首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Immunocytological mapping of calcitonin-like molecules (human form) performed in the terrestrial crustacean Orchestia, using PAP procedure on paraffin sections and immunogold method on ultrathin cryosections, reveals two reactive organs: central nervous system and posterior caeca of the midgut. Immunoreactivity within the nervous system is mainly located throughout perikarya and nerve fibers from both deuto- and tritocerebron and ventral nervous chain. Immunolabeling in the posterior caeca is detected on both cell components of the epithelium, with significant quantitative differences between molt and intermolt periods. The role of calcitonin-like substances in these organs is then discussed: at the nervous system level, a neuro transmitter function is suggested; the direct participation of these peptides in the regulation of calcium shifts through the caecal epithelium is hypothesized.  相似文献   

2.
The midgut of Rhynchosciara americana larvae consists of a cylindrical ventriculus from which protrudes two gastric caeca formed by polyhedral cells with microvilli covering their apical faces. The basal plasma membrane of these cells is infolded and displays associated mitochondria which are, nevertheless, more conspicuous in the apical cytoplasm. The anterior ventricular cells possess elaborate mitochondria-associated basal plasma membrane infoldings extending almost to the tips of the cells, and small microvilli disposed in the cell apexes. Distal posterior ventricular cells with long apical microvilli are grouped into major epithelial foldings forming multicellular crypts. In these cells the majority of the mitochondria are dispersed in the apical cytoplasm, minor amounts being associated with moderately-developed basal plasma membrane infoldings. The proximal posterior ventriculus represents a transition region between the anterior ventriculus and the distal posterior ventriculus. The resemblance between the gastric caeca and distal posterior ventricular cells is stressed by the finding that their microvilli preparations display similar alkaline phosphatase-specific activities. The results lend support to the proposal, based mainly on previous data on enzyme excretion rates, that the endo-ectoperitrophic circulation of digestive enzymes is a consequence of fluid fluxes caused by the transport of water into the first two thirds of midgut lumen, and its transference back to the haemolymph in the gastric caeca and in the distal posterior ventriculus.  相似文献   

3.
The submicroscopic organization of the retinal rods of the rabbit has been studied with high resolution electron microscopy in thin longitudinal and cross-sections. The outer rod segment consists of a stack of flattened sacs or cisternae each of them limited by a thin homogeneous membrane of about 30 A. The membrane of the rod sacs is attached to the surface membrane and is also in continuity with short tubular stalks of about 100 to 150 A which apparently end in relation with the connecting cilium. The bundle of filaments that constitute the connection between the outer and the inner segments is described under the name of connecting cilium. This fibrous component has a structure that is very similar to that of the cilium. It shows 9 pairs of peripheral filaments of about 160 A in diameter, a matrix material, and a surface membrane. Very infrequently two central single filaments are observed. The connecting cilium has a typical basal body in the inner segment; its distal end penetrates the outer segment, where it establishes some structural relation to the rod sacs. The relationships and submicroscopic organization of the connecting cilium were studied in longitudinal and in cross-sections passing at different levels of the rod segments. The inner rod segment shows two distinct regions: a distal and a proximal one. The distal region, corresponding to the ellipsoid of classical histology is mainly composed of longitudinally packed mitochondria. It also contains the basal body of the cilium, vacuoles of the endoplasmic reticulum, dense particles, and intervening matrix with very fine filaments. In the proximal region of the inner segment the mitochondria are lacking and within the matrix it is possible to recognize elements of the Golgi complex, vacuoles of the endoplasmic reticulum, dense particles and numerous neuroprotofibrils of 160 to 200 A in diameter which collect and form a definite bundle at the exit of the rod fiber. The interpretation of the connecting fibers as a portion of a cilium and of the outer segment as a differentiation of the distal part of a primitive cilium are discussed. The importance of the continuity of the surface membranes of the outer segment, connecting cilium, and inner segment is emphasized and its possible physiological role is discussed.  相似文献   

4.
Summary During molting, the epithelium of the posterior caeca (PC) of the midgut in the terrestrial crustacean, Orchestia cavimana, is active in calcium turnover. In the preexuvial period, epithelial cells that progressively differentiate into cell-type III secrete ionic calcium (originating from the old cuticle) from the base to the apex of the cell within a typical extracellular network of channels; the calcium is then stored in the PC lumen as calcareous concretions. Immediately after exuviation, the epithelial cells rapidly differentiate into cell-type IV, reabsorbing calcium from the concretions through successive generations of spherites which quickly appear, grow, and then disappear from the apex to the base of the same extracellular network. The PC epithelium is thus alternatively calcium-loaded and unloaded. When the calcium-reabsorbing process is complete (average 48 h after exuviation), the epithelial cells again differentiate into two different regional cellular types (cell-type I in the distal segment and cell-type II in the proximal segment) characteristic of the intermolt period.The dynamic changes in the PC epithelium during the postexuvial period are discussed, including the characteristic features of cell-type IV and of the reabsorption spherites.  相似文献   

5.
Summary Spermatozoa of the colonial marine hydroid, Eudendrium were examined with the electron microscope. The spermatozoa of this species were found to differ greatly in structure from previously described spermatozoa in the phylum. The mature sperm are acrosomeless and retain a considerable amount of perinuclear cytoplasm following their maturation. The perinuclear cytoplasm contains numerous organelles: Golgi apparatus, endoplasmic reticulum, multivesicular bodies, ribosomes and membranous vesicles. The nucleus is elongate and cylindrical, rather than conical, in shape. The four wedge-shaped mitochondria which lie posterior to the nucleus form a fossa which contains proximal and distal centrioles. Centriolar satellites are associated with the distal centriole. The relatively short (15 ) flagellum consists of two distinct segments: a proximal thick portion and a distal thin portion. The thick segment contains the typical 9+2 arrangement of tubules plus a variable number of peripheral, supernumerary tubules. The thin segment contains from one to eleven tubules.The morphological differences between the spermatozoa of Eudendrium and those of closely related species are discussed with particular reference to sexual life history.The author wishes to acknowledge the technical assistance of his wife, Robin, during the course of this study. The assistance of Dr. Julian Haynes and Mr. Richard Turner in the preparation of the drawings is greatly appreciated. This work was supported by NIH grants 5T1 HD 9703 and 5T1 GM 793 and by NSF grant GB 7582 and by grants-in-aid of research from Sigma Xi-RESA and the University of Maine. Bermuda Biological Station Contribution No. 549.  相似文献   

6.
The alimentary canal of cicada Platypleura kaempferi is described. It comprises the oesophagus, filter chamber, external midgut section and hindgut. The elongate oesophagus expands posteriorly, with its posterior end constricting to become a bulb. The filter chamber consists of two parts: a very thin sheath and a filter organ. The filter organ is composed of the anterior and posterior ends of the midgut (internal midgut section), and the internal proximal ends of the Malpighian tubules. The external midgut section differentiates into a collapsed sac and a midgut loop. The latter is divided into three distinct segments. The hindgut contains a dilated rectum and a long narrow ileum. The distal portions of the four Malpighian tubules are enclosed in a peritoneal sheath together with the distal ileum before reaching to the rectum. Ultrastructurally, the oesophagus and the hindgut are lined with a cuticle. The filter chamber sheath consists of cells with large irregular nuclei. Filamentous substances coat the microvilli of the cells of the internal midgut section. The posterior end of the midgut comprises two types of cells, with the first type of cells containing many vesicles and scattered elements of rough endoplasmic reticulum. The anterior and posterior segments of the midgut loop cells have ferritin‐like granules. The ileum cells have well‐developed apical leaflets associated with mitochondria. Accumulations of virus‐like particles enclosed in the membrane are observed in the esophagus, conical segment, mid‐ and posterior segments of the midgut loop.  相似文献   

7.
The ductuli efferentes and rete testis of the guinea pig were isolated by micro dissection, fixed in cold buffered osmium tetroxide, and sectioned for examination with the light and electron microscopes. Proximal and distal segments of the ductuli efferentes were identified and their respective cytological organizations characterized. The cytological components of the rete testis are briefly described and figured. Non-ciliated and ciliated cells are found in both segments of the ductuli efferentes. The non-ciliated cells have a microvillous border, mitochondria, a Golgi complex, an ubiquitous endoplasmic reticulum, and numerous cytoplasmic vacuoles. The ciliated cells contain more mitochondria, an endoplasmic reticulum with a relatively sparse distribution, and few, if any, cytoplasmic vacuoles. A regional difference exists in proximal and distal segments based on the distribution, size, number, and electron opacity of the cytoplasmic vacuoles. Attention was paid to the disposition of the endoplasmic reticulum and its relation to the system of cytoplasmic vacuoles. These findings are interpreted as suggesting that the continuity of the vacuolar system with elements of the endoplasmic reticulum represents a pathway for transfer of large quantities of fluid, an activity which has long been ascribed to the epithelium of the ductuli efferentes. Periductular capillaries possess pore-like apertures in their endothelia similar to those in other tissues known to engage in fluid transfer.  相似文献   

8.
Four differentiated Malpighian tubules (primary tubules) extend from the junction of the midgut and hindgut in newly hatched Periplaneta americana. Secondary tubules begin to develop near the base of the primary tubules before hatching and successive nymphal molts. The newly initiated tubules undergo cell division and extensive elongation through the middle of the following intermolt period. During this time, the cells of the distal, middle, and lower middle tubule regions are surrounded by a cellular sheath, have few cytoplasmic processes extending along their basal surfaces, have a small or nonexistent lumen, and contain extremely dilated cisternae of endoplasmic reticulum. The cellular sheath differentiates into the muscle which coils around the mature tubule. Tubules which begin development toward the end of one intermolt period begin to undergo cytodifferentiation toward the end of the next intermolt period. By the middle of an additional intermolt period, the basal infoldings and microvilli of cells in the distal, middle, and lower middle regions have the conformations typical for those regions in differentiated tubules; granular concretions and stellate cells are present within the middle region of the tubule.  相似文献   

9.
Ultrastructural examination of the head kidney of Periophthalmus koelreuteri (Pallas) (Teleostei, Gobiidae) revealed that the nephronic tubule cells are bound by tight junctions and desmosomes with little intercellular space. The first proximal segment (PI) consists of low columnar cells with well developed brush borders, indented nuclei, and numerous apical endocytic vesicles and lysosomes. A second cell type possessing clusters of apical cilia and lacking brush border and lysosomes is occasionally found between PI cells. The second proximal segment (PII) is formed of high columnar cells with brush border, regular spherical nuclei and numerous mitochondria located between well developed infoldings of the basal membrane. Single ciliary structures protrude into the lumen from PI and PII cells. The distal segment is lined by low columnar epithelium with few microvilli, regular spherical nuclei, numerous scattered mitochondria, and microbodies. The collecting tubule cells are cuboidal with few euchromatic nuclei, some mitochondria, and secondary lysosomes.  相似文献   

10.
The ultrastructure of the Malpighian tubules of the adult desert locust, Schistocerca gregaria, is described. Male and female adults possess about 233 tubules, which empty proximally into the midgut-ileal region of the alimentary canal by way of 12 ampullae. The tubules vary from 10 mm to 23 mm in length. About one third of them are directed anteriorly, attaching distally at the caeca, while the remainder are directed posteriorly, attaching to other tubules, the rectum or large tracheal trunks adjacent to the hindgut. The Malpighian tubules from all locations examined consist of three ultrastructurally distinct regions: proximal, middle, and distal, referring to their position relative to the midgut. All cell types possess ultrastructural features characteristic of ion transporting tissue, i.e., elaboration of the basal and apical membranes and a close association of these membranes with mitochondria. The distal and proximal segments are short (1.5-1.7 mm) and heavily tracheated, and each is composed of a single, distinct cell type. The middle region is the longest segment of the Malpighian tubule and is composed of two distinct cell types, primary and secondary. Both cell types are binucleate. The more numerous primary cells have large nuclei, contain laminate concretions in membrane-bound vacuoles, and possess large microvilli that contain mitochondria. The secondary cells are smaller and possess smaller nuclei. The microvilli are reduced and lack mitochondria. Secondary cells do not contain laminate concretions. The possible compartmentalization of ion and fluid transport function based on segmentation in the Malpighian tubules is discussed.  相似文献   

11.
Summary The fine structure of the mesonephric kidney of the lamprey, Entosphenus japonicus Martens, has been investigated with the electron microscope and discussed from the viewpoint of comparative morphology of the mesonephros.The structure of the capillary wall of the glomerulus essentially coincides with that of higher vertebrates, though its basement membrane is remarkably thick (300–400 m) because of a dense accumulation of fibrillar material between the endothelium and the basal lamina of epithelial cell. No obvious fenestration of the endothelial cell has been observed in the glomerulus or capillaries in any part of this organ.The kidney tubule is divided into three segments: 1. neck segment composed of ciliated cells with numerous mitochondria and glycogen particles, 2. proximal tubule composed of brush bordered cells provided with extensive pinocytotic vesicles and lysosomal granules in the apical cytoplasm and with lamellar membranes in the basal, and 3. distal tubule characterized by cells which, with their abundant mitochondria and branched tubular endoplasmic reticulum (about 500 Å diameter) with a central core, closely resemble the chloride cells in the gill filament of some teleosts. The possibility that the lamellar membranes in the proximal tubule cells correspond to basal infoldings is discussed.The extensive development of the tubular reticulum and of the mitochondria in the distal tubule cells is believed to reflect the active absorption of urine chloride in the urinary tubule of lamprey mesonephric kidney evidenced by physiologists. The proximal tubule is suggested to take a part also in the urinary transport of water and ions, as the lamellar membranes found in the cells of this portion likely correspond to the basal infoldings in more advanced forms of the kidney.The epithelial cells of the ureteric duct are characterized by granules suggesting a mucous secretion. No fine structure implying an absorptive activity in this duct has been observed.  相似文献   

12.
Pyroantimonate precipitate indicates that the epithelium of the proximal tubule is the only segment of the tubular nephron of the fresh water lamprey where large accumlations of cations are distributed. Unusually large amounts of reaction product are located within the lateral intercellular spaces and within vesicles closely associated with the plasma membrane at the lateral and basal surfaces. This technique suggests the continuity of these vesicles with the plasma membrane and alludes to the possibility of an endomembranous system of vesicles and the intercellular spaces as vehicles for ion transport. Lateral intercellular spaces of proximal tubules of lower vertebrates may play a different role in kidney function that their counterparts in higher vertebrates. Osmium-zinc iodide has a specificity for certain cells within the proximal, intermediate, and distal segments, but no structural differences are noted when these cells are compared to unstained cells. Smooth endoplasmic reticulum remains unstained in the distal segment but the stain has a strong affinity for elements of the Golgi apparatus, lysosomes, and the nuclear envelope of all cell types. This technique does not suggest a structural or functional similarity between cells of the distal segment and the chloride cells of the gills of teleosts.  相似文献   

13.
Summary Kidneys of adult male and female lizards were studied by electron microscopy, in order to understand the ultrastructure of the collecting duct and a differentiated part thereof, the sexual segment, which is an important accessory sexual organ. First portion of sexual segment in males: The cells are filled with large secretory granules of a wide range of opacities. The granular endoplasmic reticulum is abundant; basal formations of superimposed flat cisternae are frequent. Distended vesicles and microvesicles prevail in the supranuclear, well developed Golgi apparatus. Evidences indicate that secretion of these cells is holocrine. Second portion of sexual segment in males: All of the secretory granules are apical in location and relatively electron-opaque; they show a denser core. This core is formed by a substance which, after lying in contact with ribosomes, enters the secretory vesicles of the highly developed Golgi apparatus. A lighter substance is then condensed around it. The secretion of the granules is merocrine. The granular endoplasmic reticulum is very abundant in these cells, but basal ergastoplasmic formations are lacking. Sexual segment in females: The cells show features similar to those of the male first portion, but they are smaller. Undifferentiated collecting duct: Most of the cells are mucigenic. They have small ovoid, apical secretory granules. The density of the granules varies from cell to cell; when they are electron-lucent, they exhibit laminar or dotted opaque figures. Moderately developed Golgi apparatus and granular endoplasmic reticulum, as well as elongated mitochondria, occur in mucigenic cells. Intercalated among the latter are non-secretory cells. They have very abundant mitochondria, numerous microvilli, many pinocytic and smooth-membrane vesicles, whereas the organelles participating in synthetic processes are poorly developed; their function is most likely related to active solute transport.  相似文献   

14.
The present study was aimed to compare and contrast the histochemical, histological and ultrastructural variations (microanatomical differences) in the nephrons of selected snake species, Eryx jaculus (Boidae), Psammophis sibilans (Colubridae), Naja haje (Elapidae) and Echis pyramidum (Viperidae) from Egypt. The structural studies were carried out by conventional light and electron microscopy. The nephron, the renal unit of snakes, consists of renal corpuscle, proximal tubule, intermediate segment, distal tubule and collecting tubule. The renal corpuscles have large capillaries with clear and dark fenestrated endothelial cells. The proximal tubule showed long microvilli, cytoplasmic vacuoles, developed endoplasmic reticulum and abundant mitochondria. The intermediate segment was lined by ciliated cells. The lining cells of the distal tubules showed few microvilli, abundant dense mitochondria and clear vesicles of mucous appeared in the terminal portion. The collecting tubules consisted of mucous cells. In summary, the ultra-structure studies of nephrons revealed several interspecies similarities and also some intra-species differences in species of snakes.  相似文献   

15.
The alimentary canal of the spittlebug Lepyronia coleopterata (L.) differentiates into esophagus, filter chamber, midgut (conical segment, tubular midgut), and hindgut (ileum, rectum). The filter chamber is composed of the anterior extremity of the midgut, posterior extremity of the midgut, proximal Malpighian tubules, and proximal ileum; it is externally enveloped by a thin cellular sheath and thick muscle layers. The sac-like anterior extremity of the midgut is coiled around by the posterior extremity of the midgut and proximal Malpighian tubules. The tubular midgut is subdivided into an anterior tubular midgut, mid-midgut, posterior tubular midgut, and distal tubular midgut. Four Malpighian tubules run alongside the ileum, and each terminates in a rod closely attached to the rectum. Ultrastructurally, the esophagus is lined with a cuticle and enveloped by circular muscles; its cytoplasm contains virus-like fine granules of high electron-density. The anterior extremity of the midgut consists of two cellular types: (1) thin epithelia with well-developed and regularly arranged microvilli, and (2) large cuboidal cells with short and sparse microvilli. Cells of the posterior extremity of the midgut have regularly arranged microvilli and shallow basal infoldings devoid of mitochondria. Cells of the proximal Malpighian tubule possess concentric granules of different electron-density. The internal proximal ileum lined with a cuticle facing the lumen and contains secretory vesicles in its cytoplasm. Dense and long microvilli at the apical border of the conical segment cells are coated with abundant electron-dense fine granules. Cells of the anterior tubular midgut contain spherical secretory granules, oval secretory vesicles of different size, and autophagic vacuoles. Ferritin-like granules exist in the mid-midgut cells. The posterior tubular midgut consists of two cellular types: 1) cells with shallow and bulb-shaped basal infoldings containing numerous mitochondria, homocentric secretory granules, and fine electron-dense granules, and 2) cells with well-developed basal infoldings and regularly-arranged apical microvilli containing vesicles filled with fine granular materials. Cells of the distal tubular midgut are similar to those of the conical segment, but lack electron-dense fine granules coating the microvilli apex. Filamentous materials coat the microvilli of the conical segment, anterior and posterior extremities of the midgut, which are possibly the perimicrovillar membrane closely related to the nutrient absorption. The lumen of the hindgut is lined with a cuticle, beneath which are cells with poorly-developed infoldings possessing numerous mitochondria. Single-membraned or double-membraned microorganisms exist in the anterior and posterior extremities of the midgut, proximal Malpighian tubule and ileum; these are probably symbiotic.  相似文献   

16.
《Tissue & cell》1986,18(2):267-283
During the post-exuvial period, the posterior caeca of the terrestrial crustacean Orchestia quickly reabsorb the calcareous concretions stored during the pre-exuvial period through successive generations of spherules which appear, grow, then disappear from the apex to the base of a typical network of extracellular channels. The caecal epithelium is thus alternatively calcium-loaded and unloaded. Ultrastructural cytochemistry, using direct precipitating methods (potassium pyroantimonate, oxalic acid and sodium fluoride) or indirect substitution method (lead acetate) reveals that this extracellular pathway could be the main route for a massive transport down a concentration gradient of ionic or ionizable calcium which temporarily precipitates into instable spherules basally solubilized. Quantitative microanalysis of both frozen dry sections and anhydrous thin sections of cryosubstituted resin-embedded material indicates maximal paracellular calcium concentrations during the loading phases, which may be responsible not only for the calcification of the spherules but also for the abnormally high calcium content within the cytoplasm and the mitochondria.  相似文献   

17.
We described the ultrastructure and histochemistry of the reproductive system of five Callinectes species, and evaluate the seasonal variation in weight of the reproductive system and hepatopancreas by comparing annual changes of somatic indices. The somatic indices changed little throughout the year. In Callinectes, spermatogenesis occurs inside the lobular testes and, within each lobule, the cells are at the same developmental stage. Spermatogenesis and spermiogenesis follow the same development pattern in all Callinectes studied. Mature spermatozoa are released into the seminiferous ducts through the collecting ducts. Cells of the vas deferens are secretory as evidenced by rough endoplasmic reticulum, Golgi complex, and secretory vesicles that produce the seminal fluid. The anterior vas deferens shows two portions: proximal and distal. In proximal portion (AVDp), spermatozoa are clustered and embedded in an electron-dense, basophilic glycoproteinaceous secretion Type I. In the distal portion (AVDd), the spermatophore wall is formed by incorporation of a less electron-dense glycoproteinaceous secretion Type II. The secretion Type I change to an acid polysaccharide-rich matrix that separates the spermatophores from each other. The median vas deferens (MVD) stores the spermatophores and produces the granular glycoproteinaceous seminal fluid. The posterior vas deferens (PVD) has few spermatophores. Its epithelium has many mitochondria and the PVD seminal fluid changes into a liquid and homogeneous glycoprotein. Many outpocketings in the PVD and MVD help to increase the fluid production. Overall, the reproductive pattern of Callinectes is similar to other species that produce sperm plugs. The secretions of AVD, MVD, and PVD are responsible for the polymerization that forms the solid, waxy plug in the seminal receptacle. The traits identified here are common to all Portunidae species studied so far.  相似文献   

18.
The nephron of adult bowfin, Amia calva, was described using light and electron microscopic techniques. The kidney of the bowfin possesses an abundant supply of renal corpuscles with each consisting of a glomerulus and a Bowman's capsule of visceral (podocyte) and parietal layers. No juxtaglomerular apparatus is present. The epithelium of the tubule is continuous with the parietal epithelium and is divisible in descending order into neck, first proximal, second proximal, first distal, second distal, and collecting segments. The tubules drain into a complex system of collecting ducts that ultimately unite with the main excretory duct, the archinephric duct. Mucous cells are the dominant cell throughout the entire ductular system. Nephrostomes are dispersed along the kidney capsule. The neck segment has a ciliated epithelium, and while both proximal segments possess a prominent brush border, the fine structure of the first implies involvement in protein absorption and the second in the transport and reabsorption of solutes. The cells of the first distal segment are characterized by deep infolding of the plasma membrane and a rich supply of mitochondria suggesting the presence of a mechanism for ion transport. The second distal segment is composed of cells resembling the chloride cells of fishes and these cells are present in progressively decreasing numbers in the collecting segment and duct system so that only a few are present in the epithelium of the archinephric duct. The "renal chloride cells" possess an abundant network of smooth tubules and numerous mitochondria with a rich supply of cristae. Glycogen is also a conspicuous component of these cells. The presence of "renal chloride cells" in this freshwater holostean, in other relatively primitive freshwater teleosts, and in larval and adult lampreys is discussed with reference to both phylogeny and the need for a special mechanism for renal ion conservation through absorption.  相似文献   

19.
The spatial organization of the endoplasmic reticulum has been studied in two renal cell lines, MDCK and LLC-PK1, which originate from the distal and proximal portions of the mammalian nephron, respectively, and which form a polarized epithelium when they reach confluence in tissue culture. The two renal cell lines, grown to confluence on either solid or permeable supports, were investigated by fluorescence microscopy, confocal microscopy, and transmission electron microscopy. Fluorescence labeling of the endoplasmic reticulum was achieved using the cationic fluorescent dye DIOC6 (3). In order to differentiate fluorescent labeling of the endoplasmic reticulum from that of the mitochondria, cells were also labeled with rhodamine 123. For electron microscopy, the spatial organization of the endoplasmic reticulum was examined in thick sections using the long-duration osmium impregnation technique or the ferrocyanide/osmium technique. In both cell lines, the endoplasmic reticulum formed an abundant tubular network of canaliculi that frequently abutted the basolateral domain of the plasma membrane and occasionally the apical membrane. Elements of the endoplasmic reticulum were also found in close proximity to mitochondria that, as in the nephron, formed branched structures. Canaliculi appeared circular or flattened and had an inner diameter of 10–70 nm for MDCK cells and 20–90 nm for LLC-PK1 cells. Such a three-dimensional organization might facilitate the translocation of defined lipid species between the endoplasmic reticulum and the plasma membrane, and between the endoplasmic reticulum and mitochondria.  相似文献   

20.
The tubular nephron of hibernating and non-hibernating specimens of Testudo graeca (Chelonia) was studied by means of conventional light and electron microscopy and histochemistry. The tubular nephron was composed of proximal, intermediate, distal and collecting tubules in both hibernating and non-hibernating animals. The cells of the proximal tubule showed long microvilli, cytoplasmic vacuoles, a developed endoplasmic reticulum and abundant mitochondria. Fat droplets were also observed. The intermediate segment was lined by ciliated and non-ciliated cells. The lining cells of the distal tubule presented few microvilli, abundant dense mitochondria and clear vesicles of mucous appearance in the terminal portion. Collecting ducts are composed of mucous and non-mucous cells. Mucous cells presented strong reaction to the histochemical techniques detecting sialo- and sulpho-mucins. During hibernation, a progressive vacuolar degeneration of the endoplasmic reticulum was observed in all the segments of tubular nephron, which may be caused by a massive intake of extracellular water into the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号