首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Young excised floral buds of Aquilegia were grown on defined medium containing kinetin, indoleacetic acid (IAA), or gibberellic acid (GA3). Only when 10−6 or 10−7 m kinetin was added to the basal medium was there a significant increase in the number of initiated whorls of primordia. Buds on the basal medium or on medium with IAA or GA3 failed to initiate carpels. On medium with 10−6 or 10−7 m kinetin, buds successfully initiated a normal whorl of five carpels. A high level of inorganic nitrogen was also required for the initiation of carpels. With 10−5 m kinetin, individual buds initiated from 6–18 carpels. Staminodial primordia of these buds were replaced with carpels, or the floral apex enlarged to accommodate a single whorl of many carpels. Kinetin did not support the further differentiation of the floral organs. Sepals, petals, and carpels did differentiate on medium with GA3, but stamens aborted. However, on medium with GA3 and kinetin, stamen primordia differentiated into short filaments and anthers. Further unknown growth factors appear to be required for the complete differentiation of floral primordia into mature organs.  相似文献   

2.
Stem segments were excised from plants of Wisconsin 38 tobacco (Nicotiana tabacum L.) in three regions differing in their distance below the inflorescence. They were cultured in vitro in 8- or 16-hr days. After 8 weeks, floral and vegetative buds were counted, and extent of floral development was assessed. Kinetin at 10(-5)m inhibited formation and development of floral buds regardless of indoleacetic acid concentration. Supplied at this concentration with adequate auxin, kinetin stimulated vegetative bud formation and may have caused floral bud abortion. Indoleacetic acid (>/= 10(-6)m) inhibited vegetative and floral bud formation when supplied with low kinetin concentration (/= 10(-6)m), it inhibited floral bud formation and stimulated vegetative bud formation. More floral buds were formed in 16-hr days than in 8-hr days. Few formed on explants other than those derived from the region nearest the inflorescence regardless of other treatment.  相似文献   

3.
In vitro organogenesis was achieved from callus derived from hypocotyl explants of Cucumis sativus L. cv. Poinsett 76. Calli were induced from hypocotyl explants excised from 7-d-old seedlings grown on Murashige and Skoog (MS) medium containing 87.64 μM sucrose, 0.8 % agar, 3.62 μM 2,4-dichlorophenoxy acetic acid and 2.22 μM 6-benzyladenine (BA). Regeneration of adventitious buds from callus (25 shoots explant−1) was achieved on MS medium supplemented with 8.88 μM BA, 2.5 μM zeatin and 10 % coconut water after two subcultures in the same medium at 30-d interval. Gibberellic acid (1.75 μM) favoured shoot elongation and indole 3-butyric acid (7.36 μM) induced rooting. Rooted plants were hardened and successfully established in soil.  相似文献   

4.
The involvement of the stamens as transporters of plant growth regulators in flowers was examined by measuring the movement of 14C-indole-3-acetic acid (IAA) and l4C-l-aminocyclopropane-1-carboxylic acid (ACC) through floral organs of Ipomoea nil. During the transport of 14C-IAA through isolated filament segments, the polar accumulation of 14C-IAA in receiver blocks increased with time during filament development, which correlated with polar efflux rates at older stages of filament development. An inhibitor of polar IAA transport, 2,3,5-triiodobenzoic acid, disrupted the polarity of auxin transport by reducing the movement of 14C- IAA from filaments into receiver blocks. Transport of both 14C-IAA and l4C-ACC through filaments into other floral organs also was monitored in isolated flower buds in the laboratory and intact buds in the greenhouse. In isolated and intact buds 21 hr before anthesis, substantially higher levels of isotope were recovered in corolla tissue when 14C-ACC was transported through the filaments than when 14C-IAA was transported from the filaments. In isolated buds, substantial levels of both isotopes accumulated in the pistil (69 hr and 45 hr before anthesis), but minimal amounts were observed in receptacle and calyx tissues (69 hr to 21 hr before anthesis). In intact buds, high levels of both isotopes were recovered in receptacle, calyx, and pistil tissues (69 hr to 21 hr before anthesis). The results from this study support the hypothesis that Ipomoea stamens are transporters for ACC and IAA to regulate ethylene production in the corolla and other floral tissues.  相似文献   

5.
Apical buds of Xanthium were grown in aseptic culture under short-day cycles known to induce flowering in the intact plants or under “light-break” conditions known to prevent flowering. The total light provided in each 24-hr cycle was the same under the two photoperiods. Various numbers of leaves were excised from the apical buds. Excision of leaves did not change the response to photoperiod: even with all leaves excised the apical buds cultured under short-day conditions reached the same average floral stage as the control buds, and those under light-break conditions all remained vegetative. Fresh weight was not significantly changed by the excisions, either. However, excision of the young leaves resulted in an increase in the number of new leaves developed by the apical bud during the two-week culture period.  相似文献   

6.
烟草薄层培养器官发生的控制及细胞学观察   总被引:2,自引:0,他引:2  
普通烟草(Nicotiana tabacum)花梗表皮薄层组织在不同生长素和细胞分裂素配比的MS培养基上及不同的培养条件下,可分别诱导,得到直接发生的营养芽和花芽,以及根和不发生器官分化的愈伤组织。组织间的相互联系,影响器官发育潜能的发挥。细胞学观察发现,直接发生的营养芽和花芽起源于薄层组织的亚表皮细胞层。  相似文献   

7.
Supercooling in overwintering azalea flower buds   总被引:8,自引:7,他引:1       下载免费PDF全文
Differential thermal analysis and nuclear magnetic resonance spectroscopy experiments on whole flower buds and excised floral primordia of azalea (Rhododendron kosterianum, Schneid.) proved that supercooling is the mode of freezing resistance (avoidance) of azalea flower primordia. Increase in the linewidth of nuclear magnetic resonance spectra for water upon thawing supports the view that injury to the primordia occurs at the moment of freezing. Nonliving primordia freeze at the same temperatures as living primordia, indicating that morphological features of primordial tissues are a key factor in freezing avoidance of dormant azalea flower primordia. Differential thermal analyses was used to study the relationship of cooling rate to the freezing points of floral primordia in whole flower buds. At a cooling rate of 8.5 C per hour, primordia in whole buds froze at about the same subfreezing temperatures as did excised primordia cooled at 37 C per hour. At more rapid cooling rates primordia in intact buds froze at higher temperatures.  相似文献   

8.
Adventitious bud formation from the vegetative buds of the flower stalks of Phalaenopsis occurred on Vacin and Went medium with 15% coconut water and 5 to 40 μM thidiazuron (TDZ) or 40 μM N6-benzylaminopurine. The highest efficiency of induction was achieved with 5 or 10 μM TDZ. Adventitious buds developed into shoots on VWC medium. TDZ was more effective than BAP in stimulating the axillary buds of intact shoots to develop. Regenerated shoots rooted after about two months of culture on VWC medium with 1% sucrose. Shoot tips excised from the regenerated shoots initiated protocorm-like bodies after two months of culture on VWC medium.  相似文献   

9.
Anther removal from stamens whose filaments are 1–3 mm long restricts filament elongation to approximately 60% of the normal length. Removal of one-third to one-half of the anthers affects only the antherless filaments and does not appear to inhibit the growth of the other organs of the flower. Filament growth inhibition induced by anther removal involves both an inhibition of epidermal cell elongation along the length of the filament and also an inhibition of cell division. There is no evidence that the inhibition of filament growth is a response to damage caused by anther removal. Rather, it is suggested that anther removal severs a normal hormonal relationship existing between the anther and the developing filament. The application of gibberellic acid (GA3) in lanolin paste stimulated the elongation of the antherless filaments to achieve an average of 87% of the filament length of adjacent intact stamens. The closer a filament is to having attained its final number of cells before anther removal, the closer does its length come to reaching the final length of filaments in intact stamens. The elongation of these antherless filaments with the application of GA3 was accompanied by elongation of the epidermal cells of the filament to normal, or in some cases greater than normal, lengths. There is no evidence that GA3 application affected the inhibition of epidermal cell devision induced by anther removal. The results of this study support the suggestion of Plack that emasculation-induced inhibition in the growth of floral organs and its reversal by GA3 is a general phenomenon.  相似文献   

10.
Terminal meristems of Pisum sativum (garden pea) transit from vegetative to inflorescence development, and begin producing floral axillary meristems. Determination for inflorescence development was assessed by culturing excised buds and meristems. The first node of floral initiation (NFI) for bud expiants developing in culture and for adventitious shoots forming on cultured meristems was compared with the NFI of intact control buds. When terminal buds having eight leaf primordia were excised from plants of different ages (i.e., number of unfolded leaves) and cultured on 6-benzylaminopurine and kinetin-supplemented medium, the NFI was a function of the age of the source plant. By age 3, all terminal buds were determined for inflorescence development. Determination occurred at least eight nodes before the first axillary flower was initiated. Thus, the axillary meristems contributing to the inflorescence had not formed at the time the bud was explanted. Similar results were obtained for cultured axillary buds. In addition, meristems excised without leaf primordia from axillary buds three nodes above the cotyledons of age-3 plants gave rise to adventitious buds with an NFI of 8.3 ±0.3 nodes. In contrast seed-derived plants had an NFI of 16.5 ±0.2. Thus cells within the meristem were determined for inflorescence development. These findings indicate that determination for inflorescence development in P. sativum is a stable developmental state, separable from determination for flower development, and occurring prior to initiation of the inflorescence at the level of meristems.  相似文献   

11.
The tobacco explants did not regenerate any floral shoots when they were excised from the mother plant whose flower buds were removed before they developed, while those from the equivalent-aged intact mother plant regenerated floral shoots more than a quarter of the total regenerated shoots.  相似文献   

12.
Bud formation capacity of callus formed from thin epidermal cell loyers excised from floral branches of Nicotiana tabacum cv. Wise. 38. Subepidermal cells of thin tissue pieces with a few cell layers were capable of forming eitber buds, roots, (lowers or non-organ ogenetic callus. To determine wheiher this calltjs is able to dirferentiate into organs, we transferred it to media inducing eitber flowers, or buds, or roots. In this paper, we study ibe capacity of lbe callus to form buds. In 50% of the cases, the explants (being maintained for I day to 2 years in callus media) can still express the capacity to form buds. This percentage increased with increased agar concentration of the culture media. At the histological level, non-organogenetic callus is characterized by the absence of tracheid differentiation, whereas in the organogenetic callus, iracheids were induced after their transfer into a ‘Bud medium’ and indicate an organogenetic differentiation pattern.  相似文献   

13.
We investigated the phloem loading pathway in barley, by determining plasmodesmatal frequencies at the electron microscope level for both intermediate and small blade bundles of mature barley leaves. Lucifer yellow was injected intercellularly into bundle sheath, vascular parenchyma, and thin-walled sieve tubes. Passage of this symplastically transported dye was monitored with an epifluorescence microscope under blue light. Low plasmodesmatal frequencies endarch to the bundle sheath cells are relatively low for most interfaces terminating at the thin- and thick-walled sieve tubes within this C3 species. Lack of connections between vascular parenchyma and sieve tubes, and low frequencies (0.5% plasmodesmata per μm cell wall interface) of connections between vascular parenchyma and companion cells, as well as the very low frequency of pore-plasmodesmatal connections between companion cells and sieve tubes in small bundles (0.2% plasmodesmata per μm cell wall interface), suggest that the companion cell-sieve tube complex is symplastically isolated from other vascular parenchyma cells in small bundles. The degree of cellular connectivity and the potential isolation of the companion cell-sieve tube complex was determined electrophysiologically, using an electrometer coupled to microcapillary electrodes. The less negative cell potential (average –52 mV) from mesophyll to the vascular parenchyma cells contrasted sharply with the more negative potential (–122.5 mV) recorded for the companion cell-thin-walled sieve tube complex. Although intercellular injection of lucifer yellow clearly demonstrated rapid (0.75 μm s-1) longitudinal and radial transport in the bundle sheath-vascular parenchyma complex, as well as from the bundle sheath through transverse veins to adjacent longitudinal veins, we were neither able to detect nor present unequivocal evidence in support of the symplastic connectivity of the sieve tubes to the vascular parenchyma. Injection of the companion cell-sieve tube complex, did not demonstrate backward connectivity to the bundle sheath. We conclude that the low plasmodesmatal frequencies, coupled with a two-domain electropotential zonation configuration, and the negative transport experiments using lucifer yellow, precludes symplastic phloem loading in barley leaves.  相似文献   

14.
Thin explants composed of the epidermis and underlying collenchyma excised from leaf veins of Begonia rex and cultured in vitro are capable of neoformation of unicellular hairs, roots and buds. Unicellular hairs were formed over the entire surface of the explant when 10−6M indole acetic acid or 10−7M naphthaleneacetic acid (NAA) was added to the basal medium; each epidermal cell was potentially involved. The epidermis was most sensitive to a NAA treatment during the first few days of culture but 30% of the explants could still react after 4 days of culture without NAA. When NAA (5 × 10−7M) and a cytokinin, zeatin (10−7M), were added together, roots were formed from epidermal tissue after numerous divisions in the original cells. Their initiation was not related to particular cells. Buds were formed when a cytokinin (10−6M) was added to the basal medium; bud meristems were formed from small groups of cells surrounding basal cells of glandular hairs. Hair formation was inhibited by either high (32–27°C) or low (12°C) temperatures applied continuously. 32–27°C seemed to inhibit elongation of the hairs specifically, whereas 12°C inhibited earlier phases in hair formation. This hypothesis was supported by short temperature treatments applied at different times during hair formation.  相似文献   

15.
A possible morphogenic effect of leaf sheaths on subsequent leaf development was investigated by varying sheath tube (pseudostem) length in plants of perennial ryegrass (Lolium perenne) cv. Talbot by either incising longitudinally or excising the distal portion of the sheath tube, while leaving the basal length of the tube intact. The tube was maintained at predetermined lengths by incising and excising new growth daily. The youngest rapidly expanding leaf was allowed to grow through the tube and was measured when fully expanded. Reducing tube length by excision or by incision from 60 mm to just above the cowl leaf on the apex reduced lamina length by 87% and 77% respectively. Over all tube lengths, laminae in incised treatments were almost twice as long as those in excised treatments. Sheath length followed a similar pattern. The effect on developing leaves of artificially extending sheath tubes (previously excised to 15 mm) to 30 or 45 mm with foil was similar to that of initially excising sheath tubes to 30 or 45 mm. The shorter the sheath tube (reduced by incision) through which the leaves had to grow, the shorter the cells, especially in the laminae. The estimated cell number per row along the length of the laminae ranged from 190 in tillers (shoots) with a very short tube (just above the cowl leaf) to 454 in intact control tillers. It is concluded that the sheath tube has a morphogenic influence on the development of subsequent leaves due to the change in environment of the leaf lamina on appearance, affecting both cell elongation and cell division.  相似文献   

16.
普通烟草(Nicotiana tabacum)花梗表皮薄层组织在不同生长素和细胞分裂素配比的MS培养基上及不同的培养条件下,可分别诱导,得到直接发生的营养芽和花芽,以及根和不发生器官分化的愈伤组织。组织间的相互联系,影响器官发育潜能的发挥。细胞学观察发现,直接发生的营养芽和花芽起源于薄层组织的亚表皮细胞层。  相似文献   

17.
Using the electron microscope, we compared the effects of abscisic acid and gibberellin A3 on excised buds from resting potato (Solanum tuberosum L.) tubers. Cells of abscisic acid-treated buds became progressively more vacuolated during a 12-hour time course study as compared with control (water) and gibberellin A3-treated buds. Concentric configurations of endoplasmic reticulum were present in apical cells of freshly excised buds. After about 6 hours these configurations began to open and disperse, and after 12 hours, intact concentric configurations were no longer evident. Both abscisic acid and gibberellin A3 induced opening and dispersal of the concentric configurations, sometimes as early as 0.5 hour after excision and treatment with hormones.  相似文献   

18.
Excised floral buds of Aquilegia formosa Fisch. were grown on a coconut-milk medium containing the minerals and vitamins of Murashige and Skoog, sucrose, and kinetin. The plant growth regulators indoleacetic acid (IAA, 0.5 mg/liter) and gibberellic acid (GA, 2.0 mg/liter) were added singly and in combinations; both were omitted from the control medium. The addition of GA to the basal medium was required to support sepal development on flowers at all phases of development. The formation of stomatal complexes in the epidermis of the sepals occurred only in the presence of GA. Sepals grown in the presence of GA also contained trichoblasts and developing trichomes, while none were formed in the absence of GA. The role of IAA in the development of these idioblasts was not clear but it appeared to have no effect. The hormones GA and IAA had different effects on the growth of the sepals. In the presence of GA the sepals increase in length until comparable with sepals grown in vivo. However, the sepals remained small when GA was omitted from the medium. Upon closer examination of this effect, it was determined that there was a direct proportionality between an increase in cell number in the epidermis and an increase in sepal length. The role of the two hormones in increasing epidermal cell length in sepals was distinct and separate. Exogenous IAA had no effect upon cell division but was required for cell elongation, while GA was required for cell division and had no effect on cell elongation. The GA effect in promoting cell division in the sepals was substantiated by use of autoradiography. If the buds were grown on media with GA, twice as many epidermal cells along the central file incorporated significant amounts of tritiated thymidine. The cell cycle of the epidermal cells of the GA-treated sepals was ca. 8.7 hr in duration and ca. 13.0 hr if GA was deleted from the medium.  相似文献   

19.
Wardell WL  Skoog F 《Plant physiology》1969,44(10):1407-1412
The RNA base analogues, 2-thiouracil, 6-azauracil and 8-azaguanine incorporated singly into the medium, increased the number of floral buds in excised stem segments of Nicotiana tabacum variety Wisconsin No. 38 cultured in vitro. Combined treatments with 2 and 3 base analogues were even more effective. The effects were prevented by the corresponding natural counterparts, uracil, uridine, and guanosine respectively. These nucleic acid constituents added to cultures without base analogues did not affect the number of floral buds formed. In stem segments from the lower internodes treatments with the analogues effected a transition from vegetative to floral bud formation, thus in a sense removing the floral gradient as defined by Chouard and Aghion.  相似文献   

20.
An efficient protocol for shoot bud induction and proliferation employing half cotyledonary node with intact cotyledon explants derived from two-day-old seedlings of mung bean pre-conditioned on 6- benzylaminopurine (BAP) has been achieved. Explants were cultured for four weeks each on MS B5 + 12.5 μM BAP and MS B5 + 5 μM BAP +0.05 μM α-naphthaleneacetic acid (NAA ), respectively, as shoot bud induction and shoot elongation and proliferation media, gave the best regeneration response. The removal of the pre-existing buds from explants at 12 days in shoot bud induction medium led to enhanced regeneration response. Light microscopic observations on 14-day-old explants confirmed direct organogenesis route of regeneration. Elongated shoots (>2 cm) excised from the regenerating cultures were successfully rooted on half MS B5 medium containing 2.46 μM indolebutyric acid (IBA). About 90% of the rooted plantlets, efficiently hardened in pots having soil and farm yard manure, flowered and produced pods with viable seeds upon reaching maturity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号