首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sexual expression in andromonoecious species—those in which a single individual can bear both staminate and hermaphroditic flowers—may vary among reproductive events in the same plant, among individuals and across populations. This variation influences, in turn, the individual contribution of hermaphroditic plants via male and female fitness functions (i.e., Lloydʼs phenotypic gender). However, temporal variation in sexual expression in andromonoecious species and its relationship with seasonal changes in climatic conditions remain poorly understood. Here we analyze floral attributes, visitors and variation in sexual expression in three populations of Solanum lycocarpum A. St. -Hil. Seasonality in the production of floral types, the mating system and floral visitors were also investigated. Hermaphroditic flowers produced more pollen grains, but the pollen of staminate flowers had higher viability. Only hermaphroditic flowers produced fruits, and ovules in staminate flowers were sterile. Solanum lycocarpum is mainly pollinated by large bees with the ability to vibrate flowers. Phenotypic gender varied throughout the year, and the seasonal production of staminate flowers is associated with the local climate. We suggest that the higher and seasonally variable relative abundance of staminate flowers compared to the low and uniform production of hermaphroditic flowers may be explained by (a) the very high energetic costs incurred in producing large fruits, which in turn make hermaphroditic flower production very costly, and (b) the potentially lower energy expenditure of the smaller staminate flowers with reduced pistils and non-viable ovules that allow them to rapidly respond to climate variability.  相似文献   

2.
Summary Saplings of three, co-occurring maple species in a mature maple-beech forest differed in a suite of structural and physiological characters that separated the canopy species, Acer, saccharum, from the two subcanopy species, A. pensylvanicum and A. spicatum. Acer saccharum had both more dense wood and tougher and heavier but thinner leaves than the subcanopy species. Acer pensylvanicum had the largest, lightest leaves with high stomatal density and its canopy architecture was the most effective in terms of leaf display for light interception. Acer spicatum had weaker wood similar to that of A. pensylvanicum but also small, soft and relatively poorly displayed leaves. Both subcanopy species maintained marginally higher average rates of photosynthesis over the growing season in the understory environment. We consider juvenile A. saccharum only shade-tolerant, capable of persisting through long periods in the closed canopy until a gap occurs but not specifically adapted to the understory environment. Juvenile A. sacchrum appears to be constrained functionally by the requirements set by the canopy environment that adults will occupy. Characters such as high wood density are already expressed in the understory sapling; this investment in denser wood slows the growth of saplings, but is necessary for structural reasons in the adult. Juvenile A. saccaharum have morphological and photosynthetic characters better suited to gas exchange and extension growth under the increased photon flux densities in large forest gaps, characteristics that will also be advantageous in the sunlit canopy environment of adults.Both subcanopy maples appear to be more truly shade-adapted, although in somewhat different ways. Acer pensylvanicum has characteristics that enhance the potential for capture and utilization of sunflecks and is able to sustain higher growth rates than A. saccharum in the shaded subcanopy environment. Acer spicatum shares some shade-adapted features with A. pensylvanicum, and its habit of lateral spread through stem layering may confer an additional advantage in foraging for small light gaps.  相似文献   

3.
4.
Field and laboratory studies of 19 diclinous species endemic to Australia help to clarify the nature and evolution of andromonoecy, androdioecy, and dioecy in the genus Solanum. Ten species are andromonoecious; typically these species bear inflorescences with a single, large basal hermaphroditic flower and 12–60 distal, smaller staminate flowers. We suggest that the andromonoecious condition was derived from hermaphroditic-flowered ancestors in part by hemisterilization of flowers but largely by addition of staminate flowers. The resultant larger inflorescences are hypothesized to serve both to attract and to entrain pollinators, yielding more or higher-quality seed set in hermaphroditic flowers and/or greater dispersion of pollen from staminate flowers. We suggest that andromonoecy may also serve to reduce selling. Nine other species are morphologically androdioecious but functionally dioecious. In these species, staminate flowers, like those of the andromonoecious species, bear anthers with copious tricolporate pollen and a highly reduced gynoecium. The morphologically hermaphroditic flowers are functionally pistillate and borne singly in inflorescences, and they bear anthers with inaperturate pollen. The inaperturate pollen, although viable, never germinates and is hypothesized to be retained in pistillate flowers as a reward to pollinators in the nectarless Solanum flowers. All other species of Solanum studied with pollen dimorphism in which one pollen morph is inaperturate are also best treated as functionally dioecious. We conclude that there is no evidence for androdioecy in Solanum. A review of other families suggests that there is little support for this unusual breeding system in any other angiosperm group either. Preliminary analyses suggest that andromonoecy and dioecy are polyphyletic in Solanum. Furthermore, dioecy is as likely to have arisen from hermaphroditic as from andromonoecious ancestors.  相似文献   

5.
Cane JH 《Oecologia》2011,167(1):107-116
Pollinators, even floral generalists (=polyleges), typically specialize during individual foraging bouts, infrequently switching between floral hosts. Such transient floral constancy restricts pollen flow, and thereby gene flow, to conspecific flowers in mixed plant communities. Where incipient flowering species meet, however, weak cross-fertility and often similar floral traits can yield mixed reproductive outcomes among pollinator-dependent species. In these cases, floral constancy by polyleges sometimes serves as an ethological mating barrier. More often, their foraging infidelities instead facilitate host introgression and hybridization. Many other bee species are oligolectic (taxonomic specialists for pollen). Oligoleges could be more discriminating connoisseurs than polyleges when foraging among their limited set of related floral hosts. If true, greater foraging constancy might ensue, contributing to positive assortative mating and disruptive selection, thereby facilitating speciation among their interfertile floral hosts. To test this Connoisseur Hypothesis, nesting females of two species of oligolectic Osmia bees were presented with randomized mixed arrays of flowers of two sympatric species of their pollen host, Balsamorhiza, a genus known for hybridization. In a closely spaced grid, the females of both species preferred the larger flowered B. macrophylla, evidence for discrimination. However, both species’ females showed no floral constancy whatsoever during their individual foraging bouts, switching randomly between species proportional to their floral preference. In a wider spaced array in which the bouquets reflected natural plant spacing, foraging oligolectic bees often transferred pollen surrogates (fluorescent powders) both between conspecific flowers (geitonogamy and xenogamy) and between the two Balsamorhiza species. The Connoisseur Hypothesis was therefore rejected. Foraging infidelity by these oligolectic Osmia bees will contribute to introgression and hybridization where interfertile species of Balsamorhiza meet and flower together. A literature review reveals that other plant genera whose species hybridize also attract numerous oligolectic bees, providing independent opportunities to test the generality of this conclusion.  相似文献   

6.
  • ● Many angiosperms are hermaphroditic and produce bisexual flowers in which male (pollen export) and female (stigma receptivity) functions are separated temporally. This sequential hermaphroditism may be associated with variation in flower size, color, or pattern, all of which may influence pollinator attraction. In this study, we describe variation in these traits across discrete functional sex stages within and between 225 greenhouse‐grown individuals of Clarkia unguiculata (Onagraceae). In addition, to identify the effects of floral phenotype on pollinator attraction in this species, we examine the effects of these floral traits on pollen receipt in ~180 individuals in an experimental field array.
  • ● Petal area, ultraviolet (UV)‐absorbing nectar guide area, and blue and green mean petal reflectance differ significantly across the functional sex stages of C. unguiculata. Male‐ and female‐phase flowers display significantly different pollinator attraction traits. Petal and UV nectar guide area increase as flowers progress from male phase to female phase, while blue reflectance and green reflectance peak during anther maturation.
  • ● In field arrays of C. unguiculata, female‐phase flowers with large UV nectar guides receive more pollen than those with small nectar guides, and female‐phase flowers with high mean blue reflectance values are more likely to receive pollen than those with low blue reflectance. Female‐phase flowers with green mean reflectance values that differ most from background foliage also receive more pollen than those that are more similar to foliage. These findings indicate that components of flower color and pattern influence pollen receipt, independent of other plant attributes that may covary with floral traits. We discuss these results in the context of hypotheses that have been proposed to explain sex‐specific floral attraction traits, and we suggest future research that could improve our understanding of sexual dimorphism in sequentially hermaphroditic species and the evolution of features that promote outcrossing.
  相似文献   

7.
Unlike most genera in the early-divergent angiosperm family Annonaceae, Pseuduvaria exhibits a diversity of floral sex expression. Most species are structurally andromonoecious (or possibly androdioecious), although the hermaphroditic flowers have been inferred to be functionally pistillate, with sterile staminodes. Pseuduvaria presents an ideal model for investigating the evolution of floral sex in early-divergent angiosperms, although detailed empirical studies are currently lacking. The phenology and pollination ecology of the Australian endemic species Pseuduvaria mulgraveana are studied in detail, including evaluations of floral scent chemistry, pollen viability, and floral visitors. Results showed that the flowers are pollinated by small diurnal nitidulid beetles and are protogynous. Pollen from both hermaphroditic and staminate flowers are shown to be equally viable. The structurally hermaphroditic flowers are nevertheless functionally pistillate as anther dehiscence is delayed until after petal abscission and hence after the departure of pollinators. This mechanism to achieve functional unisexuality of flowers has not previously been reported in angiosperms. It is known that protogyny is widespread amongst early-divergent angiosperms, including the Annonaceae, and is effective in preventing autogamy. Delayed anther dehiscence represents a further elaboration of this, and is effective in preventing geitonogamy since very few sexually mature flowers occur simultaneously in an individual. We highlight the necessity for field-based empirical interpretations of functional floral sex expression prior to evaluations of evolutionary processes.  相似文献   

8.

Background and Aims

Variation in the relative female and male reproductive success of flowering plants is widespread, despite the fundamental hermaphroditic condition of the majority of species. In many hermaphroditic populations, environmental conditions and their influence on development and size can influence the gender expression of individuals through the formation of hermaphroditic and unisexual flowers. This study investigates the hypothesis that the bulbous, animal-pollinated, perennial Lilium apertum (Liliaceae) exhibits a form of size-dependent gender modification known as gender diphasy, in which the sexual expression of individuals depends on their size, with plants often changing sex between seasons.

Methods

Variation in floral traits was examined in relation to their size using marked individuals in natural populations, and also under glasshouse conditions. Measurements were taken of the height, flower number, floral sex expression, flower size, flower biomass and pollen production of individuals over consecutive years between 2009 and 2012 in seven populations in south-west China.

Key Results

Flowers of L. apertum are either perfect (hermaphroditic) or staminate (male) and, in any given season, plants exhibit one of three sex phenotypes: only hermaphrodite flowers, a mixture of hermaphroditic and male flowers, or only male flowers. Transitions between each of these sex phenotypes were observed over consecutive years and were commonly size-dependent, particularly transitions from small plants bearing only male flowers to those that were taller with hermaphroditic flowers. Hermaphroditic flowers were significantly larger, heavier and produced more pollen than male flowers.

Conclusions

The results for L. apertum are consistent with the ‘size advantage hypothesis’ developed for animal species with sex change. The theory predicts that when individuals are small they should exhibit the sex for which the costs of reproduction are less, and this usually involves the male phase. L. apertum provides an example of gender diphasy, a rare sexual system in flowering plants.  相似文献   

9.
Andromonoecy (i.e. the occurrence on individual plants of hermaphroditic and male flowers) is a rare sexual system among the angiosperms, regarded by some authors as a transitional stage from hermaphroditism to monoecy. Having discovered the occurrence of andromonoecy in Erophaca baetica (a Mediterranean shrubby legume with two subspecies), a novelty for Old World papilionoid legumes, we investigated the morpho‐functional correlates and the geographical distribution of this phenomenon in the species. The relative frequencies of hermaphrodite and male flowers were determined in two field and 111 herbarium populations. Biomass allocation within flowers, pollen production and viability, pollen tube growth, nectar production and the temporal pattern of male flower production were also studied in two nearby southern Spanish populations. Virtually all of the studied populations were andromonoecious. Male flowers tended to appear at apical positions within the inflorescence, and became more abundant by the end of the flowering season. Male flowers were externally similar to hermaphroditic flowers (although with less biomass and smaller parts) and released equivalent amounts of pollen and nectar; however, their pollen germinated significantly better. Erophaca is the first example of an andromonecious Papilionoid in the Old World. Since the main difference among floral morphs in this species is functional (i.e. pollen germination rate) rather than morphological, andromonoecy is not readily noticeable, and very careful inspection may be required to reveal it. The potential effect of andromonoecy in enhancing outcrossing rate in this species is discussed.  相似文献   

10.
Plant reproductive success is usually positively related to conspecific floral density, but neutral or negative effects of floral density on reproduction have also been reported. Differences in the relationship between reproduction and floral density largely originate from a trade‐off between increasing attractiveness versus increasing competition for pollinators at high floral densities. Although floral densities strongly vary in the understory of tropical forests, for instance, due to variation in light availability, little is known about the density dependence of reproduction in tropical understory plants. We used path analyses to disentangle direct and indirect effects of canopy openness and floral density on fruit set and analyzed the relationship between pollen load and floral density for two Neotropical understory plants, Heliconia metallica and Besleria melancholica. In both species, fruit set was not directly related to canopy openness, but decreased with increasing floral density. In H. metallica, canopy openness had an indirect negative effect on reproduction mediated by its effects on floral density. Effects of floral density on pollen loads were species‐specific. In B. melancholica, pollen loads linearly decreased with increasing floral density, indicating competition for pollinators at high densities. In H. metallica, pollen loads were reduced at both low and high densities, indicating an interplay of facilitative and competitive effects of floral density on pollen deposition. In contrast to other studies, we found negative density dependence of reproduction in both understory species. Negative effects of floral density on reproduction appear to be related to pollinator‐mediated effects on reproduction rather than to variation in abiotic conditions.  相似文献   

11.
Pollination of Neotropical dioecious trees is commonly related to generalist insects. Similar data for non‐tree species with separated genders are inconclusive. Recent studies on pollination of dioecious Chamaedorea palms (Arecaceae) suggest that species are either insect‐ or wind‐pollinated. However, the wide variety of inflorescence and floral attributes within the genus suggests mixed pollination mode involving entomophily and anemophily. To evaluate this hypothesis, we studied the pollination of Chamaedorea costaricana, C. macrospadix, C. pinnatifrons and C. tepejilote in two montane forests in Costa Rica. A complementary morphological analysis of floral traits was carried out to distinguish species groups within the genus according to their most probable pollination mechanism. We conducted pollinator exclusion experiments, field observations on visitors to pistillate and staminate inflorescences, and trapped airborne pollen. A cluster analysis using 18 floral traits selected for their association with wind and insect pollination syndromes was carried out using 52 Chamaedorea species. Exclusion experiments showed that both wind and insects, mostly thrips (Thysanoptera), pollinated the studied species. Thrips used staminate inflorescences as brood sites and pollinated pistillate flowers by deception. Insects caught on pistillate inflorescences transported pollen, while traps proved that pollen is wind‐borne. Our empirical findings clearly suggest that pollination of dioecious Chamaedorea palms is likely to involve both insects and wind. A cluster analysis showed that the majority of studied species have a combination of floral traits that allow for both pollination modes. Our pollination experiments and morphological analysis both suggest that while some species may be completely entomophilous or anemophilous, ambophily might be a common condition within Chamaedorea. Our results propose a higher diversity of pollination mechanisms of Neotropical dioecious species than previously suggested.  相似文献   

12.
Floral resource partitioning among stingless bees (Trigona, Meliponini, Apidae) in a lowland rain forest in Sarawak, Malaysia, was investigated using tree towers and walkways in a 4-year study that included a general flowering period. We obtained 100 collections of insect visitors to flowers of varying floral location and shape representing 81 plant species. The tendency of 11 species of stingless bees to visit specific flowers with a particular floral location and shape was analyzed by logistic regression analysis. This analysis showed that the proportion of flower visitor collections containing Trigona fuscobalteata and T. melanocephala differed according to floral location. The former was frequently collected at canopy and gap flowers, whereas the latter was most often collected at understory flowers. The analysis also suggested that T. erythrogastra was more rarely collected at shallow flowers than at deep flowers. Analysis of the pollen diets of T. collina, T. fuscobalteata, T. melanocephala, and T. melina revealed that similarity of pollen sources differed among the six permutated pairs of the four species. The lowest mean rank of similarity found was between T. fuscobalteata and T. melanocephala. This result supports the hypothesis that preference in visiting flowers in different locations leads to pollen resource partitioning. Received: May 14, 1997 / Accepted: April 23, 1999  相似文献   

13.
Proteaceae are most diverse in southern Africa and Australia, especially in the south-western portions of these regions. Most genera have some species in flower at all times of the year, although generally there is a preponderance of species that flower between late winter and early summer. The one genus that is an exception to this generalization is Banksia, which either has approximately the same percentage of species in flower at various times of the year (southwestern Australia) or peaks in autumn (southeastern Australia). Within particular communities, opportunities for hybridization among congeneric species are minimized by staggered flowering times, different pollen vectors and/or various incompatibility mechanisms. Birds, mammals and arthropods have been identified as visitors to the inflorescences of many Proteaceae. The most common avian visitors to the majority of genera in Australia are honeyeaters, although lorikeets, silvereyes and approximately 40 other species sometimes may be important. Sugarbirds and sunbirds are seen most frequently at inflorescences of Protea, Leucospermum and Mimetes in southern Africa, although they rarely visit other genera. In most cases, avian visitors forage in a manner that permits the acquisition and transfer of pollen. Limited evidence supports the hypothesis that birds are selective in their choice of inflorescences, responding to morphological and/or colour changes and usually visiting those inflorescences that offer the greatest nectar rewards. Arthropods may be equally selective, although it is possible that only the larger moths, bees and beetles are important pollinators, even for those plant species that rely entirely on arthropods for pollen transfer. Mammals are pollen vectors for some Proteaceae, especially those that have geoflorous and/or cryptic inflorescences. In Australia, small marsupials may be the most important mammalian pollinators, although rodents fill this niche in at least some southern African habitats. All but two genera of Proteaceae are hermaphroditic and protandrous, the exceptions being the dioecious southern African genera Aulax and Leucadendron. For hermaphroditic species, the timing of visits by animals to inflorescences is such that they not only acquire pollen from freshly opened flowers but also brush against pollen presenters and stigmas of others that have lost self-pollen and become receptive. Birds and insects (and probably mammals) generally forage in such a way as to facilitate both outcrossing and selfing. Some species are self-compatible, although many require outcrossing if viable seed is to be formed. Regardless of which animals are the major pollen vectors, fruit set is low relative to the number of flowers available, especially in Australian habitats. Functional andromonoecy of the majority of flowers is advanced as the major cause of poor fruit set. The pollination biology and breeding systems of Australian and southern African Proteaceae resemble one another in many ways, partly because of their common ancestry, but also due to convergence. Divergence is less obvious, apart from the dichotomy between dioecious and hermaphroditic genera, and differences in the levels of seed set for Australian and African species. Future studies should concentrate on identifying the most important pollinators for various Proteaceae, the manner in which their visits are integrated with floral development and factors responsible for limiting fruit set.  相似文献   

14.

Premise

Domestication of plant species results in phenotypic modifications and changes in biotic interactions. Most studies have compared antagonistic plant-herbivore interactions of domesticated plants and their wild relatives, but little attention has been given to how domestication influences plant-pollinator interactions. Floral attributes and interactions of floral visitors were compared between sister taxa of the genus Cucurbita (Cucurbitaceae), the domesticated C. moschata, C. argyrosperma ssp. argyrosperma and its wild progenitor C. argyrosperma ssp. sororia in the place of origin.

Methods

We conducted univariate and multivariate analyses to compare floral morphological traits and analyzed floral reward (nectar and pollen) quantity and quality between flowers of wild and domesticated Cucurbita taxa. Staminate and pistillate flowers of all three taxa were video recorded, and visitation and behavior of floral visitors were registered and analyzed.

Results

Most floral morphological characteristics of flowers of domesticated taxa were larger in both staminate and pistillate flowers. Staminate and pistillate flowers presented distinct correlations between floral traits and integration indices between domesticated and wild species. Additionally, pollen quantity and protein to lipid ratio were greater in domesticated species. Cucurbit pollen specialists, Eucera spp., had the highest probability of visit for all Cucurbita taxa.

Conclusions

We provide evidence that floral traits of domesticated and wild Cucurbita species experienced different selection pressures. Domesticated Cucurbita species may have more resources invested towards floral traits, thereby increasing attractiveness to pollinators and potentially plant reproductive success. Wild ancestor plant populations should be conserved in their centers of origin to preserve plant-pollinator interactions.  相似文献   

15.
Aims The evolution of the outstanding variation of reproductive systems in angiosperms has been considered an important driver of lineage diversification. Closely related hermaphroditic and dioecious species with biotic pollination provide the opportunity to study and compare traits related to pollinator attraction and their consequences on reproductive components. A higher predictability of pollination syndromes is expected in dioecious species, which are dependent on pollinators, than in self-compatible hermaphroditic taxa. Dioecious species may suffer pollen limitation depending on the quality of floral rewards and the kind and abundance of pollinators, whereas no pollen limitation is expected in hermaphroditic species with autonomous self-pollination. Additionally, in the absence of pollen limitation, more or better seeds are expected in dioecious species, according to the sexual specialization hypothesis.Methods In natural populations of the hermaphroditic Fuchsia fulgens and Fuchsia arborescens and dioecious Fuchsia parviflora and Fuchsia obconica, all endemic to Mexico, we first described flower phenology, flower production and longevity and nectar volume and concentration. Then, we evaluated the correspondence between floral visitors and pollination syndromes. In hermaphrodite plants, we determined the level of herkogamy and the potential for autonomous self-pollination. Finally, we evaluated the effect of pollen limitation on fruit set and seed number and assessed seed germination for all species.Important findings In contrast to our prediction, dioecious species did not show a higher correspondence between pollination syndromes and floral visitors than did hermaphrodites; however, male flowers exhibited a higher correspondence than female flowers. No pollen limitation was detected in dioecious species, for which visitation rate did not differ between male and female flowers. The hermaphroditic F. fulgens showed pollen limitation for seed number, despite the presence of autonomous selfing. Fruit set from autonomous pollination was higher in F. arborescens, which showed a lower level of herkogamy compared with F. fulgens. Finally, dioecious species produced fewer but heavier seeds compared with hermaphrodite species. Although Fuchsia is classified as an outcrossing genus, both hermaphroditic species showed autonomous self-pollination. The heavier but lower number of seeds per fruit in dioecious species may be related to the more efficient resource allocation expected from sexual specialization. This could play an important role in the evolution of dioecy; however, a comparative phylogenetic approach is required to confirm this hypothesis.  相似文献   

16.
Disepalum comprises two monophyletic sister subgenera, Enicosanthellum and Disepalum, with strikingly different floral morphologies: the former has two whorls of unfused sepals, forming a partially enclosed floral chamber, whereas the latter possesses a single whorl of congenitally fused petals and lacks a floral chamber. The pollination ecologies of representative species are reported, including assessments of floral phenology, pollinators and floral thermogenesis. Disepalum pulchrum (subgenus Enicosanthellum) has hermaphroditic flowers with a pollination chamber and is protogynous with prolonged anthesis; it is pollinated by nitidulid beetles and drosophilid flies. Disepalum anomalum (subgenus Disepalum) is also hermaphroditic with prolonged anthesis, but has incomplete protogyny due to overlapping pistillate and staminate phases; it is pollinated by meliponine bees, which are attracted by the pollen, but which are only able to transfer pollen to receptive stigmas during the overlap phase. Alternative evolutionary hypotheses are evaluated, including the possibility that the ancestor of the subgenus Disepalum lineage may have experienced a profound genetic mutation, possibly involving genes responsible for organ merism and fusion, resulting in the loss of the pollination chamber and hence favouring different floral visitors. The breakdown in protogyny required for effective pollination is likely to have had significant ramifications on population genetic diversity.  相似文献   

17.
Taxonomically related species can differ in a number of reproductive traits, which may translate into a differential mating system and pollination success. Here we compare two hermaphroditic insect-pollinated Daphne species (D. rodriguezii and D. gnidium) which differ in distribution (island endemic vs. mediterranean) and floral traits (long- vs. short-tube corolla). We investigated their mating system and pollen limitation by means of hand-pollination experiments and quantified the diversity and abundance of flower visitors by direct observations. Plant size and five reproductive traits (flower production, proportion of viable anthers, pollen production, flower tube length and tepal area) were studied to assess how they contribute to reproductive success, measured as proportion of pollen grains germinated per stigma and fruit set. Selfing was very low and pollen limitation existed in both species, though was higher in D. rodriguezii probably due to the scarcity of flower visitors. The low fruit set in both species suggests that most of the pollen grains found on stigmas are self-pollen. Pollinators appeared to favour some floral traits (specifically, flower tube length or tepal area) in both species, although flower crop in D. rodriguezii was the only reproductive trait influencing fruit set. In both species, the highest variability in reproductive traits and pollination success was within individuals. Our findings suggest that despite both species showed similar mating system, dependency on outcrossing pollen and selection of floral traits, pollen limitation was higher in D. rodriguezii, probably as a higher proportion of self-pollen arrives to its stigmas.  相似文献   

18.
Zheng  Guiling  Li  Peng  Pemberton  Robert  Luo  Yibo 《Ecological Research》2011,26(2):453-459
Most Cypripedium species are specialized orchids pollinated by, in a broad sense, bees or flies. Here we present the first evidence that a slipper orchid, Cypripedium flavum, is pollinated by both bees and flies, i.e., bumblebees and blowflies. Artificial pollination experiments demonstrated that the flowers of C. flavum are self-compatible, but need pollen vectors for successful reproduction. Field observations detected 25 insects visiting the flowers, and 14 of these insects entered into the labellum of the flowers, but only female bumblebees, Bombus hypnorum, B. remotus, and the blowfly Calliphora vomitoria exited of the labellum with pollen smears of C. flavum. The floral functional morphology of C. flavum appears to be more suited to bumblebees than to blowflies. The bumblebees are more efficient pollinators of the orchid, but blowflies are more frequent visitors, so they pollinated more flowers despite being less efficient.  相似文献   

19.
毛翠雀花花序内的性分配和繁殖成功   总被引:1,自引:0,他引:1  
张新  安宇梦  史长莉  米兆荣  张婵 《广西植物》2021,41(8):1324-1332
两性花植物花序内不同位置的性分配和繁殖成功一般存在差异,通常认为资源竞争、结构效应和交配环境是形成这种差异的主要原因。为了研究雄性和雌性繁殖资源在花序内不同位置间的最优分配问题,该文以青藏高原高寒草甸典型高山植物毛翠雀花为材料,通过比较花序内不同位置的花部特征和种子性状,对其花序内的性分配模式和雌性繁殖成功进行研究,并通过观察传粉者运动特点以及人工去花和补授花粉实验,探讨花序内资源竞争和交配环境对繁殖资源分配的影响。结果表明:(1)不同位置间的雄蕊数、雄蕊鲜重/雌蕊鲜重、花粉数及花粉胚珠比从花序基部到上部显著增加,而雌蕊鲜重和胚珠数逐渐减少,表现出上部花偏雄的性分配;上部花的结籽率显著低于基部花和中部花,不同位置间的发育种子数/果实和发育种子重/果实随着花位置的升高而显著降低,说明基部花具有更佳的雌性繁殖成效。(2)去花处理后,剩余果实的单个种子重/果实显著增加,但发育种子数/果实没有显著增加;而给上部花人工补授异花花粉后,位置间结籽率的差异消失,说明传粉限制而非资源竞争导致了花序内位置依赖的种子生产模式。(3)毛翠雀花雄性先熟的开花特征,以及传粉者苏氏熊蜂从花序基部到上部的定向访花行为,导致了花序内交配环境的变化。综上结果表明,毛翠雀花花序内的性分配和繁殖成功差异是对交配环境适应的结果,对其在高山环境中实现雌雄适合度最优化具有重要意义。  相似文献   

20.
Flowering plants typically use floral rewards to attract animal pollinators. Unlike nectar, pollen rewards are usually visible and may thus function as a signal that influences landing decisions by pollen‐seeking insects. Here we artificially manipulate the presence of both pollen and staminal hairs (a putative false signal of pollen reward availability) in the hermaphroditic lily Bulbine abyssinica (Xanthorrhoeaceae) to investigate their effects on bee visitation and fecundity, and also test for trade‐offs between pollen production and seed production. Honeybees, the primary floral visitors, are probably not able to distinguish between colours of petals, staminal hairs and pollen of B. abyssinica, according to analysis of reflectance spectra in a bee vision model. Flowers with both pollen and hairs removed had the lowest levels of bee visitation, seed set and seed abortions. Flowers containing hairs had an ~50% increase in visitation rate and seed set compared with emasculated flowers, while intact controls had the highest seed abortion rate. Ovule discounting in intact flowers is probably due to ovarian self‐incompatibility (or strong early inbreeding depression) as ovules penetrated by tubes from self‐pollen uniformly failed to develop into seeds. These results show that staminal hairs can enhance plant fecundity by increasing attraction of pollen‐seeking insects to flowers without increasing the risk of ovule discounting through pollinator‐mediated self‐pollination. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 177 , 481–490.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号