首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Style and stigma elongation and stigma unfolding, and the roles of plant hormones in these processes in Gaillardia grandiflora Van Houtte were investigated. Style and stigma elongation in vivo began just after anthesis, and style elongation was accompanied by epidermal cell elongation (greatest near the stigma) and a fresh weight increase, but not by cell division or a dry weight increase. The stigma unfolded after the style and stigma elongated. Style-stigma units excised from young disc flowers of this composite were measured as they responded to plant growth regulators applied singly, as well as in sequential and simultaneous combinations, in vitro. Style elongation was promoted by auxin, was inhibited by gibberellins and ethylene, and was unaffected by other growth regulators. Stigma elongation followed a similar pattern of response. Endogenous auxin levels and ethylene production showed parallel variation and endogenous gibberellin levels showed inverse variation with style and stigma elongation. Stigma unfolding was more sensitive to auxin applications and was promoted by applied ethylene. Ethylene production showed parallel variation and endogenous auxin levels showed inverse variation with stigma unfolding. AVG and Co2+ applications decreased auxin-induced style elongation and fusicoccin promoted all of the growth responses of style-stigma units in vitro. A gibberellin-auxin-ethylene-acid growth interaction mode of control is proposed for these three growth processes.  相似文献   

2.
Filaments of Fuchsia hybrida cv “Brilliant” double in length within 24 hr after bud opening. Filament growth characterized by fresh wt increase and cell elongation was significantly inhibited in vitro by l-aminocyclopropane-l-carboxylic acid (ACC) but was not promoted by any growth regulator tested. Ions of Co2+ blocked the inhibitive effects of ACC in vitro suggesting that ethylene produced from ACC is the growth inhibiting substance. Ethylene levels surrounding the filaments within the closed bud decreased during development, and premature opening of the sepals which released the ethylene into the atmosphere resulted in rapid filament growth. The ACC levels were found to be much higher in the anthers than the filaments. This suggests that ethylene produced from floral organs other than filaments regulates filament elongation in Fuchsia. This is the first report of filament growth which cannot be promoted by application of growth regulators but which is inhibited by ethylene.  相似文献   

3.
The rapid growth of stamen filaments just before flower anthesis in Arabidopsis thaliana does not occur in the male sterile33 ( ms33 , formerly known as msZ ) mutant. ms33 filaments were approximately 40% shorter than the wild type (WT), and there was corresponding reduction in the epidermal cell length of filaments. This suggests that MS33 controls the final cell-elongation phase of filament growth. Both low temperatures and gibberellic acid (GA3) restored filament and cell growth in intact ms33 flowers, but these treatments only had a small promotive effect on WT filaments. Decapitation experiments involving the removal of the anther had the opposite effect on WT and ms33 filaments; growth was inhibited in WT, but was increased in ms33 filaments. In young stamen primordia cultured in vitro, filament growth was less in WT, but more in ms33 , than in respective in vivo produced filaments. Plant growth substances (PGSs), GA3 and indole-3-acetic acid (IAA) were promotive, zeatin had no effect, and abscisic acid (ABA) and ethrel inhibited filament growth in both intact and decapitated WT and ms33 filaments. Together these observations suggest that MS33 is activated immediately before anthesis and that the MS33 product either regulates temporal biosynthesis of gibberellins (GAs) and/or IAA or makes the filament tissue sensitive to these PGSs, which in turn trigger cell elongation and filament growth. The data also suggest that ms33 mutant anthers contain a relatively high ratio of growth inhibitors to promoters, which inhibits epidermal cell elongation and filament growth.  相似文献   

4.
Three responses resulted from the treatment with ethylene of dark-grown gametophytes of Onoclea sensibilis. Elongation of the filament was increased, elongation of the rhizoid was decreased, and cell division was inhibited. The optimal ethylene concentrations were between 0.01 and 0.1 ppm. Filament elongation was very tolerant of high ethylene concentrations, since up to 1,000 ppm did not inhibit growth below control levels. Enclosing cultures of gametophytes in chambers of limited volumes produced all the effects of treatment with ethylene, but the responses to sealing were eliminated if plants were enclosed in a chamber which contained a solution of mercuric Perchlorate. This evidence that gametophytes produced ethylene was substantiated by a direct gas chromatographic demonstration of ethylene formation. The growth-regulating effects of ethylene and auxin appeared to be independent in filament and rhizoid growth. Inhibition of elongation by supra-optimal auxin concentrations could not be attributed to an auxin-stimulated production of ethylene.  相似文献   

5.
Corolla elongation and the roles of plant hormones in this process in Gaillardia grandiflora Van Houtte ray flowers were examined. The sterile ray flowers elongated during a 2-day period, and corolla growth was accompanied by fresh and dry weight increases and epidermal cell elongation (greatest near the base of the corolla) but not by cell division. Corollas excised from young ray flowers were measured during treatment in vitro with solutions of plant growth regulators. They elongated in response to gibberellins and fusicoccin but did not respond to auxins, cytokinins, abscisic acid, ethylene, or inhibitors of ethylene biosynthesis. Sequential and simultaneous hormone applications indicated no additive or synergistic effects between hormones, but auxin did reduce gibberellin-promoted growth. Analyses of endogenous auxins showed no significant variation, and ethylene production decreased prior to elongation, while a 20-fold increase in endogenous gibberellin activity was observed just prior to rapid corolla elongation. It appears that corolla growth in Gaillardia is accomplished by an increase in gibberellin activity alone, that multiple hormone interactions are not important in the control of corolla growth, and that part of the mode of action of gibberellin is acid-induced growth.  相似文献   

6.
The involvement of the stamens as transporters of plant growth regulators in flowers was examined by measuring the movement of 14C-indole-3-acetic acid (IAA) and l4C-l-aminocyclopropane-1-carboxylic acid (ACC) through floral organs of Ipomoea nil. During the transport of 14C-IAA through isolated filament segments, the polar accumulation of 14C-IAA in receiver blocks increased with time during filament development, which correlated with polar efflux rates at older stages of filament development. An inhibitor of polar IAA transport, 2,3,5-triiodobenzoic acid, disrupted the polarity of auxin transport by reducing the movement of 14C- IAA from filaments into receiver blocks. Transport of both 14C-IAA and l4C-ACC through filaments into other floral organs also was monitored in isolated flower buds in the laboratory and intact buds in the greenhouse. In isolated and intact buds 21 hr before anthesis, substantially higher levels of isotope were recovered in corolla tissue when 14C-ACC was transported through the filaments than when 14C-IAA was transported from the filaments. In isolated buds, substantial levels of both isotopes accumulated in the pistil (69 hr and 45 hr before anthesis), but minimal amounts were observed in receptacle and calyx tissues (69 hr to 21 hr before anthesis). In intact buds, high levels of both isotopes were recovered in receptacle, calyx, and pistil tissues (69 hr to 21 hr before anthesis). The results from this study support the hypothesis that Ipomoea stamens are transporters for ACC and IAA to regulate ethylene production in the corolla and other floral tissues.  相似文献   

7.
Under natural photoperiodic conditions protandry in hermaphrodite disc flowers of sunflower (Helianthus annuus L.) is determined by the different elongation rates of the style and filaments. The elongation of the filament and style starts simultaneously after the daily dark period, but the style growth rate is slower. When plants close to anthesis are exposed to continuous white light (WL) a loss of protandry occurs: the filaments do not grow far enough to extrude the anthers from the corolla. The histological analyses show that the number of filament epidermal cells remains unaltered after organ elongation and that cells respond to photoperiod only by cell expansion. Emasculation does not substantially inhibit filament cell expansion, whereas isolation of the filament or stamen from the corolla suggests that this organ could be the perception site of the filament growth stimulus. In vitro treatments with auxin (indole-3-acetic acid, IAA or alpha-naphthaleneacetic acid, NAA) reverses the inhibition of cell expansion caused by continuous WL, whereas gibberellic acid (GA(3)) at high concentrations reproduces the effect of continuous WL. Experiments carried out on various Helianthus spp. show that all these plants have evolved the same photo- and hormonal-control of the protandry. In experiments in which the light treatments were continued for 24 h, the auxins drastically reduced the inhibiting effect of red light (R) and dichromatic treatments FR (far red)+R, whereas GA(3) repressed filament extension regardless of light quality. As far as auxins are concerned, the response of sunflower filaments does not appear to be connected with the polar transport of the hormone. Moreover, the promoting effect of darkness is not mediated by an increase of endogenous free IAA in disc flowers. However, sunflower filaments manifested a similar temporal pattern of response to the light/dark cycle and to auxin.  相似文献   

8.
Filament and corolla growth in flowers of Ipomoea nil are inhibited by ethylene production. Anthers inhibited filament growth in vitro during younger stages of development even in the presence of the growth promoter gibberellic acid (GA3). To test whether the anthers could be sources of 1-aminocyclopropane-1-carboxylic acid (ACC) endogenous levels of ACC and ethylene production were monitored using gas chromatography. To also test whether the filaments could be transport vectors for ACC the movement of [14C]ACC was assessed by scintillation counting from donor agarose blocks, through filament sections, and into receiver agarose blocks. While ACC levels fluctuated in anthers 87 to 21 h before anthesis, anthers contained increased levels of ACC from 15 to 6 hours before anthesis. Ethylene production also fluctuated but peak levels were shifted about 6 hours closer to anthesis than ACC levels within the anthers. Both ACC and ethylene levels in filaments showed fluctuations similar to those in the anthers. [14C]ACC movement became increasingly basipetal during development. Older stages showed greater polar [14C]ACC efflux rates, while all stages showed constant polar influx rates. Low levels of endogenous ACC were transported basipetally from the anther through the filament into agarose blocks at all stages of development. Corresponding levels of endogenous ethylene production remained constant between the various stages during ACC transport. We have evidence that stamens of I. nil have a role as source tissues and transport vectors for ACC, to stimulate corolla growth, such as corolla unfolding and senescence.  相似文献   

9.
Filament growth in the morning glory Ipomoea nil is promoted by gibberellic acid (GA3) and inhibited by ethylene production during the earlier stages in development (Koning and Raab, 1987). The effects of anther removal on filament growth were examined in I. nil. Three-quarters of the calyx and corolla tissues were removed in order to emasculate the stamens. This removal caused filament growth to be inhibited in the intact stamens (69 hr before anthesis) as well as the emasculated stamens (69 to 21 hr before anthesis). When the ethylene biosynthesis inhibitors CoCl2 and aminoethoxyvinylglycine (AVG) were applied in separate experiments (to eliminate wound ethylene generated by the damaged tissues), filament growth was promoted to control levels observed in intact flower buds (69 hr before anthesis). Our data suggest that the wounding effect from the calyx and corolla tissues and subsequent reduction in filament growth override any observable effects with anther removal on filament growth. Apparently, the removal of the calyx and corolla tissues severs a normal hormonal relationship between these floral organs and the developing filament.  相似文献   

10.
Germinating spores of the fern Onoclea sensibilis L. were grown in darkness, so that they developed as filaments (protonemata). Brief daily exposure of the filaments to red, far-red or blue light increased the rate of filament elongation. Filament elongation was also promoted by indoleacetic acid. When filament elongation was promoted with both indoleacetic acid and exposure to light, the growth promotions caused by red and far-red light were additive to auxin-induced growth. Blue light promoted elongation only at sub-optimal concentrations of auxin. Elongation induced by guanine was additive to red- and far-red-induced elongation. Gibberellic acid had no effect on elongation under any condition. Blue-light-induced elongation resembled auxin-induced elongation in its requirement for exogenous sucrose and sensitivity to inhibition by parachlorophenoxyisobutyric acid. Red and far-red light were active regardless of the presence or absence of sucrose and promoted elongation at a concentration of parachlorophenoxyisobutyric acid which completely inhibited blue-light-induced elongation.  相似文献   

11.
It has been thought for some time that morning glory filaments elongate in response to changes in concentrations of gibberellins (Murakami, 1973), but many other aspects of their growth have remained unstudied. In the present work, the interacting roles of gibberellin and ethylene in filament growth were examined. Filaments elongated ten-fold by epidermal cell elongation accompanied by ten-fold increases in fresh and dry weight. Applied gibberellins could stimulate filament growth in vitro, but gibberellin biosynthesis inhibitors had no effect. The putative gibberellin action inhibitor, ancymidol, reduced growth but the inhibition could be removed by blocking ethylene biosynthesis. Stimulators of the ethylene biosynthesis pathway and applied ethylene precursor (ACC) strongly inhibited filament elongation; ethylene biosynthesis inhibitors elicited as much growth as applied gibberellin. The filaments produced little ethylene at the time of the onset of growth. While the filaments produced ethylene rapidly before and after growth initiation, the closed flower bud had a relatively constant level of ethylene. It seems likely that in situ production of ethylene negatively influences filament growth.  相似文献   

12.
It has been known for some time that morning glory filaments elongate in response to increases in concentration of gibberellins (Murakami, 1973) and decreases in ethylene production (Koning and Raab, in press), but many other aspects of their growth have remained unstudied. In the present work, the possible role of gibberellin-stimulated proton efflux in filament growth was examined. Although applied gibberellins stimulated extensive filament growth in vitro and the pH of the incubating medium became acidified during growth, gibberellin also induced growth in media buffered at alkaline pH values. Acidic buffers alone elicited only a very small amount of growth. Fusicoccin, a potent stimulator of proton efflux, initially stimulated the rate of filament growth but elicited only a small increment of growth. In fact, continued presence of fusicoccin poisoned sustained gibberellin-induced growth. Vanadate ions, believed to inhibit proton efflux, had little effect upon gibberellin-induced growth except at extremely high concentrations. Based upon these results, it appears that the acid-induced component of growth stimulation by gibberellin is relatively minor in Ipomoea filaments. These results are quite different from those reported for filament elongation in Gaillardia (Koning, 1983a).  相似文献   

13.
Movement of IAA in spider flower (Cleome hassleriana Chod.) stamen filaments was studied by placing 2-mm sections horizontally between donor agar blocks containing 14C-labeled IAA and plain agar receiver blocks and measuring radioactivity in the donor and receiver blocks and filament sections by scintillation counting after the desired transport time. Movement was strictly polar and basipetal at all stages of floral development, except in open flowers just before stamen abscission when the amounts moving acropetally and basipetally were equal. The amount of IAA moved depended upon the stage of development. As buds aged more IAA was moved, until the buds opened and the stamen filaments reached maximum elongation; then the amount of IAA moving basipetally dropped drastically. There was an insignificant amount of acropetal IAA movement except just before stamen abscission. This change in IAA movement is not due to a change in filament diameter. In time-course studies the amount of IAA moved basipetally increased with time up to 5 hr and then declined slightly. The amount of radioactivity retained by sections increased until 8 hr. The amount of IAA moved in tip sections was less than that in mid or base sections; however, this can be partially explained by differences in uptake area of these sections. The relationship of these results to the hypothesis that changes in IAA movement are important in the control of stamen filament elongation and abscission is discussed.  相似文献   

14.
In the zucchini squash, Cucurbita pepo, a well coordinated abscission of the female flower during fruit set is essential to obtain a fruit of commercial value. In Spain zucchini is mainly produced in greenhouses in Almería, where high temperatures during the spring-summer period provoke a cultivar-dependent defect in fruits known as the “sticky flower” syndrome. This disorder is characterised by an arrest in growth and maturation of floral organs, and a lack of female floral abscission, thus diminishing fruit shelf-life, commercial quality and value. The aim of the present work was to improve knowledge of the abscission process in C. pepo to better understand the fundamental causes of this disorder. The anatomical analysis of abscission shows a well defined male floral abscission zone (AZ), few hours after anthesis, which differs from the female zone which is not differentiated from the adjacent tissue until the abscission process has begun, and which occurs as a consequence of AZ cell enlargement and the dissolution of their cell walls. To evaluate the role of ethylene and auxins in the regulation of floral abscission in zucchini we performed several treatments, with: ethylene, added as 0.25% ethrel solution; AVG, the inhibitor of ethylene synthesis, at 100 μM; indol-3-acetic acid, 100 μM; and TIBA, the inhibitor of auxin polar transport, at 10 mM. These treatments show that ethylene is an accelerator of zucchini floral abscission, and also promotes abscission in isolated AZs of sticky flowers. On the other hand, IAA delays abscission of the female flowers, whilst the inhibitor of auxin polar transport promotes it. The activity of the cell wall hydrolytic enzymes, polygalacturonase and cellulase, sharply increased just before the shedding of zucchini floral organs (72 h after anthesis). Moreover, both enzyme activities were induced by ethylene, which partly explains the ethylene promoting effect.  相似文献   

15.
Anther removal from stamens whose filaments are 1–3 mm long restricts filament elongation to approximately 60% of the normal length. Removal of one-third to one-half of the anthers affects only the antherless filaments and does not appear to inhibit the growth of the other organs of the flower. Filament growth inhibition induced by anther removal involves both an inhibition of epidermal cell elongation along the length of the filament and also an inhibition of cell division. There is no evidence that the inhibition of filament growth is a response to damage caused by anther removal. Rather, it is suggested that anther removal severs a normal hormonal relationship existing between the anther and the developing filament. The application of gibberellic acid (GA3) in lanolin paste stimulated the elongation of the antherless filaments to achieve an average of 87% of the filament length of adjacent intact stamens. The closer a filament is to having attained its final number of cells before anther removal, the closer does its length come to reaching the final length of filaments in intact stamens. The elongation of these antherless filaments with the application of GA3 was accompanied by elongation of the epidermal cells of the filament to normal, or in some cases greater than normal, lengths. There is no evidence that GA3 application affected the inhibition of epidermal cell devision induced by anther removal. The results of this study support the suggestion of Plack that emasculation-induced inhibition in the growth of floral organs and its reversal by GA3 is a general phenomenon.  相似文献   

16.
The effect of coumarin, IAA, ethylene, kinetin and gibberellic acid on roots of maize and wheat was investigated. Sterile attached and detached roots and isolated elongation zones were used. In some experiments a semi-sterile procedure was followed. The effects of the different regulators separately or in various combinations together with coumarin were studied on the root growth with regard to division, elongation and swelling of the cells. The ethylene production in isolated elongation zones was measured after treatment with coumarin, IAA, PCIB, kinetin, colchicine and dinitrophenol. The results show the following: 1) Each substance produces a specific morphologic pattern. 2) Changes in polarity were demonstrated for auxin-induced swelling in cell divisions and cell expansion and for coumarin-induced swelling in cell divisions. Other cell expansion in swollen parts was due to cylindric cells increasing in width while retaining their cylindric form. 3) Coumarin-induced inhibition could not be counteracted by IAA, PCIB, carbon dioxide, kinetin, gibberellic acid or Cycocel. 4) The ethylene production in isolated elongation zones increases noticeably after kinetin treatment, less strongly after auxin treatment and least after coumarin treatment. The production of ethylene does not seem to be correlated with the morphogenetic effect of the different substances. 5) The isolated elongation zones reacted to a) IAA and kinetin with an increase in length in some cases and b) gibberellic acid with a reduction of their width. 6) The inhibitory effect of coumarin on the growth in length of the elongation zones was diminished by kinetin. The swelling produced by coumarin in these zones was reduced by gibberellic acid. The effects just mentioned of kinetin and gibberellic acid were considered as indirect ones. - From the present findings it was concluded that concomitant effects of auxin, ethylene, cytokinins and gibberellins are not obligatory for coumarin to exert its morphogenetic effects on root growth. In discussing the results some pitfalls in studies of growth reactions after application of hormones to roots containing meristem were emphasized.  相似文献   

17.
1. This study examines the distribution of Anabaena affinis filament lengths under natural conditions as a function of depth and season, and in the laboratory as a function of growth phase. Because Anabaena affinis is only toxic when consumed, both its filament length and position in the water column are important determinants of its potential impact on zooplankton populations. 2. Star Lake (Norwich, Vermont, U.S.A.), a natural, eutrophic pond, remained thermally stratified throughout the Anabaena bloom. Filament number and length differed significantly with both sampling date and water depth. Most filaments occurred at 0.5 m, particularly at the height of the bloom. Throughout the entire water column average filament length decreased from approximately 0.53 mm in May to 0.14 mm in July. The shortest filaments occurred at the 2.5 m depth. Filament length distributions (combined for all depths) for 29 May, 12 June and 3 July, corresponding to the beginning, middle and end of the bloom, respectively, differed significantly among the three dates. These patterns most likely reflect variable growth conditions, both during the season and in the water column. 3. In the laboratory, Anabaena filament length was affected by medium composition and growth phase. Filaments were significantly longer when grown in MBL than in ASM medium. Also, the average length of Anabaena filaments grown in MBL changed significantly as cultures aged; by day 13 filament length (2.01 ± 0.38 mm, mean ± SD) was twice that on day 0 (0.97 ± 0.71 mm). As cell concentration continued to increase, mean filament length gradually decreased.  相似文献   

18.
Madhaiyan M  Poonguzhali S  Sa T 《Planta》2007,226(4):867-876
The possible interaction of the plant hormones auxin and ethylene and the role of 1-aminocyclopropane-1-carboxylate (ACC) deaminase containing bacteria on ethylene production in canola (Brassica campestris) in the presence of inhibitory concentrations of growth regulators were investigated. The effects of auxin (indole-3-acetic acid and 2,4-dichlorophenoxy acetic acid), auxin transport inhibitor 2-(p-chlorophenoxy)-2-methylpropionic acid, ethylene precursor 1-aminocyclopropane-1-carboxylate and ethylene synthesis inhibitor l-α-(2-aminoethoxyvinyl)glycine hydrochloride on root elongation were concentration dependent. Exogenous addition of growth regulators influences the enzyme activities of ethylene production and we have presented here evidences that support the hypothesis that inhibitory effects of auxin on root elongation are independent of ethylene. Additionally, we have proved that inoculation of ACC deaminase containing Methylobacterium oryzae sequester ACC exuded from roots and hydrolyze them lowering the concentration of ACC in root exudates. However, the inhibitory actions of exogenous additions of auxins could not be ameliorated by bacterial inoculation that reduces ethylene concentration in canola seedlings.  相似文献   

19.
Cocoa flowers have a limited period of longevity; more than 90% of unpollinated flowers abscised within 32 h after anthesis. Abscisic acid (ABA) levels increased significantly prior to abscission. By 21 h after anthesis, ABA levels had increased almost 10-fold, and by 32 h flowers had 20-fold higher levels of ABA than at anthesis. Fluridone completely inhibited both the increase in ABA, the formation of an abscission zone, and the abscission and senescence of flowers. In contrast, ethylene production increased only slightly 21 h after anthesis and was only 2-fold higher after 32 h. Aminoethoxyvinylglycine (AVG) delayed but did not prevent abscission. In cocoa flowers, ABA is the primary regulator of abscission; ethylene accelerates abscission but only in the presence of ABA. Naphthalene acetic acid (NAA) treatment of flowers at anthesis prevented abscission zone formation and flower abscission, but did not induce fruit set. All parts of the NAA-treated flower except the pedicel senesced after 6 days. NAA+AVG treatment only delayed, whereas fluridone treatment completely prevented flower senescence.  相似文献   

20.
D. Orzáez  R. Blay  A. Granell 《Planta》1999,208(2):220-226
The role of ethylene in the control of senescence of both petals and unpollinated carpels of pea was investigated. An increase in ethylene production accompanied senescence, and the inhibitors of ethylene action were effective in delaying senescence symptoms in different flower verticils. Pollination did not seem to trigger the senescence syndrome in the corolla as deduced from the observation that petals from pollinated and unpollinated flowers and from flowers whose carpels had been removed senesced at the same time. A cDNA clone encoding a putative ethylene-response sensor (psERS) was isolated from pea flowers, and the pattern of expression of its mRNA was studied during development and senescence of different flower tissues. The levels of psERS mRNA paralleled ethylene production (and also levels of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) mRNA) in both petals and styles. Silver thiosulfate treatments were efficient at preventing ACO and psERS mRNA induction in petals. However, the same inhibitor showed no ability to modify expression patterns in pea carpels around the anthesis stage, suggesting different controls for ethylene synthesis and sensitivity in different flower organs. Received: 18 June 1998 / Accepted: 22 December 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号