首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The formation of cell walls during the appressorium formation inColletotrichum lagenarium was observed by electron microscope on the materials prepared by replicas and sectioning. The outer layer of conidia cell walls ruptured at the time of germination and the inner layer bulged out to form a germ tube. The germ tubes and primordia of appressoria had smooth surface and were consisted of one-layered cell wall. However, as the appressorium matured, the electron dense materials appeared on the outer surface of the cell wall which grew into granules. These granules are believed to form the outer layer of appressoria. The under side of the appressorium in contact with the glass surface showed a round pore.Contribution No. 191.  相似文献   

2.
R. A. Stevens  E. S. Martin 《Planta》1978,142(3):307-316
Differential cell wall thickening in developing guard cells of Polypodium vulgare L. has been studied with particular reference to guard cell protoplast deformation and the eventual formation of the stomatal pore. Concomitant studies on the development of guard cell chloroplasts and their starch inclusions during ontogeny of the stomatal complex have provided data which have been incorporated into a model to account for the formation of the pore. Guard cell starch inclusions reach a maximum density per unit volume at the same time as the guard cell walls achieve maximum differential thickening. These events coincide with the development of the pore. It is suggested that, whilst pore formation is initiated enzymatically, the mechanical forces required to bring about the separation of the two guard cells are of an osmotic nature derived from starch hydrolysis. The development of the mesophyll in relation to the epidermis is examined in respect of the formation of substomatal chambers.  相似文献   

3.
D. J. Carr  S. G. M. Carr 《Protoplasma》1978,96(1-2):127-148
Summary Development of the stomata ofEucalyptus orbifolia (in which they are relatively superficial) andE. incrassata (in which they are deeply sunken) is described from light microscopy of thin sections of resin-embedded material. The envelope of the guard mother cell is retained intact while in the daughter cells (guard cells) the inner and outer thickenings are formed. The mother cell envelope may even remain discrete and intact during early stages of formation of the separation spaces, precursors of the future stomatal pore, between the thickenings. Remnants of the guard mother cell wall may be retained as parts of at least the inner stomatal ledges. Likewise, remnants of the wall which divides the mother cell persist on the maturing guard cells.Sudan III-positive materials, probably cutin, are removed from the cuticle over the mother cell soon after it is formed. The cuticle above the guard cell is finally perforated by enzymic attack forming, inE. incrassata, a large cavity outside the developing stoma into which the outer stomatal ledges grow as extensions of the upper guard cell walls.The termostiole is suggested for the aperture in the cuticle. The flanges of cuticle seen in section to bound it are termedostiolar ledges. The ostiolar ledges are to be distinguished from the outer stomatal ledges, which develop from the upper thickenings of the guard cell initials. The distinction is clear inE. incrassata (and other species with deeply sunken stomata) but not in mesophytic plants or species with superficial stomata such asE. orbifolia in which the outer stomatal ledges are fused with the cuticle.Growth of the outer stomatal ledges inE. incrassata involves transport of wall materials through an annular space, the equivalent of an ectocythode.The relevance of the observations to stomatal development in other genera is discussed.  相似文献   

4.
Features of the epidermis such as stomata, hairs, cork and silica cells are described from both light and electron microscope studies. The stomatal complex consists of two guard cells and two subsidiary cells. After division of the guard mother cell a pore is left at each end of the dividing wall. The cork and silica cells arise from a single another cell and develop differentially. The silica cell enlarges more than the cork cell and finally becomes filled with solidified silica. The outer tangential and radial walls of the cork cells become very thick-walled, whereas the inner tangential and radial walls of the silica cells become thickened. The outer tangential wall of the silica cell remains thin and is covered with a thin layer- of cuticle. This wall frequently collapses in old cells leaving a depression in the surface of the stem. The change in the ultrastructure of the cork and silica cells are described and the possible functions of these cells discussed.  相似文献   

5.
The ultrastructural detail of spore development in Scutellospora heterogama is described. Although the main ontogenetic events are similar to those described from light microscopy, the complexity of wall layering is greater when examined at an ultrastructural level. The basic concept of a rigid spore wall enclosing two inner, flexible walls still holds true, but there are additional zones within these three walls distinguishable using electron microscopy, including an inner layer that is involved in the formation of the germination shield. The spore wall has three layers rather than the two reported previously. An outer, thin ornamented layer and an inner, thicker layer are both derived from the hyphal wall and present at all stages of development. These layers differentiate into the outer spore layer visible at the light microscope level. A third inner layer unique to the spore develops during spore swelling and rapidly expands before contracting back to form the second wall layer visible by light microscopy. The two inner flexible walls also are more complex than light microscopy suggests. The close association with the inner flexible walls with germination shield formation consolidates the preferred use of the term ‘germinal walls’ for these structures. A thin electron-dense layer separates the two germinal walls and is the region in which the germination shield forms. The inner germinal wall develops at least two sub-layers, one of which has an appearance similar to that of the expanding layer of the outer spore wall. An electron-dense layer is formed on the inner surface of the inner germinal wall as the germination shield develops, and this forms the wall surrounding the germination shield as well as the germination tube. At maturity, the outer germinal wall develops a thin, striate layer within its substructure.  相似文献   

6.
Summary Stomatal-pore formation in the fernAsplenium nidus L. commences in postcytokinetic guard cells at the mid-region of the ventral wall, before the deposition of any cellulosic wall material on it, by the local movement of the adjacent plasmalemmata apart from each other. In this way a rudimentary internal stomatal pore is formed. At this stage the ventral wall exhibits an undulated appearance and gives a positive reaction to aniline blue. Detailed study of postcytokinetic guard cells by electron microscopy, as well as after tubulin immunolabeling and actin staining, shows that stomatal pore initiation coincides with the initiation of the organization of the anticlinal microtubule bundles along the middle of the ventral wall and the colocalization of actin filaments at the same sites. Afterwards, the stomatal pore broadens towards the periclinal walls, a phenomenon keeping pace with the further bundling of the cytoskeletal elements beneath the plasmalemmata lining the middle of the ventral wall. At this stage the anticlinal microtubule bundles lining the stomatal pore are very prominent. The above findings, as well as the fact that treatments with antimicrotubule drugs inhibit the internal stomatal-pore formation, denote that the cortical cytoskeleton lining the ventral wall and particularly the microtubules are involved in this process. Afterwards, distinct local wall thickenings are deposited at the sites of junction of the mid-region of the ventral wall with the periclinal walls as well as at the junctions of the polar ventral-wall ends with the external periclinal wall. Along the middle-lamella region of the former wall thickenings the fore- and rear-chambers of the stomatal pore are formed. The final stomatal-pore opening is achieved by disruption of the expanded thin median periclinal wall region inherited from the guard cell mother cell and of the overlying cuticle, which covers the stomatal pore externally and internally. At the same time the fore-chamber of the stomatal pore broadens by a schizogenous opening towards the polar ventral-wall ends. The observations show that the stomatal-pore formation inA. nidus is a unique process, which is probably restricted to ferns.Abbreviations Af actin filament - GC guard cell - Mt microtubule - MSB microtubule-stabilizing buffer - PBS phosphate-buffered saline - VW ventral wall  相似文献   

7.
Summary In the seed coat ofGasteria verrucosa the deposition of phytomelan takes place during seed development in three stages. Phytomelan is a black cell wall material which is chemically very inert. First the radial walls and part of the transverse cell wall of the outer epidermis of the outer integument become thickened by exocytosis of dictyosome vesicles. Callose is deposited at the tangential plasma membrane against those walls. After the callose deposition about two thirds of the original cell volume is filled with callose. During the second stage the callose is broken down, probably into glucose monomers or small polymers. At the same time cellulose is deposited at the outer tangential plasma membrane, forming a wall between the dissolving callose and the plasma membrane. In the third phase small granules appear in the solution of dissolved callose. which grow out and finally fuse to form a block of phytomelan, consisting of spherical 15-nm units. Remarkable is the function of the callose: it determines the size of the phytomelan block, and it probably functions as carbohydrate source for the phytomelan synthesis and/or for the cellulose inner layer. In this study transmission electron microscopy and cryo scanning electron microscopy are used to study the three developmental stages of the formation of the phytomelan layer.  相似文献   

8.
Among 12 strains ofChlorella ellipsoidea, C. vulgaris, andC. saccharophila tested, 4 strains (1,C. ellpsoidea; 2,C. vulgaris; 1,C. saccharophila) formed osmotically labile protoplasts after treatment with mixtures of polysaccharide degrading enzymes. The relationship between enzymatical digestibility and structure or composition ofChlorella cell walls were studied by electron microscopy and staining techniques with some specific dyes. The cell wall structures of the 12Chlorella strains were grouped into three types: (1) with a trilaminar outer layer, (2) with a thin outer monolayer, and (3) without an outer layer. Protoplasts were formed only from the strains with a cell wall of Type 2. In the strains with a cell wall of Type 1, the outer layer protected the inner major microfibrillar layer against enzymatic digestion. The cell wall of Type 3 was totally resistant to the enzymes; the chemical composition of the cell wall would be somewhat different from that of other types.  相似文献   

9.
The ultrastructure of dividing rod-stage cells of Arthrobacter crystallopoietes was examined by electron microscopy. The cell walls consist of two layers. During cell division, the inner layer invaginates to form the septum. The outer layer does not participate in septum formation. After septum formation is completed, the two daughter cells remain attached by the outer layer of the cell wall. It appears that localized rupture of the outer layer during further wall growth is responsible for the phenomenon known as "snapping division" or "snapping postfission movement."  相似文献   

10.
The cell wall of Cosmarium botrytis was studied through the use of the freeze-etch technique. The cell wall consists of many thin layers. Fracturing along one layer reveals the positioning of the wall sculpturing, wall pores, and wall microfibrils. The individual microfibrils are grouped together in bands of parallel oriented fibrils. The different bands of parallel microfibrils were apparently arranged at random angles with regard to each other. Small particles may also be present in the cell walls. The cell wall pore unit of Cosmarium botrytis was studied through the use of scanning, freeze-etching, and thin sectioning techniques. The pore sheaths, on the outside of the cell wall, form a collar around the mouth of each pore. The pore sheath is composed of needle-like fibrils radiating outward from the pore. A pore channel traverses the cell wall and leads to a complex pore bulb region between the cell wall and the plasmalemma. The pore bulb contains many small fibrils which radiate toward the plasmalemma from a number of net-like fibril layers which in turn merge into a very electron dense region near the base of the pore.  相似文献   

11.
Sassoon's isolate identified as Borzia trilocularis (but recently renamed Hormoscilla pringsheimii Anagnostidis and Komárek (1988) was studied with transmission electron microscopy because of its unusual combination of longitudinal wall features, described here in development for the first time. Junctional pores (linear rows of circumferential L-II layer pores near crosswalls) developed into multiple, parallel series, unlike the pores in many other species, which form only single rows. In dividing cells, two single pore rows appear opposite crosswalls after crosswall initiation, but an additional parallel row is usually added to each row by completion of fission. Elongating cells reveal 3–6 parallel and uniformly spaced pore rows developing on each side of crosswall pairs; these rows may end up toward the center of the cell wall after cell elongation. Pores are 18–24 nm wide with a center-to-center and row-to-row distance of 24–36 nm and occur in an especially thick L-II area. The second group of pit-like pores of longitudinal cell walls are 50–135 nm-wide depressions and have a center-to-center distance of 100–1000 nm. These depressions arise when the L-II layer fails to form and appear next to a row-pair of junctional pores soon after fission. Most depressions form single rows, but when they form several rows they may cover much of the surface of the cell. The L-III and L-IV wall layers line these L-II layer cavities; the outer surface of the L-IV layer around and within the depressions is covered with fibrous mucilage. Given their diversity, pores and depressions of longitudinal walls deserve further attention from functional and taxonomic points of view.  相似文献   

12.
J. Marc  Y. Mineyuki  B. A. Palevitz 《Planta》1989,179(4):516-529
The initiation and development of a radial array of microtubules (MTs) in guard cells of A. cepa was studied using immunofluorescence microscopy of tubulin in isolated epidermal layers. Soon after the completion of cytokinesis, MTs originate in the cortex adjacent to a central strip of the new, anticlinically oriented ventral wall separating the two guard cells. Cortical MTs extend from the mid-region of the central strip toward the cell edge where the ventral wall joins the inner periclinal wall. They then spread in a fan-like formation along the periclinal wall and gradually extend along the lateral and end walls as well. Many MTs criss-cross at various angles as they arc past the edge formed by the junction of the ventral and periclinal walls, but they do not terminate there, indicating that, contrary to previous report, the edge is not involved in MT initiation. Instead, the mid-region of the central strip appears to function as a planar MT-organizing zone. Initially, MTs radiate from this zone through the inner cytoplasm as well as the cortex. During cell expansion, however, the cortical MTs increasingly predominate and consolidate into relatively thick, long bundles, while the frequency of non-cortical MTs diminishes. The apparent density of MTs per unit surface area is maintained as the cells expand and gradually flex into an elliptical shape. The guard cells eventually separate completely at the pore site. The entire process is accomplished within about 12 h.Abbreviations DIC differential interference contrast - GC guard cell - MT microtubule To whom correspondence should be addressed.  相似文献   

13.

Background and Aims

In seed plants, the ability of guard cell walls to move is imparted by pectins. Arabinan rhamnogalacturonan I (RG1) pectins confer flexibility while unesterified homogalacturonan (HG) pectins impart rigidity. Recognized as the first extant plants with stomata, mosses are key to understanding guard cell function and evolution. Moss stomata open and close for only a short period during capsule expansion. This study examines the ultrastructure and pectin composition of guard cell walls during development in Funaria hygrometrica and relates these features to the limited movement of stomata.

Methods

Developing stomata were examined and immunogold-labelled in transmission electron microscopy using monoclonal antibodies to five pectin epitopes: LM19 (unesterified HG), LM20 (esterified HG), LM5 (galactan RG1), LM6 (arabinan RG1) and LM13 (linear arabinan RG1). Labels for pectin type were quantitated and compared across walls and stages on replicated, independent samples.

Key Results

Walls were four times thinner before pore formation than in mature stomata. When stomata opened and closed, guard cell walls were thin and pectinaceous before the striated internal and thickest layer was deposited. Unesterified HG localized strongly in early layers but weakly in the thick internal layer. Labelling was weak for esterified HG, absent for galactan RG1 and strong for arabinan RG1. Linear arabinan RG1 is the only pectin that exclusively labelled guard cell walls. Pectin content decreased but the proportion of HG to arabinans changed only slightly.

Conclusions

This is the first study to demonstrate changes in pectin composition during stomatal development in any plant. Movement of Funaria stomata coincides with capsule expansion before layering of guard cell walls is complete. Changes in wall architecture coupled with a decrease in total pectin may be responsible for the inability of mature stomata to move. Specialization of guard cells in mosses involves the addition of linear arabinans.  相似文献   

14.
J. D. Dodge  G. B. Lawes 《Planta》1968,84(2):134-140
Summary The microfibrillar component of the walls of zoosporangia and resistant sporangia of the phycomycete Allomyces arbusculus has been studied in the electron microscope, after chemical removal of the amorphous wall materials. In the zoosporangium wall the microfibrils are randomly arranged, as in the outer layer of the hyphal walls, and the sporangial wall is of even thickness. In the resistant sporangia the microfibrillar layer of the wall is perforated by numerous pores 0.25 in diameter. The microfibrils are randomly arranged over much of the wall but tend to be concentrically arranged in the vicinity of the pores. On the inside of the wall the microfibrils form a thickened rim around the pore.  相似文献   

15.
Summary The role of microtubules and ions in cell shaping was investigated in differentiating guard cells of Allium using light and electron microscopy and cytochemistry. Microtubules appear soon after cytokinesis in a discrete zone close to the plasmalemma adjacent to the common wall between guard cells. The microtubules fan out from this zone, which corresponds to the future pore site, towards the other sides of the cell. Soon new cellulose microfibrils are deposited on the wall adjacent to the microtubules and oriented parallel to them. As the wall thickens, the shape of the cell shifts from cylindrical to kidney-like. Studies with polarized light show that guard cells gradually assume a birefringence pattern during development characteristic of wall microfibrils radiating away from the pore site. Retardation increases from 10 Å when cells just begin to take shape, to 80–100 Å at maturity. Both microfibril and microtubule orientation remain constant during development. Observations on aberrant cells including those produced under the influence of drugs such as colchicine, which leads to loss of microtubules, abnormal wall thickenings and disruption of wall birefringence, further support the role of microtubules in cell shaping through their function in the localization of wall deposition and the orientation of cellulose microfibrils in the new wall layer. Potassium first appears in guard mother cells before division and rapidly accumulates afterwards during cell shaping, as judged by the cobaltinitrite reaction. Some chloride and perhaps organic acid anions also accumulate. Thus, these ions, which are known to play a role in the function of mature guard cells, also seem to be important in the early growth and shaping of these cells.Abbreviations IPC isopropyl-N-phenylcarbamate - CB cytochalasin B - GMC guard mother cell - MTOC microtubule organizing center  相似文献   

16.
Summary Microtubule (MT) arrays in stomatal complexes ofLolium have been studied using cryosectioning and immunofluorescence microscopy. This in situ analysis reveals that the arrangement of MTs in pairs of guard cells (GCs) or subsidiary cells (SCs) within a complex is very similar, indicating that MT deployment is closely coordinated during development. In premitotic guard mother cells (GMCs), MTs of the transverse interphase MT band (IMB) are reorganized into a longitudinal array via a transitory array in which the MTs appear to radiate from the cell edges towards the centre of the walls. Following the longitudinal division of GMCs, cortical MTs are reinstated in the GCs at the edge of the periclinal and ventral walls. The MTs become organized into arrays which radiate across the periclinal walls, initially from along the length of the ventral wall and later only from the pore site. As the GCs elongate, the organization of MTs and the patterns of wall expansion differ on the internal and external periclinal walls. A final reorientation of MTs from transverse to longitudinal is associated with the elongation and constriction of GCs to produce mature complexes. During cytokinesis in the subsidiary mother cells (SMCs), MTs appear around the reforming nucleus in the daughter epidermal cells but appear in the cortex of the SC once division is complete. Our results are thus consistent with the idea that interphase MTs are nucleated in the cell cortex in all cells of the stomatal complex but not in adjacent epidermal cells.Abbreviations GMC guard mother cell - GC guard cell - IMB interphase microtubule band - MT microtubule - PPB preprophase band - SMC subsidiary mother cell - SC subsidiary cell  相似文献   

17.
Summary Electron microscopic studies of thin sections of filaments, knots, resettes, gonidia, and gonidial-forming filaments of Leucothrix mucor were carried out. The cell wall is typical of gram-negative bacteria, with a double outer layer of variable thickness, a single thin middle layer which is probably peptidoglycan, and a double inner layer which is the cell membrane. The transverse septa of these filaments show two peptidoglycan layers, and no clearly demarked outer layer. During gonidial formation, there is a gradual rounding up of the cells, and the transverse septa become part of the gonidial wall. The cell membrane contains many invaginations, both along the outer wall and along the transverse septa. Thin sections through rosettes show the holdfast as material which is a heavily-staining amorphous material peripheral to the outer wall layer. Sections through knots show highly contorted cell walls, closely appressed. Fibrillar nuclear material, ribosomes, and storage granules can be seen within the cytoplasmic matrix.  相似文献   

18.
Laminae of Adiantum raddianum Presl., a fern belonging to the family Pteridaceae, are characterised by the presence of epidermal fibre-like cells under the vascular bundles. These cells were thought to contain silica bodies, but their thickened walls leave no space for intracellular silica suggesting it may actually be deposited within their walls. Using advanced electron microscopy in conjunction with energy dispersive X-ray microanalysis we showed the presence of silica in the cell walls of the fibre-like idioblasts. However, it was specifically localised to the outer layers of the periclinal wall facing the leaf surface, with the thick secondary wall being devoid of silica. Immunocytochemical experiments were performed to ascertain the respective localisation of silica deposition and glycan polymers. Epitopes characteristic for pectic homogalacturonan and the hemicelluloses xyloglucan and mannan were detected in most epidermal walls, including the silica-rich cell wall layers. The monoclonal antibody, LM6, raised against pectic arabinan, labelled the silica-rich primary wall of the epidermal fibre-like cells and the guard cell walls, which were also shown to contain silica. We hypothesise that the silicified outer wall layers of the epidermal fibre-like cells support the lamina during cell expansion prior to secondary wall formation. This implies that silicification does not impede cell elongation. Although our results suggest that pectic arabinan may be implicated in silica deposition, further detailed analyses are needed to confirm this. The combinatorial approach presented here, which allows correlative screening and in situ localisation of silicon and cell wall polysaccharide distribution, shows great potential for future studies.  相似文献   

19.
The pigment floridorunin was localized to the cuticle of the red alga Lenormandia prolifera (C. Ag.) J. Agardh by x-ray micro-analysis in Ihe transmission electron microscope and by its colour reactions in the light microscope. The pigment was set free from the cell wall by a pectinase. Bromine was also identified in the chloro-plasts. the middle lamellae, the intercellulars and the pore plugs of the alga. The content of bromophenols in the alga increases with increasing age. The cell walls of old plants are stratified and their outer parts are apparently shed. The bromophenols could have a function as regulators of the epiphytes or the shedding of parts of the outer cell wall.  相似文献   

20.
A single-layered disc of peripheral pronged cells and central prongless cells impart the typical gear shape to colonies of Pediastrum, while the walls of each cell have a characteristic reticulate triangular pattern. The two-layered wall forms in the cells during colony formation following zoospore aggregation and adhesion. The uniformly thin outer layer reflects contours resulting from differential thickening in the reticulate pattern of the inner, thicker, more fibrillar and granular wall layer. The reticulate pattern thus imparted to the outer wall layer persists in empty zoosporangia following the release of zoospores. Columns of electron-dense material extend through the outer wall layer except at the ridges and centers of the reticulum. Following mitosis and cleavage, the resulting zoospores are extruded within a vesicle membrane consisting of the inner wall layer. Separation of this membrane from the parent cell occurs in material of the inner layer adjacent to the outer wall. Vesicles containing swarming zoospores also contain a granular material which appears to become associated with the aggregating and adhering cells of new colonies. Microtubules occur in zoospores prior to adherence but are absent during wall deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号