首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
In neonates (0 to 3-4 months), the testis contained a mean number of 4.6 X 10(6) Leydig cells representing 4.2 % of its volume; Leydig cell cytoplasm contained 10.2 % of SER. In infants (up to 45 months), Leydig cells regressed but their number increased; their volume density did not change. Leydig cell cytoplasmic volume (454 microns3 ), which was about 2.5-fold less than in neonates (1 119 microns3 ) or adults (1 170 microns3 ), contained only 8.7% of SER. During meiosis stage (38-52 months). Leydig cell numbers and volume density did not vary but the cells reached a maximal size and an amount of SER comparable with that at birth was measured. When spermatogenesis was complete, the Leydig cells represented no more than 0.8% of testis volume, but their number and SER content were significantly increased. Except for a significant decrease when spermatogenesis was completed, Leydig cell lipid content did not change during development, and the volume density of mitochondria did not vary. The mean level of plasma testosterone was 2 ng/ml in neonates and 0.4 ng/ml in infants; it increased to 3 ng/ml during onset of meiosis and reached 10 ng/ml in adults. The profile of testosterone was positively and significantly correlated with the total volume and total number of Leydig cells (P less than 0.01 and P less than 0.02, respectively) and with changes in their cytoplasmic volume (P less than 0.001). Moreover, plasma testosterone levels were positively and significantly correlated with changes in Leydig cell SER content i.e. SER volume density and mean absolute volume per cell (P less than 0.001), total SER in the whole testis (P less than 0.01).  相似文献   

2.
Morphometric analysis of Leydig cells in the normal rat testis   总被引:3,自引:0,他引:3       下载免费PDF全文
Leydig cells are thought to be the source of most, if not all, the testosterone produced by the testis. The goal of this study was to obtain quantitative information about rat Leydig cells and their organelles that might be correlated with pertinent physiological and biochemical data available either now or in the future. Morphometric analysis of Leydig cells in mature normal rats was carried out on tissue fixed by perfusion with buffered glutaraldehyde, and embedded in glycol methacrylate for light microscopy and in Epon for electron microscopy. In a whole testis, 82.4% of the volume was occupied by seminiferous tubules, 15.7% by the interstitial tissue, and 1.9% by the capsule. Leydig cells constituted 2.7% of testicular volume. Each cubic centimeter (contained approximatelyy 1 g) of rat testis contained about 22 million Leydig cells. An average Leydig cell had a volume of 1,210 micron3 and its plasma membrane had a surface area of 1,520 micron2. The smooth endoplasmic reticulum (SER), the most prominent organelle in Leydig cells and a major site of steroidogenic enzymes, had a surface area of approximately 10,500 micron2/cell, which is 6.9 times that of the plasma membrane and is 60% of the total membrane area of the cell. The total surface area of Leydig SER per cubic centimeter of testis tissue is approximately 2,300 cm2 or 0.23 m2. There were 3.0 mg of Leydig mitochondria in 1 g of testis tissue. The average Leydig cell contained approximately 622 mitochondria, measuring on the average 0.35 micron in diameter and 2.40 micron in length. The mitochondrial inner membrane (including cristae), another important site of steroidogenic enzymes, had a surface area of 2,920 micron2/cell, which is 1.9 times that of the plasma membrane. There were 644 cm2 of inner mitochondrial membrane/cm3 of testis tissue. These morphometric results can be correlated with published data on the rate of testosterone secretion to show that an average Leydig cell secretes approximately 0.44 pg of testosterone/d or 10,600 molecules of testosterone/s. The rate of testosterone production by each square centimeter of SER is 4.2 ng/d or 101 million molecules/s: the corresponding rate for each square centimeter of mitochondrial inner membrane is 15 ng testosterone/d or 362 million molecules/s.  相似文献   

3.
Testes from 47 adult (4-20 years) stallions obtained in November-January (non-breeding season) and 41 adult stallions obtained in May-July (breeding season) were perfused with glutaraldehyde, placed in osmium and embedded in Epon 812. Percentage Leydig cell cytoplasm or nuclei in the testis was determined by point counting of 0.5 micron sections under bright-field microscopy. Testes from 6 randomly selected horses per season were processed for electron microscopy. The volume (ml) of SER/testis was calculated from the % SER in the cytoplasm % Leydig cell cytoplasm, and parenchymal volume. Number of Leydig cells was calculated from the % nuclei, parenchymal volume, histological correction factor, and volume of single nucleus. Intratesticular testosterone content was determined from the contralateral testis by radioimmunoassay. The volume of SER/g and testosterone/g tended to be higher in the breeding than non-breeding season. Leydig cell number/g, volume of SER/testis, testosterone/testis, and Leydig cell number/testis were significantly greater in the breeding than in the non-breeding season. Volume of SER/testis and testosterone/testis were related significantly to the cell number/testis, and SER/testis was related (P less than 0.05) to testosterone/testis. These results emphasize the importance of seasonal changes in the number of Leydig cells on the amount of SER available to produce testosterone and on testosterone content/testis in the stallion.  相似文献   

4.
The Leydig cells of viscacha (seasonal rodent) show cytoplasmic hypertrophy and regional distribution during the breeding period (summer-autumn). The dominant organelles are smooth endoplasmic reticulum (SER) and mitochondria. A moderately well-developed Golgi, abundant lipid inclusions, dense bodies like lysosomes in different stages, and centrioles are observed. Extensive or focal desmosome and gap-like junctions between neighbouring Leydig cells are present. These cells exhibit an evident hypotrophy and an increase in the number of dense bodies during the gonadal regression in winter (July and August). Cells in different stages of involution are observed in this period. Their nuclei are irregular and heterochromatic. The cytoplasm contains few mitochondria. The vesicular SER is scarse. Irregular and large intercellular spaces with microvilli and amorphous material are present. The junctional complexes are absent. The nuclear and cytoplasmic volume and development of SER and mitochondria increase during the recovery period (spring). The lipid inclusions decrease. Dilatations of the intercellular space with microvilli and limited by focal desmosome-like junctions are observed. In conclusion, the Leydig cells of Lagostomus maximus maximus show deep changes alongside the reproductive cycle. The photoperiod variations, through pineal hypothalamus pituitary axis and the hormone melatonin, are probably responsible for them. Moreover, the fall of serum and tubular testosterone would be one of the factors responsible for gonadal regression.  相似文献   

5.
Components of the testis and cytoplasmic organelles in Leydig cells were quantified with morphometric techniques in hamster, rat, and guinea pig. Testosterone secretory capacity per gram of testis and per Leydig cell in response to luteinizing hormone (LH) (100 ng/ml) stimulation was determined in these three species from testes perfused in vitro. Numerous correlations were measured among structures, and between structures and testosterone secretion, to provide structural evidence of intratesticular control of Leydig cell function. Testosterone secretion per gm testis and per Leydig cell was significantly different in the three species: highest in the guinea pig, intermediate in the rat, and lowest in the hamster. The volume of seminiferous tubules per gm testis was negatively correlated, and the volumes of interstitium, Leydig cells, and lymphatic space per gm testis were positively correlated with testosterone secretion. No correlations were observed between volumes of blood vessels, elongated spindleshaped cells, or macrophages per gm testes and testosterone secretion. The average volume of a Leydig cell and the volume and surface area of smooth endoplasmic reticulum (SER) and peroxisomes per Leydig cell were positively correlated, and the volume of lysosomes and surface area of inner mitochondrial membrane per Leydig cell were negatively correlated with testosterone secretion. No correlations were observed between volume and surface area of rough endoplasmic reticulum (RER), Golgi apparatus, and lipid, and volume of ribosomes, cytoplasmic matrix, and the nucleus with testosterone secretion per Leydig cell. These results suggest that Leydig cell size is more important than number of Leydig cells in explaining the difference in testosterone-secreting capacity among the three species, and that this increase in average volume of a Leydig cell is associated specifically with increased volume and surface area of SER and peroxisomes. An important unresolved question is what is the role of peroxisomes in Leydig cell steroidogenesis.  相似文献   

6.
Seasonal changes of the testicular interstitial tissue were studied by electron microscopy. During the breeding season in spring, clusters of Leydig cells are surrounded by wide lymphatic sinusoids. In sexually quiescent moles, these sinusoids collapse, and the abundant Leydig cells become closely packed and occupy most of the testis. During sexual activity, the Leydig cells contain abundant smooth endoplasmic reticulum (SER), mitochondria with tubular cristae, and lipid droplets. Some areas of the cytoplasm are occupied exclusively by tubular SER, arranged in parallel. During regression the SER appears tortuous, and large lipid droplets are found in the cytoplasm, although these gradually become smaller. During the long period of sexual quiescence, the size and abundance of Leydig cells and the appearance of SER, lipid droplets and mitochondria were similar to those observed during sexual activity.  相似文献   

7.
Changes in the ultrastructure of Leydig cells during pubertal development in the boar (40 to 250 days of age) were assessed using quantitative morphometric procedures, and the results were compared to the in vitro steroid-producing capacity and gonadotropin sensitivity of testicular tissue obtained from the same boars. Volume of individual Leydig cells declined through 100 days of age, increased rapidly to a peak at 130-160 days (i.e., puberty), and then declined to intermediate levels by 220-250 days of age. The pattern of change in the number of intracellular organelles per Leydig cell was very similar to the change that occurred in Leydig cell volume. Changes in the total intracellular volume occupied by each type of organelle were highly correlated with changes in Leydig cell volume (r = 0.40-0.99, p less than 0.01), and this was particularly true for the nucleus (r = 0.63), mitochondria (r = 0.88), smooth endoplasmic reticulum (SER; r = 0.97), and total cytoplasm (r = 0.99) of the boar Leydig cell. In vitro production of testosterone and estradiol, expressed per Leydig cell, also peaked at 130-160 days, and was highly correlated to average Leydig cell volume, volume of SER, and number and total volume of mitochondria (r = 0.63-0.84; p less than 0.01). Observations in the present study indicated that onset of puberty in boars coincides with a dramatic increase in average Leydig cell size and SER volume per Leydig cell, accompanied by an increase in number of other intracellular organelles, including mitochondria, lysosomes, and lipid droplets, and a peak in the steroid-producing capacity per Leydig cell. A decline in Leydig cell size, intracellular organelles, and sensitivity to gonadotropin stimulation occurred postpubertally.  相似文献   

8.
Changes in Leydig cell histology and testicular sudanophilic lipids were examined in relation to spermatogenic activity in the bat Myotis lucifugus lucifugus (Chiroptera: Vespertilionidae) throughout the annual cycle in the northeastern United States. These changes were correlated with annual variations in plasma testosterone concentrations which have recently been described for this species. Gametogenic activity occurred during the months of May-August when bats were metabolically most active. During hibernation (October-April), when sperm are stored in the epididymides, and accessory glands are hypertrophic, the seminiferous tubules were at rest, and the germinal epithelium was reduced to reserve spermatogonia and Sertoli cells. Based on their structure and cyclic pattern of sudanophilic lipids, Leydig cells exhibited a pattern of activity that closely paralleled that of the seminiferous epithelium. On renewal of spermatogenesis in spring, Leydig cells became hypertrophied and accumulated lipid inclusions. These inclusions, seen as vacuoles in plastic sections and sudanophilic droplets in frozen sections, reached maximal accumulations in late June. In late July and during August, when peak testosterone levels occur in blood, lipid droplets were dramatically depleted, and Leydig cells were weakly sudanophilic. In September, when testosterone titers return to low baseline levels, Leydig cells had regressed but exhibited a marked increase in sudanophilic inclusions which appeared to be mostly lipofuscins. During the ensuing mating and hibernation periods, Leydig cells were involuted and filled with lipofuscins. During the periarousal period, however, Leydig cells became weakly Sudan-positive while many large, intensely sudanophilic cells were scattered throughout the interstitium. In electron micrographs these cells were identified as macrophages. They appear to play an important role in the annual testicular cycle by phagocytizing the residues of Leydig cell involution in preparation for a new steroidogenic cycle. Seasonal changes in lipid inclusions were also observed in the seminiferous tubules. In addition, the relationship of the Leydig cell cycle to androgen action and the accessory organs in this bat is discussed.  相似文献   

9.
The ultrastructure of testicular interstitium in young and aged adult rats was analysed using morphometric methods, and the plasma testosterone concentration was measured. With increasing age there was an augumentation in the volume of collagen fibrils in the intercellular matrix and in blood vessels. During the aging process (approximately two years) the average volume of the Leydig cell decreased from 1364 m3 to 637 m3, but the number of Leydig cells in paired testes increased from 53x106 to 113x106. The absolute volume of smooth surfaced endoplasmic reticulum (SER) per Leydig cell amounted in aged rats to 78% of that in young adult rats. The total amount of SER in paired testes increased by 62% with aging. The present analysis suggests that the ability of SER to maintain peripheral testosterone concentration decreases with age. In young adult rats the absolute volume of peroxisomes per Leydig cell correlated significantly with the concentration of testosterone in blood and also with the absolute volume of SER per Leydig cell. These results combined with ultrastructural observations of close apposition of peroxisomes and SER suggest that peroxisomes have a role in testosterone secretion by Leydig cells.Visiting scientist to Laboratory of Electron Microscopy (Director: Prof. L.J. Pelliniemi)  相似文献   

10.
Gonadotropins and testosterone were immunocytochemically localized in the fetal rat testes 16-18 days of gestation with the unlabeled antibody-peroxidase anti-peroxidase complex technique. Maximum staining for gonadotropins with antiserum to the beta chain of human chorionic gonadotropin (anti-hCGbeta) occurred at 16 days gestation in the seminferous tubule and 17 days gestation in interstitial (Leydig) cells. Anti hCGbeta sites were on the plasma membranes at the luminal aspects of Sertoli cells at 16 days gestation. In addition, intracellular hCGbeta sites were evident including the nucleus, nucleolus, ribosomes, some vesicles, lysosomes and centrioles. The stain for hCGbeta disappeared rapidly and by 17 days was limited to patches in the cytoplasm and nuclei. In the fetal testes, staining for anti-testosterone binding sites was most intense at 18 days of gestation either in lipid droplets or on nuclei of Leydig and Sertoli cells. Very little testosterone stain was observed before 18 days of gestation. These findings agree with physiologic data that suggest that gonadotropins bind to receptors and stimulate testicular development and the capacity for testosterone production.  相似文献   

11.
The present study was designed to explore the intracellular cholesterol trafficking in Leydig cells of adult rats following Luteinizing hormone (LH) injection. Histochemical techniques were used to demonstrate distribution of free cholesterol in Leydig cells of control and LH-injected rats. Two groups of sexually mature male Sprague Dawley rats (n=4/group) were used. Fifteen min following an injection of 200 microl of either saline (control) or luteinizing hormone (LH, 500 microg in saline) testes of rats were fixed by whole body perfusion using 0.5% glutaraldehyde and 4% paraformaldehyde in 0.1 M cacodylate buffer for 20 min. Fixed testes were cut into 3 mm3 and kept immersed in the fixative for further 15 min. Tissue cubes were then incubated at 37 degrees C in a medium containing cholesterol oxidase, 3,3'-diaminobenzidine tetrahydrochloride, horseradish peroxidase and dimethyl sulfoxide to histochemically localize free cholesterol in Leydig cells and processed for electron microscopy. Thin sections of these tissues were stained with aqueous uranyl acetate and lead citrate and examined with a Philips 201C electron microscope. In Leydig cells of control rats, free cholesterol was detected primarily in lipid droplets and plasma membrane. In the majority of Leydig cells, peroxisomes were unstained for free cholesterol, but occasionally few stained ones were present. Staining was not detected in mitochondria and smooth endoplasmic reticulum (SER) in Leydig cells of control rats. In LH-injected rats, lipid droplets, many peroxisomes, inner and outer mitochondrial membranes and some cisternae of SER in Leydig cells showed staining for free cholesterol. Fusion of Leydig cell peroxisomes with lipid droplets and mitochondria was also observed in the LH treated rats. These findings suggested that peroxisomes in adult rat Leydig cells participate in the intracellular cholesterol trafficking and delivery into mitochondria during LH stimulated steroidogenesis. Lipid droplets are used as one source for cholesterol for this process.  相似文献   

12.
The present study was aimed at investigating ultrastructure of different testicular cells and their interactions through various junctional specializations during different phases of reproductive cycle in wall lizard H. flaviviridis to develop an integrated approach of cell-cell interaction in control of testicular functions. Specialized steroid synthesizing cell organelles such as smooth endoplasmic reticulum (SER) and long slender mitochondria with tubulo-vesicular cristae were predominantly seen in Leydig as well as Sertoli cells during spermatogenically active phase, suggesting their active involvement in steroid biosynthesis. Peritubular cells also exhibited marked seasonal variations. Multi-layered fibroblast-like peritubular cells during regressed phase became single layered myoid-like during spermatogenically active phase. The presence of various types of junctions, including gap and tight junctions (occluding junctions) and adhering junctions such as desmosomes, septate-like junction, ectoplasmic specializations and tubulo-bulbar complexes, were demonstrated among testicular cells in wall lizard H. flaviviridis. However, the nature and degree of junctional (environmental) interaction varied with the reproductive state of the wall lizard. Further, administration of dihydrotestosterone in wall lizards during regressed phase resulted in increase of lipid droplets in Leydig cells and accumulation of germ cell debris in seminiferous tubules. Some of the Sertoli cells were seen darker in response to testosterone treatment probably due to its inhibitory effect on lipid metabolism. These results suggest that testosterone either directly or via inhibiting pituitary basal gonadotropin secretion has suppressive effect on testicular cells.  相似文献   

13.
Ultrastructural examination of the marbled newt (Triturus marmoratus) testis throughout the annual cycle revealed that during the period of testicular quiescence (November-February), primordial germ cells proliferate within cords of filament-rich epithelial cells that will become follicular cells (FCs). Fibroblast-like cells surround the FCs and form the lobule-boundary interstitial cells (ICs). During the period of germ cell development from primordial germ cells to round spermatids (March-June), the FCs surrounding the developing germ cells contain scanty cytoplasm with abundant rough endoplasmic reticulum and scarce filaments. With spermatid elongation (July-August), the FC size grows, its nucleus becomes irregularly outlined, and its cytoplasm displays abundant smooth endoplasmic reticulum, residual bodies, lipid droplets, and large vacuoles. After spermatozoon release by the FCs (August-September), the adjacent ICs increase their size and transform into Leydig cells with abundant smooth endoplasmic reticulum, mitochondria with tubular cristae, and lipid droplets. During the period of testicular quiescence (November-February), the Leydig cells undergo involution, eventually developing the morphological attributes of mesenchymal cells. Intermingled among these cells, cords of filament-rich cells are observed. During this period of the cycle, spermatozoon cysts supported by FCs are present. At the beginning of the germ cell proliferation period (March), these spermatozoa are released, and the adjacent ICs undergo a transformation into Leydig cells similar to those observed in August-September. Maturation and involution of ICs occur when testosterone levels are known to be rising and falling, respectively.  相似文献   

14.
Ten Egyptian Nubian goat bucks were used to evaluate the effect of season on testicular hormonal activity and ultrastructure. Parameters were recorded for 7 consecutive weeks in the middle of the four seasons, with blood samples being collected weekly. At the end of each of these seasons, testicular biopsies were obtained surgically for histological and cytological studies. Season had a significant effect on plasma testosterone concentration, being at its lowest level (P < 0.01) during winter and spring (1.2 and 2.6 ng/ml, respectively), while at its highest during summer (10 ng/ml). The effect of season on plasma LH concentration was higher (P < 0.01) in autumn (2.9 mIU/ml) and less in spring and summer (0.4 mIU/ml). Season of the year influenced the percentage of sectional tissue area occupied by the seminiferous tubules and interstitial tissue. Seminiferous tubules occupied the majority of the testicular tissue during winter (76.6%), with the least being occupied during spring (49.8%). The thickness of the seminiferous tubules was maximal during autumn, followed by summer (53 and 36 μm, respectively). In summer the Leydig cells contained abundant smooth endoplasmic reticulum (sER), while some areas of the cytoplasm were occupied exclusively by tubular sER, arranged in parallel—indicating the highest activity of these cells. A characteristic multivesicular structure with numerous large lipid droplets and vacuoles was recorded in the Leydig cells during spring and winter, denoting low or even arrested activity of the cells. It could be concluded that season influences the activity of the Leydig cells of Egyptian Nubian bucks, and this is reflected by their ultrastructure and secretive activity.  相似文献   

15.
Serum testosterone, luteinizing hormone (LH), testicular histology and ultrastructure were examined in 91 spontaneously diabetic BB, semi-starved, and control Wistar rats. Between 80-120 days of age serum testosterone was decreased (1.67 +/- .25 vs. 2.95 +/- .48 ng/ml; P less than .05) in the BB rats compared to controls but not different from semi-starved rats. LH values were similar in control and BB rats (49.4 +/- 10.9 vs. 46.8 +/- 6.2 ng/ml). Abnormal lipid droplets were noted within Leydig cells at this period. From 121-150 days of age serum testosterone was lower in BB (1.38 +/- .23 vs. 3.42 +/- .45 vs. 2.94 +/- .81 ng/ml; P less than .05) than controls or semi-starved rats. Serum LH was not significantly higher in controls than in BB rats (63.2 +/- 7.4 vs. 36.6 +/- 12 ng/ml; P = NS). Between 151-200 days of age, there was further lipid accumulation in Leydig cells in the BB rat and occasional epithelial disorganization. After 200 days, serum testosterone decreased (P less than .05) to similar levels in both control and BB rats (1.42 +/- .87 vs. 1.22 +/- .25; P = NS) and was similar in BB rats after 250 days (1.02 +/- .2 ng/ml). After 250 days of age Leydig cell morphology appeared relatively normal but marked alterations were apparent in Sertoli cells, germ cells and morphology of the tubule wall.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Summary The testes of Syrian hamsters underwent pronounced involution within six weeks after blinding. The seminiferous tubules were devoid of all stages of spermatid development and mature spermatozoa were absent from the tubule lumina. The diameter of the Leydig cells was 25 % less than that of controls. Examination with the electron microscope revealed thick bundles of collagen fibrils interspersed between Leydig cells and surrounding Leydig cells in the blinded hamsters. The Leydig cell nuclei were shrunken and highly infolded. Lipid droplets that were often seen in normal Leydig cells were absent in the involuting Leydig cells. The size of the Golgi complex and the amount of smooth endoplasmic reticulum were reduced. Results of the present experiment confirm that inactivity of the Leydig cells is the reason for the decline in serum testosterone levels in blinded hamsters.  相似文献   

17.
Peritubular Leydig cells located in interstitial areas surrounded by tubules at nearly the same stage of spermatogenesis were analysed. Low-power electron micrographs were used for measurement of cell profile area and higher magnification views provided volume density of SER, Golgi stacks, mitochondria, and lipids. In the adult monkey, no cyclic changes were found in Leydig cells in their size or in the volume density of their organelles. In the adult rat (63 days of age), a comparison limited to stage VII-VIII and stage XI-XII peritubular Leydig cells demonstrated a significantly higher SER content (P less than 0.01) in the former, but no other differences. The study of subadult rats (45 days of age) showed that the full development of spermatogenesis was required to detect significant changes in Leydig cell SER content. The present results provide morphological evidence for an intratesticular control of the Leydig cells of the rat but not for those of the monkey.  相似文献   

18.
Little is known of the cell biology of Leydig cells during the neonatal activation of the hypothalamic-pituitary-testicular (HPT) axis. The current study examined the effect of blockade of the HPT axis with a GnRH antagonist (antide) on the neonatal population of Leydig cells in the new world primate, the common marmoset. Three sets of twins, age 7 weeks, were studied: in each pair one twin was used as a control, while the other received treatment with GnRH antagonist from the day of birth to suppress pituitary gonadotrophin secretion. Leydig cells of treated animals were dramatically different from those of controls. The cells were atrophic and exhibited very irregular nuclei. The organelles involved in steroid synthesis were reduced to the extent to being barely evident. The smooth endoplasmic reticulum (SER) was greatly diminished in quantity and distribution. The usual form of the SER (anastomosing tubules) was not evident, but, instead, the SER was relatively unbranched. Peroxisomes, organelles involved in transfer of cholesterol to the mitochondria, were greatly reduced in number. Mitochondria were relatively sparse and exhibited a non-typical morphology, as tubular elements of the cristae were rarely evident. Thus, the central apparatus in steroid production, the SER, mitochondria and peroxisomes, was essentially shut down in the GnRH-antagonist-treated animals. Storage of cholesterol, the precursor of steroid biosynthesis, was also not in evidence, as lipid droplets were extremely rare. Two prominent features of control in neonatal marmoset Leydig cells, the membranofibrillar inclusion (MFI) and basal laminae, remain prominent in the Leydig cells of treated animals. Evidence of apoptosis was not observed. These results provide strong support that the gonadotrophic hormones are the primary regulator of neonatal Leydig cell development in primates, and also suggest cell regression, rather than apoptosis, being the mechanism of this inhibition.  相似文献   

19.
Histometrical evaluation of the testis was performed in 36 Piau pigs from birth to 16 mo of age to investigate Sertoli cell, Leydig cell, and germ cell proliferation. In addition, blood samples were taken in seven animals from 1 wk of age to adulthood to measure plasma levels of FSH and testosterone. Sertoli cell proliferation in pigs shows two distinct phases. The first occurs between birth and 1 mo of age, when the number of Sertoli cells per testis increases approximately sixfold. The second occurs between 3 and 4 mo of age, or just before puberty, which occurs between 4 to 5 mo of age, when Sertoli cells almost double their numbers per testis. The periods of Sertoli cell proliferation were concomitant with high FSH plasma levels and prominent elongation in the length of seminiferous cord/tubule per testis. Leydig cell volume increased markedly from birth to 1 mo of age and just before puberty. In general, during the first 5 mo after birth, Leydig cell volume growth showed a similar pattern as that observed for testosterone plasma levels. Also, the proliferation of Leydig cells per testis before puberty showed a pattern similar to that observed for Sertoli cells. However, Leydig cell number per testis increased up to 16 mo of age. Substantial changes in Leydig cell size were also observed after the pubertal period. From birth to 4 mo of age, germ cells proliferated continuously, increasing their number approximately two- to fourfold at each monthly interval. A dramatic increase in germ cells per cross-section of seminiferous tubule was observed from 4 to 5 mo of age; their number per tubule cross-section stabilized after 8 mo. To our knowledge, this is the first longitudinal study reporting the pattern of Sertoli cell, germ cell, and Leydig cell proliferative activity in pigs from birth to adulthood and the first study to correlate these events with plasma levels of FSH and testosterone.  相似文献   

20.
Leydig cell ultrastructure and function in diabetic rats were studied by concurrent cytochemistry, morphometry, and testosterone assay. The streptozotocin (Stz) model was modified to include nondiabetic Stz-injected rats, an insulin-treated diabetic group, and semistarved animals in addition to controls and untreated diabetic rats. The separation of the effects of diabetes, Stz, semistarvation, and insulin treatments was achieved by application of orthogonal contrast statistics. After 3 months of treatments, testes were perfusion-fixed, incubated for delta 5,3 beta-hydroxysteroid dehydrogenase (HSD) activity, and processed for electron microscopy. Diabetes increased Leydig cell smooth endoplasmic reticulum (SER), increased mitochondrial and lipid content, decreased HSD staining, and decreased serum testosterone levels. Insulin treatment reduced SER and increased testosterone concentrations. Semistarvation also increased SER and reduced testosterone levels but did not alter HSD staining. Stz had no significant effect on these variables. The results suggested that the hypoandrogen state was due to a primary Leydig cell compromise and not solely to malnutrition and that it was correctable by insulin treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号