigmas, or increased variability in mid-level anther position resulting from relaxed selection. We examined these two hypotheses by comparing floral morphology in eight dimorphic and ten trimorphic populations from throughout the species’ range. We found no evidence that loss of the M morph has led to evolutionary modification of mid-level stamens. While mid-level stamens of the S morph were 11.0 ± 4.0% (mean ± 1 SE) longer than those of the L morph in dimorphic populations, divergence in stamen length between morphs occurred to the same extent (10.4 ± 2.0%) in trimorphic populations and cannot be attributed to the absence of the M morph. Analyses of variability using median ratio tests revealed no difference in the variability of mid-level stamen length between dimorphic and trimorphic populations. Mid-level stamens were not more variable than long- and short-level stamens within dimorphic populations. The consistent divergence in mid-level stamens between the L and S morphs may reflect morph-specific differences in the optimal position of mid-level anthers for maximizing cross-pollination and avoiding self-fertilization.  相似文献   

7.
In tristylous plant populations, style-morph frequencies are governed by an interaction between frequency-dependent selection due to disassortative mating and stochastic processes. Provided that there are no inherent fitness differences among morphs, frequency-dependent selection should result in equal morph frequencies at equilibrium. Stochastic models indicate that the short-styled morph has the highest and the long-styled morph the lowest probability of being lost from local populations as a result of random processes. We surveyed the morph composition of 82 populations of the tristylous, self-incompatible herb Lythrum salicaria in two archipelagos, one in central and one in northern Sweden, located close to the range-margin of the species. To examine whether deviations from even morph frequencies can be explained by among-morph differences in reproductive success, we quantified flower and seed production in six and three populations in the northern and southern archipelago, respectively, and we recorded segregation ratios in offspring produced in six trimorphic populations in the northern area. Seed germination and offspring growth were studied in the greenhouse. Ninety percent of the populations in the southern archipelago (N = 31) and 69% of the populations in the northern archipelago (N = 35) were trimorphic; the remaining populations were dimorphic (only populations consisting of at least three flowering plants considered). Dimorphic populations were smaller than trimorphic populations, as predicted by stochastic models. There was a striking difference in the morph composition of L. salicaria populations between the two archipelagos. In the southern archipelago, there was a slight excess of the long-styled morph and a corresponding deficiency of the short-styled morph. In contrast, the northern populations were characterized by a marked deficiency of the mid-styled morph: the average frequency of the mid-styled morph in trimorphic populations was 0.21, and nine of eleven dimorphic populations lacked the mid-styled morph. In both archipelagos, the long-styled morph (the most common morph) produced about 20% fewer seeds per fruit than the other morphs. The long-styled morph also tended to produce fewer seeds per plant. A hand-pollination experiment performed in two of the northern populations indicated that seed production per flower was pollen-limited in the long-styled morph but not in the other two morphs. Seed germination and offspring size after 24 weeks of growth did not differ among morphs. The mid-styled morph tended to have a higher representation in the offspring than in the parental generation in all six trimorphic populations studied further indicating that the deficiency of the mid-styled morph in the northern archipelago does not represent an equilibrium. Taken together, the results do not support the hypothesis that morph-specific differences in reproductive success can account for deviations from even morph frequencies in L. salicaria. It is suggested that among-morph differences in other components of fitness and historical factors may contribute to the current morph structure.  相似文献   

8.
Summary The frequencies of floral morphs in populations of tristylous Eichhornia paniculata often deviate from the theoretical expectation of equality. This variation is associated with the breakdown of tristyly and the evolution of self-fertilization. Differences in morph frequencies could result from selection pressures due to variable levels of insect visitation to populations and contrasting foraging behavior among the floral morphs. We estimated pollinator densities in 16 populations and quantified visitation sequences to morphs in five populations of E. paniculata in northeastern Brazil. Foraging behavior among floral morphs was measured as the frequency of visits to morphs relative to their frequency in the population (preference) and number of flights between inflorescences of the same versus different morphs (constancy). Pollinator density (number/m2/minute) was not correlated with population size, plant density or morph diversity. Pollinator densities varied most among populations of less than 200 plants. Whether pollinators discriminated among the morphs, depended on whether they primarily collected nectar or pollen. In four populations, nectar-feeding bees (Ancyloscelis and Florilegus spp.) and butterflies showed no consistent preference or constancy among the morphs. In contrast, pollen-collecting bees (Trigona sp.) visited a lower proportion of longstyled inflorescences than expected and tended to visit more mid-and short-styled inflorescences in succession, once they were encountered. Pollinator constancy for morphs did not result from differences in inflorescence production or spatial patchiness among the morphs. Although non-random pollinator visitation to morphs in heterostylous populations could potentially affect mating and hence morph frequencies, the observed visitation patterns in this study do not provide evidence that pollinators play a major role in influencing floral morph frequencies.  相似文献   

9.
In sexually polymorphic species, reproductive morphology governs mating patterns and the character of negative frequency-dependent selection. If local environmental conditions cause sexual morphs to differ between populations, then frequency-dependent selection should create corresponding geographic variation in morph frequencies. We investigate this relation with a model of morph-ratio evolution and analysis of geographic variation in the heterostylous plant Narcissus triandrus. Unlike other tristylous species, N. triandrus possesses both imperfect reciprocity among morphs in sex-organ position and a self-incompatibility system that permits outcrossing within and between morphs. We sampled 137 populations throughout the Iberian Peninsula for floral-morph ratios, and measured floral morphology in 31 populations. Morph ratios exhibited three atypical features: (1) predominance of the long-styled (L) morph; (2) absence of the mid-styled (M) morph from 17.5% of populations; and (3) a negative relation between the frequencies of the L and M morphs among populations. Morph ratios varied geographically, with decreasing frequency of the M morph from the southeast to the northwest of the species' range. Much of this variation accompanied allometric change in the positions of sex organs, especially the mid-level organs, with the M morph declining in frequency and ultimately being lost in large-flowered populations. Using multivariate multiple regression, we demonstrate that variation in floral morphology among populations predicts this geographic variation in morph frequencies. Our theoretical analysis illustrates that patterns of pollen transfer governed by imperfect sex-organ reciprocity can select for unequal equilibrium morph ratios like those observed for N. triandrus. We interpret the L-biased morph ratios and the unusual morphology of N. triandrus as a consequence of its atypical intramorph compatibility system.  相似文献   

10.
Tristylous populations of the annual aquatic Eichhornia paniculata have high levels of outcrossing and intermorph mating despite being fully self- and intramorph compatible. Experimental studies of pollen germination, ???pollen-tube growth, and pollinations with mixtures of genetically marked pollen were used to determine whether postpollination processes contribute to the observed mating patterns. Differences in pollen germination were small and did not contribute to differences in pollen siring ability. The fraction of pollen tubes first entering the ovary, however, was greater for legitimate outcross pollen than for either of the other two pollen types (self or outcross illegitimate pollen) in all recipient morphs. Moreover, legitimate pollen had higher siring success when in competition with illegitimate pollen types (self or outcross) in each recipient style morph. The ranking of pollen performance for different pollen-style combinations was the same for both the pollen-tube growth and marker-gene experiments indicating that differences in pollen-tube growth rate are the principal cause of differences in pollen siring ability. Cryptic incompatibility in E. paniculata may represent a weak heteromorphic incompatibility system because the observed patterns of pollen-tube growth parallel pollen-tube growth and seed-set patterns that occur in related species with strong trimorphic incompatibility. The ability to produce mostly outcrossed progeny when pollinators are abundant, but to reliably produce seed under a variety of environmental and demographic conditions may be favored in E. paniculata because of its colonizing life history and occurrence in ephemeral habitats. Cryptic incompatibility may be more likely to occur in species subject to wide fluctuations in population size and levels of pollinator service.  相似文献   

11.
Summary Pontederia cordata L. (Pontederiaceae), a perennial diploid, possesses the rare genetic polymorphism tristyly. A controlled pollination programme was conducted over a three year period, under glasshouse conditions, on 36 clones of P. cordata var. cordata to examine the nature of the self-incompatibility system. The three major findings of the pollination study were: (1) the three floral morphs display different levels of self-incompatibility, (2) pollen from the two anther levels within a flower exhibits different compatibility behaviour in self-pollinations, (3) considerable individual genetic variation in the expression of self-incompatibility is evident among clones within floral morphs. Similar results were also obtained from a smaller study on 15 clones of P. cordata var. lancifolia conducted over a 6 month period. In common with other Pontederia species the mid-styled morph (M) of P. cordata produces large amounts of seed when self-pollinated with pollen from long-level anthers. A developmental model is proposed to explain the high level of self-compatibility of the M morph in Pontederia species. Self-pollination of segregating progenies from M and S morphs of known incompatibility status demonstrated that the expression of incompatibility is closely associated with style length. It is suggested that overall differences in incompatibility behaviour among the floral morphs may be due to the pleiotropic effects of major genes controlling sub-characters of the tristylous syndrome, rather than linked modifier genes. However, the variable expression of trimorphic incompatibility within floral morphs suggests that this variation may be polygenic in origin.  相似文献   

12.
MethodsStyle morph frequencies were sampled from 73 populations distributed across four flooding regimes differing in depth and duration. Measurements of flower size, sex-organ dimension, pollen size and pollen production were made in selected populations, and pollinator assemblages and their functional traits were recorded.ConclusionsThe similar morph structure and evenness of populations, regardless of flooding regime, suggest that sexual reproduction and clonal dispersal are sufficiently common to prevent the signature of founder events from dominating in a region. However, the pervasive occurrence of biased morph ratios in most populations suggests that many are in a non-equilibrium state. The reduced frequency of the mid-styled morph in trimorphic and dimorphic populations may be associated with the weak self-incompatibility of this morph resulting in selfing and inbreeding depression. Clonality in E. azurea and the weak self-incompatibility of the mid-styled morph may make it more vulnerable to geitonogamous selfing.  相似文献   

13.
Stigmatic pollen loads were examined in four tristylous populations of Pontederia cordata from the southern U.S. to evaluate Darwin's hypothesis that floral trimorphism promotes legitimate pollination. In each population, morph frequency, pollen production, the composition of stigmatic pollen loads and seed production were estimated. Goodness-of-fit tests and a measure of the efficiency of legitimate pollination were employed to evaluate pollen load patterns. Results from the four populations demonstrate that the long-styled (L) morph usually experiences legitimate pollination, whereas the mid-styled (M) and short-styled (S) morphs often display random pollination. However, at Taylor Road (Louisiana) all three floral morphs exhibited statistically significant levels of legitimate pollination. The size of legitimate pollen loads suggests that in populations of P. cordata tristyly may have only a minor influence on the fecundity of morphs. Two hypotheses are proposed to explain the maintenance of floral trimorphism in contemporary populations of Pontederia spp. The first assumes the polymorphism is selectively neutral; the second suggests that it contributes towards the male component of fitness by increasing the distance, and hence the number of genets, that pollen can be transported to by pollinators. In clonal species, such as Pontederia cordata, where geitonogamous pollinations are promoted by large floral displays, floral mechanisms that increase pollen carryover may have selective value.  相似文献   

14.
Stigma-height dimorphism is a sexual polymorphism in which plant populations are composed of two floral morphs that differ significantly in style length but not anther position. The morphs exhibit approach and reverse herkogamy, floral designs that in most species typically occur as monomorphic conditions. We investigated the floral biology of stigma-height dimorphism in the Mediterranean geophyte Narcissus papyraceus (Amaryllidaceae) in an effort to understand the evolutionary forces maintaining stylar polymorphism. Our survey of 66 populations in Spain, Portugal, and Morocco indicated that 56% were dimorphic with the long-styled morph at an average frequency of 0.79. The remaining 44% of populations sampled were monomorphic for the long-styled morph. In dimorphic populations there was a significant positive relation between population size and the frequency of the short-styled morph. Controlled pollinations demonstrated that N. papyraceus is self-sterile with no significant differences in female fertility between intra- and intermorph crosses. Prior self-pollination reduced seed set in flowers that were subsequently cross-pollinated. Estimates of mating patterns using allozyme markers in eight populations indicated that N. papyraceus is largely outcrossing (mean t(m) = 0.81) with no significant differences between monomorphic and dimorphic populations or style morphs. Stigma-height dimorphism in N. papyraceus is maintained in populations by insect-mediated cross-pollination with biased morph ratios and stylar monomorphism likely resulting from the combined influence of the inheritance of the polymorphism, morph-specific differences in assortative mating and founder effects.  相似文献   

15.
Non-random mating in plant populations can be influenced by numerous reproductive and demographic factors, including floral morphology and inter-plant distance. Here, we investigate patterns of outcrossed mating through male function in Narcissus triandrus, a tristylous, bee-pollinated wild daffodil from the Iberian Peninsula, to test pollen transfer models which predict that floral morphology promotes asymmetrical mating and biased morph ratios. Unlike other tristylous species, N. triandrus has an incompatibility system that permits intra-morph mating and long-level rather than mid-level stamens in the L-morph. Incomplete sex-organ reciprocity should result in significant intra-morph mating in the L-morph. We measured mating patterns in two L-biased populations--dimorphic (two style morphs) and trimorphic (three style morphs)--using multilocus genotyping and maximum-likelihood-based paternity analysis. We also examined the spatial distribution of style morphs and neutral markers to investigate the potential consequence of spatially restricted mating on morph ratios. As predicted, we detected significant amounts of intra-morph mating in the L-morph in both populations. Pollen transfer coefficients generally supported predictions based on the Darwinian hypothesis that anthers and stigmas of equivalent level promote pollinator-mediated cross-pollination in heterostylous populations. There was evidence of significant spatial aggregation of both style morphs and neutral markers in populations of N. triandrus, probably as a result of restricted pollen and seed dispersal. Our results provide empirical support for theoretical models of pollen transfer, which indicate that the commonly observed L-biased morph ratios in Narcissus species result from significant intra-morph mating in the L-morph because of its atypical floral morphology.  相似文献   

16.
Hodgins KA  Barrett SC 《Heredity》2006,96(3):262-270
Mating patterns in plant populations are influenced by interactions between reproductive traits and ecological conditions, both factors that are likely to vary geographically. Narcissus triandrus, a wide-ranging heterostylous herb, exhibits populations with either two (dimorphic) or three (trimorphic) style morphs and displays substantial geographical variation in demographic attributes and floral morphology. Here, we investigate this variation to determine if demography, morphology, and mating system differ between the two sexual systems. Our surveys in Portugal and NW Spain indicated that dimorphic populations were less dense, of smaller size, and had larger plants and flowers compared to trimorphic populations. Outcrossing rates estimated using allozyme markers revealed similar outcrossing rates in dimorphic and trimorphic populations (t(m) dimorphic=0.759; t(m) trimorphic=0.710). All populations experienced significant inbreeding in progeny (mean F=0.143). In contrast, parental estimates of inbreeding were not significantly different from zero (mean F=0.062), implying that few inbred offspring survive to reproductive maturity due to inbreeding depression. Although the majority of inbreeding results from selfing, significant levels of biparental inbreeding were also detected in eight of the nine populations (mean s(s)-s(m)=0.081). Density was negatively associated with levels of selfing but positively associated with biparental inbreeding. Population size was positively associated with outcrossing but not biparental inbreeding. There were no consistent differences among the style morphs in outcrossing or biparental inbreeding indicating that the maintenance of trimorphism vs dimorphism is unlikely to be associated with inbreeding of maternal parents.  相似文献   

17.
Abstract Surveys of mating-system parameters in populations of the annual, self-compatible, tristylous, emergent aquatic, Eichhornia paniculata (Pontederiaceae) from N.E. Brazil and Jamaica have indicated that the species exhibits a wide range of outcrossing rates. To investigate whether temporal variation in outcrossing rate was also a feature of populations, open-pollinated families were sampled from five populations of contrasting style morph structure from N.E. Brazil over three consecutive years (1987–1989). Multilocus estimates of outcrossing rate ( t ) were obtained from assays of isozyme polymorphisms using starch gel electrophoresis. There was significant variation both among populations and between years in the frequency of outcrossing. Outcrossing in three tristylous populations was high ( t > 0.80), with relatively small fluctuations occurring over the three-year sampling period. In contrast, in a dimorphic and monomorphic population considerable self-fertilization occurred and the frequency of outcrossing declined significantly from 1987 to 1989 in both populations. In the dimorphic population, increased selfing was associated with a marked reduction in population size and an increase in the frequency of selfing variants of the mid-styled morph. The significance of temporal variation in outcrossing frequency in plant populations is discussed in relation to its effect on population genetic structure and recent models of mating-system evolution.  相似文献   

18.
Comparative studies of related plant species indicate that evolutionary shifts in mating systems are accompanied by changes in reproductive attributes such as flower size, floral morphology, and pollen/ovule ratio. Recent theoretical work suggests that patterns of investment in reproduction should also change with the mating system. In a glasshouse study, we investigated the extent to which mating system differences among populations of Eichhornia paniculata (Pontederiaceae) were correlated with changes in allocation to male and female function, floral display, and the regulation of investment in reproduction through fruit and ovule abortion. Significant differences in the amount of biomass allocated to reproductive structures were evident among six populations of E. paniculata. As predicted by sex allocation theory, the proportion of dry weight allocated to male function decreased with the outcrossing rate of populations. Six of the eight attributes used to characterize floral display also differed significantly among populations. However, with the exception of two attributes describing the number of flowers produced by inflorescences, these were not correlated with outcrossing rate. Levels of fruit and ovule abortion were determined in two populations with contrasting mating systems under different nutrient and pollination treatments. Virtually all fruits initiated by plants from a self-fertilizing population were matured, while the amount of fruit abortion in an outcrossing population increased with flower production. Ovule abortion was low in both populations. Our results demonstrate that the evolution of self-fertilization in E. paniculata is associated with changes in investment to reproduction that normally distinguish selfing and outcrossing species.  相似文献   

19.
Eichhornia azurea (Pontederiaceae) is a mat-forming, clonal aquatic that inhabits lakes, marshes and river systems in many parts of the Neotropics. The species is tristylous with long-, mid-, and short-styled morphs commonly represented in natural populations. To investigate whether E. azurea possesses a trimorphic incompatibility system typical of tristylous species, we conducted a controlled pollination experiment on 15 clones representing the three style morphs from a natural population near Rosario, Argentina. Comparisons of fruit and seed set following self-, illegitimate, and legitimate pollinations clearly demonstrated the presence of trimorphic incompatibility in E. azurea. Self- and illegitimate pollinations produced significantly less fruit and seed than legitimate pollinations in all three style morphs. Pollen from the two anther levels within a flower exhibited contrasting compatibility relations in self-pollinations. In common with several other tristylous species in Pontederiaceae, the expression of self-incompatibility was weakest in the mid-styled morph and strongest in the short-styled morph. We discuss the ecological and evolutionary significance of the partial expression of trimorphic incompatibility in E. azurea. Received: 3 May 1999 / Revision accepted: 27 July 1999  相似文献   

20.
Reduction in seed set following self- vs. cross-pollination in flowering plants can result from abortion of selfed offspring owing to inbreeding depression and/or partial self-incompatibility. Previous studies on tristylous Eichhornia paniculata (Pontederiaceae) indicate that reduced seed set following self-pollination generally occurs in the short- (S), but not the long-(L) or mid-styled (M) morphs. To determine whether this pattern results from morph-specific differences in inbreeding depression owing to the sheltering of deleterious alleles at the S locus and/or partial self-incompatibility, we conducted controlled hand-pollinations of the floral morphs and measured seed set and levels of seed abortion. There were no significant differences in fertilization success and seed set following self-, illegitimate, and legitimate pollinations in the L and M morphs. In contrast, in the S morph self-, intramorph and intermorph illegitimate pollinations resulted in significant reduction in seed set in comparison with legitimate pollination. This indicates that the reduced seed set observed in self-pollination is the result of partial incompatibility rather than inbreeding depression. Significantly reduced fertilization success and low levels of ovule abortion in illegitimate pollinations of S plants also supported this conclusion. Reduced fertility in the S morph may have implications for the observed loss of this morph from natural populations and the evolutionary breakdown of tristyly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号