首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mechanical behavior of leaves of Juncus effusus L. in bending was investigated in terms of a closed-form analytical solution derived to predict the bending stiffness of a cylindrical sandwich beam consisting of an outer ‘rind’ (sclerenchyma and chlorenchyma) and an inner ‘core’ (aerenchyma). The elastic moduli (ETOTAL) of intact leaves was measured by means of multiple resonance frequency spectra and compared to that of leaves for which the aerenchymatous core was surgically destroyed. Based on ten leaves, ETOTAL = 22.33 × 104 ± 5.37 ± 104 kg · cm–2 while the elastic modulus of the ‘rind’ was 22.29 × 104 ± 5.69 × 104 kg · cm–2. The elastic modulus of the ‘core’ was estimated at 3.12 × 104 ± 1.42 × 104 kg · cm–2. Load-deflection curves for three leaf segments indicated leaves were linearly elastic within the range of loading and could be predicted with considerable accuracy based on the closed-form solution. The aerenchymatous core was found to contribute very little to the bending stiffness of leaves, although its contribution appeared to increase as leaf diameter decreased. Leaves mechanically failed by Brazier buckling when excessively loaded and were best considered to mechanically operate as hollow tubes. Nonetheless, the analytical solution for bending stiffness could be applied and, in theory, can be used to predict the behavior of other plant organs with a ‘corerind’ construction.  相似文献   

2.
The mechanical behavior of plant tissues and its dependency on tissue geometry and turgor pressure are analytically dealt with in terms of the theory of cellular solids. A cellular solid is any material whose matter is distributed in the form of beamlike struts or complete “cell” walls. Therefore, its relative density is less than one and typically less than 0.3. Relative density is the ratio of the density of the cellular solid to the density of its constitutive (“cell wall”) material. Relative density depends upon cell shape and the density of cell wall material. It largely influences the mechanical behavior of cellular solids. Additional important parameters to mechanical behavior are the elastic modulus of “cell walls” and the magnitude of internal “cell” pressure. Analyses indicate that two “stiffening” agents operate in natural cellular solids (plant tissues): 1) cell wall infrastructure and 2) the hydrostatic influence of the protoplasm within each cellular compartment. The elastic modulus measured from a living tissue sample is the consequence of both agents. Therefore, the mechanical properties of living tissues are dependent upon the magnitude of turgor pressure. High turgor pressure places cell walls into axial tension, reduces the magnitude of cell wall deformations under an applied stress, and hence increases the apparent elastic modulus of the tissue. In the absence of turgid protoplasts or in the case of dead tissues, the cell wall infrastructure will respond as a linear elastic, nonlinear elastic, or “densifying” material (under compression) dependent upon the magnitude of externally applied stress. Accordingly, it is proposed that no single tangent (elastic) modulus from a stress-strain curve of a plant tissue is sufficient to characterize the material properties of a sample. It is also suggested that when a modulus is calculated that it be referred to as the tissue composite modulus to distinguish it from the elastic modulus of a noncellular solid material.  相似文献   

3.
Changes attending leaf development in the mechanical behavior and elastic moduli of the petioles of Populus tremuloides Michx. were examined in terms of total leaf weight (Wt), lamina and petiole weight (Wl and Wp), petiolar length (L), and lamina surface area (A). A primary concern was the extent to which two elastic moduli (Young's modulus E and the shear modulus G) of petioles changed over time and were correlated with one another. E and G were measured by means of multiple resonance frequency spectra, and together with the dimensions of cross sections through petioles, these two elastic moduli were used to estimate the stiffness of petioles in simple bending and torsion. Petiolar bending was predicted by means of a model incorporating expressions for both the bending stiffness (El) and torsional rigidity (GJ), where I is the second moment of area and J is the torsional constant. The predictions from these models were compared to observed petiolar bendings due to Wl. Additionally, the frequency of the oscillatory motion of leaves (placed in a wind tunnel with a 1 m sec-1 ambient wind speed, directed normal to the blade of the leaf) was determined. Results indicate that L, A, Wl, Wp, and Wt were positively correlated with the age of leaves (crudely estimated as a function of leaf plastochron index, LPI); these morphometric parameters were also correlated with the magnitudes of E and G. Also, G was positively and linearly correlated with E, and was, on the average, an order of magnitude less than E. EI and GJ were positively correlated with LPI. The relationships among E, G, EI, C and Wl, Wp, Wt are discussed in terms of leaf allometries.  相似文献   

4.
The investigations were designed to test osmotic adjustment,cell wall bulk elastic modulus and stomatal behaviour duringand after water stress and rewatering in the primary and firsttrifoliolate leaf of Phaseolus vulgaris. Leaf water relationsquantities fully recovered after rewatering within a few hours;diffusion resistance to vapour flow, however, required 6 h.Leaf growth recovery was considerably delayed. Osmotic adjustmentwas absent during water stress in both the primary and the firsttrifoliolate leaf. The bulk elastic modulus (v), however, waslower for the primary leaf (higher elasticity) than for thetrifoliolate leaves. These two types of leaves differed in theirdrought resistance in that the primary leaf exhibited wiltingat the end of the stress period (7 d) while the trifoliolateleaf remained relatively turgid. The bulk elastic modulus ofthe cell wall changed almost proportionally with the turgorpressure (p). The structure coefficient (), an indicator forthe intensity of change of the bulk elastic modulus with turgorwas higher for the primary than for the first trifoliolate leaf.The leaf diffusion resistance (r), below the turgor loss point,changed proportionally with the solute potential with very similarregression lines for the relation of (r) versus RWC 1. The datasuggest that greater drought resistance of the first trifoliolateleaf is related to a decreased bulk elastic modulus, but notto osmotic adjustment nor to differences in stomatal resistanceduring water stress. Key words: Phaseolus vulguris, Water stress, Recovery, Cell wall elasticity  相似文献   

5.
Plants of Ceratonia siliqua L. (carob tree) were subjected to a slow cycle of soil water depletion in summer and in winter. Recently mature and fully turgid leaves were squeezed in a pressure chamber in order to analyse changes in the components of water potential related to the acclimation to drought. Mathematical expressions were fitted to the primary data in order to calculate the elasticity modulus and the dependence of turgor pressure on relative osmotic water content. Osmotic and water potentials decreased significantly in leaves acclimated during the summer (about 0.7 and 0.9 MPa decrease, respectively) whereas in winter the elastic properties of the wall had changed: modulus of the non-stressed leaves was 26 MPa compared to 7.5 MPa in leaves subjected to drought stress. The results indicate that Ceratonia leaves can, to some extent, maintain turgor under situations of soil drought, using different strategies according to the season.  相似文献   

6.
The effect of water deficit on the ATP-dependent proteolysis and total protein degradation was estimated in the leaves of spring wheat (Triticum aestivum L.) acclimated and non-acclimated to drought. The rate of ATP-dependent proteolysis, quantified as a difference between degradation of 125I-lysozyme under ATP-regenerating and ATP-depleting systems, accounted for about 55 % of total 125I-lysozyme degradation in fully turgid wheat leaves. In the non-acclimated leaves dehydration decreased sharply ATP-dependent proteolysis catalyzed by proteasome down to about 5% while in the leaves acclimated to drought water deficit raised ATP-dependent proteolysis to 87 % of total 125I-lysozyme hydrolysis.  相似文献   

7.
Relative water content (RWC) and the osmotic potential (π) of plant leaves are important plant traits that can be used to assess drought tolerance or adaptation of plants. We estimated the magnitude of errors that are introduced by dilution of π from apoplastic water in osmometry methods and the errors that occur during rehydration of leaves for RWC and π in 14 different plant species from trees, grasses and herbs. Our data indicate that rehydration technique and length of rehydration can introduce significant errors in both RWC and π. Leaves from all species were fully turgid after 1–3 h of rehydration and increasing the rehydration time resulted in a significant underprediction of RWC. Standing rehydration via the petiole introduced the least errors while rehydration via floating disks and submerging leaves for rehydration led to a greater underprediction of RWC. The same effect was also observed for π. The π values following standing rehydration could be corrected by applying a dilution factor from apoplastic water dilution using an osmometric method but not by using apoplastic water fraction (AWF) from pressure volume (PV) curves. The apoplastic water dilution error was between 5 and 18%, while the two other rehydration methods introduced much greater errors. We recommend the use of the standing rehydration method because (1) the correct rehydration time can be evaluated by measuring water potential, (2) overhydration effects were smallest, and (3) π can be accurately corrected by using osmometric methods to estimate apoplastic water dilution.  相似文献   

8.
Excised rice (Oryza sativa L. cv. Ratna) leaves were used to compare the changes in the levels of various biochemical intermediates and enzyme activities during senescence in turgid and water-stressed conditions. Chlorophyll, total protein and soluble protein content decreased but α-amino nitrogen content increased during the senescence of turgid leaves. In the leaves subjected to water stress, these changes were accelerated, the acceleration being greater with higher degree of water stress. Starch, soluble sugars, total carbohydrates and non-reducing sugar content decreased during senescence of turgid leaves. Water stress accelerated the changes in the levels of starch and non-reducing sugar, but the changes in the levels of soluble sugars and total carbohydrates were retarded. Reducing sugar content increased at first and then decreased in the turgid leaves, and water stress accelerated the change. The decline in the catalase activity and the increase in the peroxidase activity with time was faster in the water-stressed leaves than in the turgid leaves. Acid inorganic pyrophosphatase activity increased, but alkaline inorganic pyrophosphatase activity decreased during the senescence of turgid leaves, and such changes were accelerated by water stress. The results suggest that water stress does not accelerate all the processes connected with leaf senescence.  相似文献   

9.
The interspecific scaling exponents of body mass M and diameter D with respect to length L were determined to evaluate the predictions of three scaling hypotheses (geometric, stress, and elastic similitude). The relation between M and L was determined for data from a total of 133 aquatic and terrestrial species (66 plant and 67 animal species); the relation between D and L was determined independently for a total of 753 aquatic and terrestrial species (667 plant and 86 animal species). Organisms were crudely classified as to their geometry (spheres, spheroids, cylinders) and shape (defined as the body slenderness factor, L/D) to examine whether geometry and shape evinced size-dependent variations. Regression indicated M = 1.29L2.95 (r2 = 0.91, N = 133; αRMA = 3.09 ± 0.088). The stress and elastic similitude (which respectively predict αRMA = 5 and αRMA = 4) were rejected; geometric similitude was not (αRMA = 3). For animals and plants, αRMA = 2.81 ± 0.061 (r2 = 0.98), and αRMA = 2.95 ± 0.093 (r2 = 0.94), respectively. For aquatics and terrestrial organisms, αRMA = 2.82 ±0.134 (r2 = 0.97, N = 36), and αRMA = 3.08 ±0.111 (r2 = 0.89, N = 97), respectively. These results were interpreted to support the hypothesis of geometric similitude. For the pooled plant and animals data, D = 0.05L1.00 (r2 = 0.95; αRMA = 1.03 ± 0.009), which was compatible with the hypothesis of geometric similitude. For plants, D = 0.05L1.06 (r2 = 0.95; αRMA = 1.09). For animals, D = 0.29L0.98 (r2 = 0.95; αRMA = 1.01 ± 0.025). Also, for aquatics, αRMA = 0.951 ± 0.151, whereas for terrestrial plants and animals, αRMA = 1.03 ± 0.089. Although the scaling exponent for D differed among individual groupings of animals and plants, the results of regression analyses were interpreted to indicate that, on the average, body diameter scaled isometrically with respect to length as predicted by geometric similitude. For the pooled data set, organic shape varied over 3 orders of magnitude; L varied over 9 orders of magnitude reflecting 22 orders of magnitude of M. In terms of body geometry and the absolute numbers of species in the total data set: spherical shaped species (L = D) < unassigned species < prolate spheroidal species < cylindrical (squat < slender) species. The largest organisms in the data set were slender (L/D > 20) cylindrical plants; the smallest organisms were spherical plants and animals. Although not subject to statistical inference, these data were interpreted to indicate that organic shape and geometry evince size-dependent variations. These variations as well as size-dependent changes in bulk density are hypothesized to account for the scaling exponents of M and D determined for individual plant and animal clades and grades.  相似文献   

10.
刺五加甲羟戊酸焦磷酸脱羧酶基因的克隆与表达分析   总被引:1,自引:0,他引:1  
利用RACE技术克隆刺五加甲羟戊酸焦磷酸脱羧酶(mevalonate diphosphate decarboxylase,MDD)基因的全长cDNA序列,运用生物信息学方法对该基因进行分析,并通过RT-PCR法检测MDD在刺五加不同生长发育时期和不同器官中的表达情况。结果表明:(1)刺五加MDD基因cDNA序列全长1 769bp(GenBank登录号为JQ905594),开放阅读框全长1 263bp,编码420个氨基酸残基,包含GHMP激酶超家族的特异性识别序列;刺五加MDD蛋白的二级结构中含有161个α螺旋,占38.33%;68个延伸链,占16.19%;19个β折叠,占4.52%;172个无规则卷曲,占40.95%;刺五加MDD蛋白无跨膜区域,定位于膜外。(2)刺五加MDD基因在不同生长发育时期和器官中均有表达,但表达量具有显著差异(P<0.05)。在整个生长期中,MDD的表达呈现高-低-高-低的变化趋势,第一个表达高峰出现在萌芽期至叶片完全展开时,第二个高峰出现在果实体积快速增长期,最高表达量(叶片完全展开期)为最低表达量(叶片衰老期)的4.51倍;不同器官中,幼茎的表达量最高,为最低表达量(叶片)的7.22倍,但叶片、叶柄和根中的表达量差异不显著。研究结果为阐明刺五加皂苷的生物合成及对其进行表达调控奠定了基础。  相似文献   

11.
The long wavelength, low-frequency modes of motion are the relevant motions for understanding the continuum mechanical properties of biomolecules. By examining these low-frequency modes, in the context of a spherical harmonic basis set, we identify four elastic moduli that are required to describe the two-dimensional elastic behavior of capsids. This is in contrast to previous modeling and theoretical studies on elastic shells, which use only the two-dimensional Young's modulus (Y) and the bending modulus (κ) to describe the system. Presumably, the heterogeneity of the structure and the anisotropy of the biomolecular interactions lead to a deviation from the homogeneous, isotropic, linear elastic shell theory. We assign functional relevance of the various moduli governing different deformation modes, including a mode primarily sensed in atomic force microscopy nanoindentation experiments. We have performed our analysis on the T = 3 cowpea chlorotic mottle virus and our estimate for the nanoindentation modulus is in accord with experimental measurements.  相似文献   

12.
Karl J. Niklas 《Oecologia》1992,90(4):518-526
Summary Computer simulations were used to assess the influence of palmate leaf morphology, decussate phyllotaxy, and the elastic moduli of petioles on the capacity of turgid and wilted twigs ofAesculus hippocastanum to intercept direct solar radiation. Leaf size, morphology, orientation, and the Young's and shear moduli (E and G) of petioles were measured and related to leaf position on 8 twigs whose cut ends were placed in water (turgid twigs) and 8 twigs dried for 8 h at room temperature (wilted twigs). Petioles mechanically behaved as elastic cantilevered beams; the loads required to shear petioles at their base from twigs were correlated with the cross-sectional areas of phyllopodia but not with petiole length or tissue volume. Empirically determined morphometric and biomechanical data were used to construct average turgid and wilted twigs. The diurnal capacity to intercept direct sunlight for each was simulated for vertically oriented twigs for 15 h of daylight, 40° N latitude. The daily integrated irradiance (DII) of the wilted twig was roughly 3% less than that of the otherwise comparable twig bearing turgid leaves. Simulations indicated that the orientation of turgid leaves did not maximize DII. More decumbent (wilted) petioles increased DII by as much as 4%. Reduction in the girth, E, or G of petioles, or an increase in petiole length or the surface area of laminae (with attending increase in laminae weight), increased petiolar deflections and DII. Thus, the mechanical design of petioles ofA. hippocastanum was found not to be economical in terms of investing biomass for maximum light interception.  相似文献   

13.
Two summer annual C4 grasses with different trampling susceptibilities were grown as potted plants, and diurnal leaf gas exchange and leaf water potential in each grass were compared. The maximum net photosynthetic rate, leaf conductance and transpiration rate were higher in the trampling-tolerant Eleusine indica (L.) Gaertn. than in trampling sensitive Digitaria adscendens (H. B. K.) Henr. Leaf water potential was much lower in E. indica than in D. adscendens. There were no differences in soil-to-leaf hydraulic conductance and leaf osmotic potential at full turgor as obtained by pressure–volume analysis. However, the bulk modulus of elasticity in cell walls was higher in E. indica leaves than in D. adscendens leaves. This shows that the leaves of E. indica are less elastic. Therefore, the rigid cell walls of E. indica leaves reduced leaf water potential rapidly by decreasing the leaf water content, supporting a high transpiration rate with high leaf conductance. In trampled habitats, such lowering of leaf water potential in E. indica might play a role in water absorption from the compacted soil. In contrast, the ability of D. adscendens to colonize dry habitats such as coastal sand dunes appears to be due to its lower transpiration rate and its higher leaf water potential which is not strongly affected by decreasing leaf water content.  相似文献   

14.
Uniaxial tensile tests of solid and hollow cylindrical plugs of pith parenchyma from potato tubers indicate the tensile modulus of elasticity, E, can vary significantly as a function of tissue transverse area and water potential. E increases from 1.2 to 19 MPa as ψw changes from -1.4 to -0.4 MPa. E increases from 5 to 19 MPa as transverse area of solid tissue sample increases from 0.2 to 2.5 cm2. Variations in E accompanying changes in transverse area appear to be related to cell number along the radii of plugs. Hollow cylindrical plugs for which wall thickness is maintained but total tissue area is changed show constant values of E. It is suggested that shear stresses within tissue samples influence E and are dependent upon cell number and tissue water content. Material with these properties would be a “poor choice” for constructing plant organs experiencing repeated stress and periodic dehydration. However, ground tissue may act as a buffer against localized ovaling of stem and leaf cross sections under loading.  相似文献   

15.
The influence of gravity on the size and mechanical properties of mature leaves on horizontal shoots and etiolated seedlings of Acer saccharum Marsh. (Aceraceae) was examined. Leaves were grouped into three categories regarding their location on shoots (dorsal or “top” T, lateral or “left/right” L/R, and ventral or “bottom” B). Young's modulus E, petiole length L, lamina surface area A and weight P, and the cross-sectional areas of different tissues within petioles were measured for each leaf and were found to be correlated with leaf location (T, L/R, and B): T leaves were smaller and had lower E than their B counterparts; the size and material properties of L/R leaves were intermediate between those of T and B leaves. In general, A, P, and E decreased from the base to the tip of shoots. In addition to anisophylly, the influence of gravity induced petiole bending and torsion and resulted in the horizontal planation of laminae. This was observed for field-grown mature plants and etiolated seedlings. Petiole bending and torsion were interpreted as gravimorphogenetic phenomena. Anatomically, L, E, and petiole deflection angle Fv measured from the vertical were highly correlated with the combined cross-sectional areas of phloem fibers and xylem in petioles of B leaves and when data from all leaves were pooled. It is tentatively advanced that the correlation of E with the transverse areas of phloem fibers and xylem is evidence that either the pattern or the extent of lignification of petiole tissues is influenced by petiole position with respect to gravity.  相似文献   

16.
The intra-cellular location of ABA was investigated in relation to its sites of synthesis. Chloroplasts were isolated from stressed and non-stressed spinach leaves and their ABA content determined. Virtually all of the ABA from non-stressed leaves was contained in the chloroplasts compared with only a small fraction of ABA isolated from stressed leaves. Chloroplasts prepared from turgid leaves and subsequently lysed in vitro retained most of their ABA and phaseic acid (PA) complement but this was removed with organic solvents. While the possibility of extra-chloroplastic synthesis cannot be discounted the data indicate that stress-induced ABA synthesis occurs in the chloroplast and that the ABA readily migrates from there to other parts of the plant.  相似文献   

17.
赵祎  石瑶  汤雯婷  李海燕 《微生物学通报》2023,50(11):4812-4824
【背景】灯盏花(Erigeron breviscapus)是国内知名的传统中药材,但关于灯盏花内生真菌多样性、群落结构和生态功能研究报道比较缺乏。【目的】探究灯盏花不同药用部位内生真菌多样性、群落结构组成及生态功能。【方法】采用ITS序列的高通量测序技术对比研究云南道地药材灯盏花根、茎、叶和花的内生菌群落结构及生物多样性差异,并利用FUNGuild数据库预测真菌群落生态功能。【结果】12个样品共获得540个操作分类单元(operational taxonomic unit, OTU),分属于5个门22个纲55个目114个科188个属。4个不同药用部位共有的OTU数目仅占14.45%,以根部独有OTU最多。各组织均以子囊菌门和担子菌门为优势菌门;其中,根部以子囊菌门为主,花部位以担子菌门为主。亚隔孢壳属(Didymella)为灯盏花植物的核心属,在各组织中均有分布;其余优势属尚有线黑粉菌属(Filobasidium)、Cystofilobasidium、织球壳属(Plectosphaerella),灯盏花4个组织中优势属和特有属分布各不相同。α多样性分析表明,根部内生真菌丰度显著高于其他组织,但多样性方面组织差异不明显。PCoA结果表明,根部菌落结构相对独立,而叶与茎中菌落结构较为相似。利用FUNGuild数据库分析发现,腐生真菌在各组织中占比较高,并含有大量未知功能菌群。【结论】灯盏花不同药用部位内生真菌群落组成存在明显差异,具有组织偏好。以上研究完善了灯盏花内生真菌资源的生物信息,为灯盏花内生真菌资源的开发利用提供了理论依据。  相似文献   

18.
Phospholipid Involvement in Frost Tolerance   总被引:1,自引:0,他引:1  
Changes in frost tolerance and in phospholipid content were studied in the leaves of winter rape plants (Brassica napus L. var. oleifera L. cv. Górczański) grown under natural or artificially controlled conditions. Frost hardening was found to be a three-stage process. During the first stage, occurring at low but above freezing environmental temperatures, phospholipid changes do not seem to be directly related to the leaf frost tolerance. This stage of hardening is possibly related to a metabolic shift caused by the cessation of growth. The achievement of the second level of frost tolerance in the fully turgid leaves depends on the occurrence of sub-freezing temperature and is related to increase in phospholipid level. It was shown that freezing brought about phospholipid degradation which was reversible only in slightly injured leaves with a relatively high phospholipid content. The third stage of hardening is related to frost-induced dehydration of the cells and may overlap the second one.  相似文献   

19.
Plant organs and cultivation ages can result in different compositions and concentration levels of plant metabolites. The metabolite profile of plants can be determined using liquid chromatography. This study determined the metabolite profiles of leaves, stems, and roots of Sida rhombifolia at different cultivation ages at 3, 4, and 5 months post-planting (MPP) using liquid chromatography-mass spectrometry/mass spectrometry (LC/MS/MS). The results identified that 41 metabolites in S. rhombifolia extract for all plant organs and cultivation ages. We successfully identified approximately 36 (leaves), 22 (stems), and 18 (roots) compounds in all extract. Using principal component analysis (PCA) with peak area as the variable, we clustered all sample extracts based on plant organs and cultivation ages. As a result of PCA, S. rhombifolia extracts were grouped according to plant organs and cultivation ages. In conclusion, a clear difference in the composition and concentration levels of metabolites was observed in the leaves, stems, and roots of S. rhombifolia harvested at 3-, 4-, and 5-MPP.  相似文献   

20.
Multiple resonance frequency spectra (MRFS) provide a rapid and repeatable method for determining the flexural stiffness and modulus of elasticity, E, of segments of plant stems and leaves. Each resonance frequency in a spectrum can be used to compute E, and removal of the distal portion of an organ produces characteristic shifts in spectra dependent upon the geometry of an organ. Hence, MRFS can be used to quantitatively determine the extent to which a particular leaf or stem morphology can be modelled according to beam theory. MRFS of flower stalks of Allium sativum L. are presented to illustrate the technique. The fundamental, f1, and higher resonance frequencies, f2 … fn, of stems and the ratios of f2/f1 f3/f1, and f3/f2 increase as stalk length is reduced by clipping. The magnitudes of these shifts conform to those predicted from the MRFS of a linearly tapered beam. Morphometric data confirm this geometry in 21 flower stalks. Based on this model, the average modulus equals 3.71 × 108 ± 0.32 × 108 N/m2, which compares favorably with values of E determined by static loading (3.55 × 108 ± 0.22 × 108 N/m2) and is in general agreement with ultrasonic measurements (3.8 × 108 to 4.4 × 108 N/m2). Data indicate that determinations of E from a single resonance frequency are suspect, since each resonance frequency yields slightly different values for E. Statistical evaluations from all the frequencies within a MRFS are more reliable for determining E and testing the appropriateness of beam theory to evaluate the biomechanical properties of plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号