首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The distribution of wind‐dispersed seeds around a parent tree depends on diaspore and tree traits, as well as wind conditions and surrounding vegetation. This study of a neotropical canopy tree, Platypodium elegans, explored the extent to which parental variation in diaspore and tree traits explained (1) rate of diaspore descent in still air, (2) distributions of diaspores dispersed from a 40‐m tower in the forest, and (3) natural diaspore distributions around the parent tree. The geometric mean rate of descent in still air among 20 parents was highly correlated with geometric mean wing loading1/2 (r = 0.84). However, diaspore traits and rate of descent predicted less variation in dispersal distance from the tower, although descent rate−1 consistently correlated with dispersal distance. Measured seed shadows, particularly their distribution edges, differed significantly among six parents (DBH range 62–181 cm) and were best fit by six separate anisotropic dispersal kernels and surveyed fecundities. Measured rate of descent and tree traits, combined in a mechanistic seed dispersal model, did not significantly explain variation among parents in natural seed dispersal distances, perhaps due to the limited power to detect effects with only six trees. Seedling and sapling distributions were at a greater mean distance from the parents than seed distributions; saplings were heavily concentrated at far distances. Variation among parents in the distribution tails so critical for recruitment could not be explained by measured diaspore or tree traits with this sample size, and may be determined more by wind patterns and the timing of abscission in relation to wind conditions. Studies of wind dispersal need to devote greater field efforts at recording the “rare” dispersal events that contribute to far dispersal distances, following their consequences, and in understanding the mechanisms that generate them.  相似文献   

2.
The tropical tree, Lonchocarpus pentaphyllus (Poir.) DC. (Leguminosae-Papilionoideae), matures indehiscent wind-dispersed fruits containing 0–4 seeds. Most fruits are one-seeded (82%) while less than 2% are three-seeded. An increase in seed number per fruit correlates with increases in four characteristics expected to affect dispersal distance under field conditions: fruit weight, fruit area, square root of wing-loading, and rate of descent in still air. The dry weight of a seed decreases with an increase in seed number per fruit. Under field conditions nearly 40% of the mature fruits fall within the radius of the tree crown. Fruits with more intact seeds are dispersed shorter distances; fruits with no developed seeds travel the farthest. Among one-seeded fruits dispersed beyond the crown radius, dispersal distance is inversely proportional to the square root of wing-loading. The weight of seed in these one-seeded fruits, however, is independent of dispersal distance. Fruits with more seeds have a higher proportion of underdeveloped seeds. However, a greater proportion of two- and three-seeded fruits have at least one intact mature seed than do one-seeded fruits. This comparative study illustrates that changes in fruit morphology and weight associated with different numbers of seeds per fruit affect dispersal properties as well. A decrease in seed number per fruit increases both seed weight and dispersal distance, but it decreases the probability that a given dispersal event results in movement of an intact seed.  相似文献   

3.
Diaspore (e.g. seeds, fruits) dispersal is pivotal for plant communities and often involves several steps and different dispersing agents. Most studies focusing on diaspore dispersal by animals have highlighted the role of vertebrates, neglecting the role of ants in the diaspore dispersal of non-myrmecochorous plants. Diaspore dispersal by ants is especially relevant in the current scenario of declining of vertebrate populations and, consequently, collapse of the dispersal system of large-seeded plants. Although ants can never compensate for the dispersal service provided by vertebrates, they can mitigate the impact of vertebrate decline via removal of diaspores deposited on the ground. We have used a meta-analytical approach to investigate the contribution of ants in the removal of non-myrmecochorous diaspores (through vertebrate exclusion experiments). We considered the number of diaspore removal as effect size and factors such as plant growth forms, diaspore and ant size, habitat type as moderators. In addition, we investigated the role of such factors on the diaspore removal distance by ants. Ants played complementary role to non-myrmecochorous diaspore removal services provided by vertebrates (mean Hedges’ g of −0.30). The ant diaspore removal was 69% higher for diaspores from shrubs than that of tree diaspores and removal of small-sized diaspores were 69% and 70% higher in comparison to medium- and large-sized diaspores, respectively. Regarding the diaspore removal distance by ants, those of tree species were removed 32% farther than those of shrub species, and diaspores were removed three- times farther in the savanna than in rainforest ecosystems. Our results highlight the shrubs and small-sized diaspores. Regarding the diaspore removal distance, the ants can be crucial for the dispersal of tree diaspores and in the savanna ecosystems. Finally, considering the biodiversity crisis, the ants may play an even more important role than appreciated in diaspores dispersal.  相似文献   

4.
Seeds and fruit of 38 anemochorous species were dropped in still air to simulate their descent under natural conditions. Fall rate and lateral distance were recorded as indices of wind-borne dispersal capability. Differences in fall rates among plumed species were dependent on interspecific variation in diaspore weight and plume area, while fall rates of winged species were strongly differentiated by contrasting wing shapes. In Acer platanoides and Asclepias syriaca, representing wing and plume architectures, respectively, the range of diaspore weight was artificially extended by removing embryos or adding lead weights. In both of these species, rate of descent of altered diaspores was controlled by weight relative to wing or plume area. The wing morphology of A. platanoides showed lower fall rates than the plumed A. syriaca above 45 mg, while the plume morphology of A. syriaca achieved lower fall rates below this weight. Compared with wide variation in diaspore weight, members of the Compositae showed relatively low variation in plume loading (diaspore weight/plume area) and fall speed. These observations suggest functional and phyletic constraints on diaspore architecture. Such constraints may limit evolutionary change in diaspore size and performance.  相似文献   

5.
Experimental and structural investigations of anemochorous dispersal   总被引:3,自引:1,他引:2  
Hensen  Isabell  Müller  Caroline 《Plant Ecology》1997,133(2):169-180
The present paper describes the anemochorous dispersal of representative diaspores of Asteraceae, Dipsacaceae, and Poaceae from xerothermic grassland communities of Central and Northeastern Germany. For eleven species, potential dispersal distance was determined by fall velocity experiments as well as by taking into account the diaspore flight angle under the influence of an artificially-produced, regularly, and horizontally blowing air stream. The latter is a new and comparatively simple method enabling the implementation of mathematical formulas which describe the potential flight capacity of a diaspore for different wind speeds and exposition heights. Surface structures, shown by a scanning electron microscope, were consulted for the interpretation of results.Of the species considered, the best fliers are the diaspores of Asteraceae and Melica ciliata (Poaceae) characterized by a plumous pappus or a hairy lemma. The wing-like attachments of the diaspores of the other investigated Poaceae and Dipsacaceae are clearly less efficient for wind dispersal.The fall rates of the investigated species agree to a great extent with literature data. But a critical comparison of both methods employed shows that fall velocity as a measure of horizontal diaspore flight capacity is only suitable for low wind force < 2 m s-1. With increasing wind force, the dispersal distance of a flying diaspore does not rise in a linear, but rather in an approximately quadratic manner. Thus, in nature, conditions of higher wind forces may be very important for the reachable dispersal distances of well-flying diaspores. This could be of particular significance for nature conservation concepts concerning the vulnerability of species towards isolation within fragmented landscapes.  相似文献   

6.
We used a computer simulation to quantify how intra-crop variation in wing-loading in a wind-dispersed species affects the seed distribution around a parent plant. We used a data set of seed distributions generated from a previous field study using artificial fruits varying in seed mass or fruit area dispersed from a tower into a tropical forest. For this study, the spatial distribution from each hypothetical parent's fruit crop of 1000 was calculated by randomly drawing locations of dispersed fruits from the previous data base. Three parents with contrasting fruit crops were used to test two hypotheses: 1) Increasing within-parent variance in wing-loading (= weight/area), while maintaining the mean, will lead to an increase in the area and uniformity of the seed distribution, without changing the mean dispersal distance. 2) Decreasing within-parent mean wing-loading, (which also decreases variance), will lead to an increase in mean dispersal distance, area, and uniformity of the seed distribution. The hypotheses were tested under four wind speeds.Increasing variance in wing-loading resulted in increasing the area and uniformity of density of the seed distribution without changing mean dispersal distance. Decreasing mean and variance in wing-loading resulted in increasing the area and uniformity of density of the seed distribution, as well as increasing the mean dispersal distance. Similar results occurred whether the differences in wing-loading arose by altering seed mass or fruit area. The effect of wind speed was consistently greater than the effect of parent. Generally, the same pattern of parent effects on seed distributions occurred, regardless of wind condition.The effects on seed distributions differed for alterations in mean versus variance, specifically in whether mean dispersal distance was increased. How selection may act on intra-crop mean and variance in wing-loading will depend on additional factors, e.g. the relative importance of distance, area, and density on seedling recruitment and the relative costs for crop size and seedling establishment of making fruit crops of a given mean and variance.  相似文献   

7.
8.
Strobe photographs were taken of over 200 spinning samaras from seven species of trees. These were used to measure the rate of descent, angular velocity, orientation, and other parameters of the samaras as they fell. These data were then used to compare the aerodynamic behavior of samaras, helicopters, and theoretical ideal rotors. Plotting morphological data for each samara against its rate of descent showed that this rate was highly correlated with the square root of the samara's wing loading (samara weight divided by wing-surface area). This plot demonstrated the existence of two distinct groups of samaras, distinguished by their morphology, spinning motion, and rate of descent. These results are of greatest use in characterizing local dispersal patterns.  相似文献   

9.
Host trees for obligate epiphytes are dynamic patches that emerge, grow and fall, and metacommunity diversity critically depends on efficient dispersal. Even though species that disperse by large asexual diaspores are strongly dispersal limited, asexual dispersal is common. The stronger dispersal limitation of asexually reproducing species compared to species reproducing sexually via small spores may be compensated by higher growth rates, lower sensitivity to habitat conditions, higher competitive ability or younger reproductive age. We compared growth and reproduction of different groups of epiphytic bryophytes with contrasting dispersal (asexual vs. sexual) and life history strategies (colonists, short- and long-lived shuttle species, perennial stayers) in an old-growth forest stand in the boreo-nemoral region in eastern Sweden. No differences were seen in relative growth rates between asexual and sexual species. Long-lived shuttles had lower growth rates than colonists and perennial stayers. Most groups grew best at intermediate bark pH. Interactions with other epiphytes had a small, often positive effect on growth. Neither differences in sensitivity of growth to habitat conditions nor differences in competitive abilities among species groups were found. Habitat conditions, however, influenced the production of sporophytes, but not of asexual diaspores. Presence of sporophytes negatively affected growth, whereas presence of asexual diaspores did not. Sexual species had to reach a certain colony size before starting to reproduce, whereas no such threshold existed for asexual reproduction. The results indicate that the epiphyte metacommunity is structured by two main trade-offs: dispersal distance vs. reproductive age, and dispersal distance vs. sensitivity to habitat quality. There seems to be a trade-off between growth and sexual reproduction, but not asexual. Trade-offs in species traits may be shaped by conflicting selection pressures imposed by habitat turnover and connectivity rather than by species interactions. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Plant communities are often dispersal‐limited and zoochory can be an efficient mechanism for plants to colonize new patches of potentially suitable habitat. We predicted that seed dispersal by ungulates acts as an ecological filter – which differentially affects individuals according to their characteristics and shapes species assemblages – and that the filter varies according to the dispersal mechanism (endozoochory, fur‐epizoochory and hoof‐epizoochory). We conducted two‐step individual participant data meta‐analyses of 52 studies on plant dispersal by ungulates in fragmented landscapes, comparing eight plant traits and two habitat indicators between dispersed and non‐dispersed plants. We found that ungulates dispersed at least 44% of the available plant species. Moreover, some plant traits and habitat indicators increased the likelihood for plant of being dispersed. Persistent or nitrophilous plant species from open habitats or bearing dry or elongated diaspores were more likely to be dispersed by ungulates, whatever the dispersal mechanism. In addition, endozoochory was more likely for diaspores bearing elongated appendages whereas epizoochory was more likely for diaspores released relatively high in vegetation. Hoof‐epizoochory was more likely for light diaspores without hooked appendages. Fur‐epizoochory was more likely for diaspores with appendages, particularly elongated or hooked ones. We thus observed a gradient of filtering effect among the three dispersal mechanisms. Endozoochory had an effect of rather weak intensity (impacting six plant characteristics with variations between ungulate‐dispersed and non‐dispersed plant species mostly below 25%), whereas hoof‐epizoochory had a stronger effect (eight characteristics included five ones with above 75% variation), and fur‐epizoochory an even stronger one (nine characteristics included six ones with above 75% variation). Our results demonstrate that seed dispersal by ungulates is an ecological filter whose intensity varies according to the dispersal mechanism considered. Ungulates can thus play a key role in plant community dynamics and have implications for plant spatial distribution patterns at multiple scales. Synthesis Plant communities are often dispersal‐limited and zoochory can be an efficient mechanism for plants to colonize new patches of potentially suitable habitat. Our analysis is the first synthesis of ungulate seed dispersal that compares characteristics from both non‐dispersed and dispersed diaspores, distinguishing the three zoochory mechanisms ungulates are involved in: endozoochory, hoof‐epizoochory and fur‐epizoochory. We confirmed that seed dispersal by ungulates is an ecological filter whose intensity increases from endozoochory, then hoof‐epizoochory to finally fur‐epizoochory. By filtering seed traits through dispersal, ungulates can thus play a key role in plant community dynamics and have implications for plant spatial distribution patterns at multiple scales.  相似文献   

11.
Pizo  Marco A.  Oliveira  Paulo S. 《Plant Ecology》2001,157(1):37-52
Ants are often attracted to diaspores not adapted for dispersal by ants. These diaspores may occasionally benefit from this interaction. We selected six nonmyrmecochorous plant species (Virola oleifera, Eugenia stictosepala, Cabralea canjerana, Citharexylum myrianthum, Alchornea glandulosa and Hyeronima alchorneoides) whose diaspores differ in size and lipid content, and investigated how these features affect the outcome of ant-diaspore interactions on the floor of a lowland Atlantic forest of Southeast Brazil. A total of 23 ant species were seen interacting with diaspores on the forest floor. Ants were generally rapid at discovering and cleaning the diaspore pulp or aril. Recruitment rate and ant attendance were higher for lipid-rich diaspores than for lipid-poor ones. Removal rate and displacement distance were higher for small diaspores. The large ponerine ant Pachycondyla striata, one of the most frequent attendants to lipid-rich arillate diaspores, transported the latter into their nests and discarded clean intact seeds on refuse piles outside the nest. Germination tests with cleaned and uncleaned diaspores revealed that the removal of pulp or aril may increase germination success in Virola oleifera, Cabralea canjerana, Citharexylum myrianthum and Alchornea glandulosa. Gas chromatography analyses revealed a close similarity in the fatty acid composition of the arils of the lipid-rich diaspores and the elaiosome of a typical myrmecochorous seed (Ricinus communis), corroborating the suggestion that some arils and elaiosomes are chemically similar. Although ant-derived benefits to diaspores – secondary dispersal and/or increased germination – varied among the six plant species studied, the results enhanced the role of ant-diaspore interactions in the post-dispersal fates of nonmyrmecochorous seeds in tropical forests. The size and the lipid-content of the diaspores were shown to be major determinants of the outcome of such interactions.  相似文献   

12.
Paeonia officinalis L., a rare and protected species, mostly occurs in open and semi‐open habitats and is often threatened by forest and shrubland spread. To explore the still undocumented dispersal features of this species, we address the following questions. What are the relative roles of ants, small rodents, and birds as diaspore removers in open habitat and woodland? Which animal groups constitute the potential disperser assemblage and how do they shape the spatial patterns of seed dispersal? Do diaspores fit the ornithochory syndrome or do they only mimic fleshy fruits? Two experiments were performed to quantify diaspore fall and diaspore removal by animal groups, above ground and on the ground. Ants did not contribute to dispersal. In open habitats, no seed removal was detected, either on follicles or once diaspores had fallen to the ground. In woodland, diaspores were weakly removed by vertebrates on follicles and were mainly removed by rodents on the ground. As a consequence, we suggest that long‐distance dispersal events are very rare, weakening the possible escape into space of populations subject to forest spread. Several traits indicate that diaspores fit the ornithochory syndrome, but other traits are strongly reminiscent of mimetic diaspores deceiving bird dispersers. © 2007 CNRS. Journal compilation © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society, 2007, 154 , 13–25.  相似文献   

13.
This case study examines the pollen dispersal distance, pollen dispersal patterns and intra‐family genetic structure for isolated trees in pastures of the bat‐pollinated Neotropical tree species Hymenaea stigonocarpa using six microsatellite loci and parentage analysis. The sampling included 28 grouped trees (referred to as the population) and six isolated trees in pastureland along a highway in Mato Grosso do Sul State, Brazil. From the population, we sampled 137 seeds from 12 seed‐trees, and from the isolated trees, we sampled 34 seeds from two seed‐trees. The results showed that pollen was dispersed over long distances (reaching 7353 m) and therefore the spatially isolated trees were not reproductively isolated. The pollen immigration rate in the population was also high (31%). Isolated trees presented a higher selfing rate (s=26%) than trees in the population (s=12%), suggesting that the spatial isolation of the trees increased selfing. However, selfing was responsible for only 30 percent of the inbreeding in offspring and mating among relatives was 70 percent. In the population, excluding selfing, ca 72 percent of the pollen was dispersed over distances <1000 m (average: 860 m). For the two isolated seed‐trees, excluding selfing, the average pollen dispersal distance was 5229 m. The results demonstrate that although pollen can be dispersed over long distances for H. stigonocarpa isolated trees, a high percentage of pollen comes from the same tree (selfing) and mating was correlated. Consequently, seeds must be collected from a large number of seed‐trees for conservation purposes.  相似文献   

14.
Zoochory is the most common mode of seed dispersal for the majority of plant species in the tropics. Based on the assumption of tight plant-animal interactions several hypotheses have been developed to investigate the origin of life history traits of plant diaspores and their dispersers, such as species-specific co-evolution, the low/high investment model (low investment in single fruits but massive fruiting to attract many different frugivores versus high investment in single fruits and fruit production for extended periods to provide food for few frugivores), and the evolution of syndromes which represent plant adaptations to disperser groups (e.g. birds, mammals, mixed). To test these hypotheses the dispersal strategies of 34 tree species were determined in the littoral forest of Sainte Luce (SE-Madagascar) with the help of fruit traps and tree watches. The impact of fruit consumers on the seeds was determined based on detailed behavioral observations. Phenological, morphological and biochemical fruit traits from tree species were measured to look for co-variation with different types of dispersal. No indication for species-specific co-evolution could be found nor any support for the low/high investment model. However dispersal syndromes could be distinguished as diaspores dispersed by birds, mammals or both groups (mixed) differ in the size of their fruits and seeds, fruit shape, and seed number, but not in biochemical traits. Five large-seeded tree species seem to depend critically on the largest lemur, Eulemur fulvus collaris, for seed dispersal. However, this does not represent a case of tight species-specific co-evolution. Rather it seems to be the consequence of the extinction of the larger frugivorous birds and lemurs which might also have fed on these large fruits. Nevertheless these interactions are of crucial importance to conserve the integrity of the forest.  相似文献   

15.
翅果的风媒传播是槭属植物的主要扩散方式之一,且与种子萌发有着密切关联,但具体机理一直还并不明确。以分布于长白山的9种槭树为对象,探讨翅果的形态特征,测定它们在空气中的垂直沉降速度、不同风速下的水平扩散距离以及在扩散距离上的种子萌发率,进而比较并分析翅果的形态性状与沉降速度、水平扩散距离的相关性以及萌发率在不同扩散距离上的差异性。结果表明:(1) 9种槭树的翅果长、宽和面积与沉降速度、水平扩散距离均呈负相关;尽管如此,翅果形态并不是风传播物种的最佳分类指标,而翅载力能较好地反应物种的风传播能力;(2)翅果垂直沉降速度和水平扩散距离间存在显著负相关,表明沉降速度越小,翅果在空气中停留的时间越长,水平方向上扩散距离越远,且强风有助于提高翅果的扩散能力;(3)沉降速度最慢的花楷槭在不同风速下的水平扩散距离均最远,而沉降速度最快的拧筋槭水平扩散距离最短;(4)种子萌发率随扩散距离的增加呈下降趋势。上述结果不仅为深入理解翅果的风力传播机制以及种子萌发对水平扩散距离的响应机制提供科学依据,还可为种群实生更新方面的理论研究提供参考。  相似文献   

16.
An aggregated distribution of dispersed seeds may influence the colonization process in tree communities via inflated spatial uncertainty. To evaluate this possibility, we studied 10 tree species in a temperate forest: one primarily barochorous, six anemochorous and two endozoochorous species. A statistical model was developed by combining an empirical seed dispersal kernel with a gamma distribution of seedfall density, with parameters that vary with distance. In the probability density, the fitted models showed that seeds of Fagaceae (primarily barochorous) and Betulaceae (anemochorous) were disseminated locally (i.e. within 60 m of a mother tree), whereas seeds of Acer (anemochorous) and endozoochorous species were transported farther. Greater fecundity compensated for the lower probability of seed dispersal over long distances for some species. Spatial uncertainty in seedfall density was much greater within 60 m of a mother tree than farther away, irrespective of dispersal mode, suggesting that seed dispersal is particularly aggregated in the vicinity of mother trees. Simulation results suggested that such seed dispersal patterns could lead to sites in the vicinity of a tree being occupied by other species that disperse seeds from far away. We speculate that this process could promote coexistence by making the colonization rates of the species more similar on average and equalizing species fitness in this temperate forest community.  相似文献   

17.
The extent of gene dispersal is a fundamental factor of the population and evolutionary dynamics of tropical tree species, but directly monitoring seed and pollen movement is a difficult task. However, indirect estimates of historical gene dispersal can be obtained from the fine-scale spatial genetic structure of populations at drift-dispersal equilibrium. Using an approach that is based on the slope of the regression of pairwise kinship coefficients on spatial distance and estimates of the effective population density, we compare indirect gene dispersal estimates of sympatric populations of 10 tropical tree species. We re-analysed 26 data sets consisting of mapped allozyme, SSR (simple sequence repeat), RAPD (random amplified polymorphic DNA) or AFLP (amplified fragment length polymorphism) genotypes from two rainforest sites in French Guiana. Gene dispersal estimates were obtained for at least one marker in each species, although the estimation procedure failed under insufficient marker polymorphism, limited sample size, or inappropriate sampling area. Estimates generally suffered low precision and were affected by assumptions regarding the effective population density. Averaging estimates over data sets, the extent of gene dispersal ranged from 150 m to 1200 m according to species. Smaller gene dispersal estimates were obtained in species with heavy diaspores, which are presumably not well dispersed, and in populations with high local adult density. We suggest that limited seed dispersal could indirectly limit effective pollen dispersal by creating higher local tree densities, thereby increasing the positive correlation between pollen and seed dispersal distances. We discuss the potential and limitations of our indirect estimation procedure and suggest guidelines for future studies.  相似文献   

18.
Reduced dispersability of species living on islands relative to mainland has been documented in both plants and animals. One evolutionary scenario explains this trend by strong selection against dispersal, once the species has reached the island, to reduce dispersal out to sea. In this study, we compare the dispersal ability of three wind dispersed plant species (Cirsium arvense, Epilobium angustifolium, and E. hirsutum) from populations on mainland and three islands. Dispersal ability was estimated directly as drop time of diaspores, and indirectly using a morphological measure relating the weight of the diaspore to the size of the pappus (Cirsium) or seed hairs (Epilobium). Positive correlation between the morphological measure of dispersal ability and drop time of diaspores were found for all study species. Dispersal ability varied significantly among mainland and islands, and among species. C. arvense showed a significant reduction in dispersal ability on islands compared to mainland, whereas the reverse was found for the two Epilobium species. Overall Epilobium diaspores had a 2–4 times higher dispersability than C. arvense, indicating that degree of isolation of islands vary among study species. Significant differences in dispersability among plants within populations were detected in all species suggesting that this trait may have a genetic component.  相似文献   

19.
Patterns of pollen dispersal were investigated in a small, isolated, relict population of Pinus sylvestris L., consisting of 36 trees. A total-exclusion battery comprising four chloroplast and two nuclear microsatellites (theoretical paternity exclusion probability EP=0.996) was used to assign paternity to 813 seeds, collected from 34 trees in the stand. Long-distance pollen immigration accounted for 4.3% of observed matings. Self-fertilization rate was very high (0.25), compared with typical values in more widespread populations of the species. The average effective pollen dispersal distance within the stand was 48 m (or 83 m excluding selfs). Half of effective pollen was dispersed within 11 m, and 7% beyond 200 m. A strong correlation was found between the distance to the closest tree and the mean mating-distance calculated for single-tree progenies. The effective pollen dispersal distribution showed a leptokurtic shape, with a large and significant departure from that expected under uniform dispersal. A maximum-likelihood procedure was used to fit an individual pollen dispersal distance probability density function (dispersal kernel). The estimated kernel indicated fairly leptokurtic dispersal (shape parameter b=0.67), with an average pollen dispersal distance of 135 m, and 50% of pollen dispersed beyond 30 m. A marked directionality pattern of pollen dispersal was found, mainly caused by the uneven distribution of trees, coupled with restricted dispersal and unequal male success. Overall, results show that the number and distribution of potential pollen donors in small populations may strongly influence the patterns of effective pollen dispersal.  相似文献   

20.
Current knowledge about processes that generate long-distance dispersal of plants is still limited despite its importance for persistence of populations and colonization of new potential habitats. Today wild large mammals are presumed to be important vectors for long-distance transport of diaspores within and between European temperate forest patches, and in particular wild boars recently came into focus. Here we use a specific habit of wild boar, i.e. wallowing in mud and subsequent rubbing against trees, to evaluate epizoochorous dispersal of vascular plant diaspores. We present soil seed bank data from 27 rubbing trees versus 27 control trees from seven forest areas in Germany. The mean number of viable seeds and the plant species number were higher in soil samples near rubbing trees compared with control trees. Ten of the 20 most frequent species were more frequent, and many species exclusively appeared in the soil samples near rubbing trees. The large number of plant species and seeds – more than 1000 per tree – in the soils near rubbing trees is difficult to explain unless the majority were dispersed by wild boar. Hooked and bristly diaspores, i.e. those adapted to epizoochory, were more frequent; however, many species with unspecialized diaspores occurred exclusively near rubbing trees. As opposed to plant species closely tied to forests species which occur both in forest and open vegetation and non-forest species were more frequent near rubbing trees compared with controls. These findings are consistent with previous studies on diaspore loads in the coats and hooves of shot wild boars. However, our method allows to identify the transport of diaspores from the open landscape into forest stands, where they might especially emerge after disturbance, and a clustered distribution of epizoochorically dispersed seeds. Moreover, accumulation of seeds of wetness indicators near rubbing trees demonstrates directed dispersal of plant species inhabiting wet places among remote wallows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号