首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
QTL mapping and the genetic basis of adaptation: recent developments   总被引:6,自引:0,他引:6  
Zeng ZB 《Genetica》2005,123(1-2):25-37
Quantitative trait loci (QTL) mapping has been used in a number of evolutionary studies to study the genetic basis of adaptation by mapping individual QTL that explain the differences between differentiated populations and also estimating their effects and interaction in the mapping population. This analysis can provide clues about the evolutionary history of populations and causes of the population differentiation. QTL mapping analysis methods and associated computer programs provide us tools for such an inference on the genetic basis and architecture of quantitative trait variation in a mapping population. Current methods have the capability to separate and localize multiple QTL and estimate their effects and interaction on a quantitative trait. More recent methods have been targeted to provide a comprehensive inference on the overall genetic architecture of multiple traits in a number of environments. This development is important for evolutionary studies on the genetic basis of multiple trait variation, genotype by environment interaction, host–parasite interaction, and also microarray gene expression QTL analysis.  相似文献   

2.
Question: How do studies of the distribution of genetic diversity of species with different life forms contribute to the development of conservation strategies? Location: Old‐growth forests of the southeastern United States. Methods: Reviews of the plant allozyme literature are used to identify differences in genetic diversity and structure among species with different life forms, distributions and breeding systems. The general results are illustrated by case studies of four plant species characteristic of two widespread old‐growth forest communities of the southeastern United States: the Pinus palustris – Aristida stricta (Longleaf pine – wiregrass) savanna of the Coastal Plain and the Quercus – Carya – Pinus (Oak‐hickory‐pine) forest of the Piedmont. Genetic variation patterns of single‐gene and quantitative traits are also reviewed. Results: Dominant forest trees, represented by Pinus palustris(longleaf pine) and Quercus rubra (Northern red oak), maintain most of their genetic diversity within their populations whereas a higher proportion of the genetic diversity of herbaceous understorey species such as Sarracenia leucophylla and Trillium reliquum is distributed among their populations. The herbaceous species also tend to have more population‐to‐population variation in genetic diversity. Higher genetic differentiation among populations is seen for quantitative traits than for allozyme traits, indicating that interpopulation variation in quantitative traits is influenced by natural selection. Conclusion: Developing effective conservation strategies for one or a few species may not prove adequate for species with other combinations of traits. Given suitable empirical studies, it should be possible to design efficient conservation programs that maintain natural levels of genetic diversity within species of conservation interest.  相似文献   

3.
I describe the basic ingredients of a population structure analysis and the rationale for using polygenic quantitative traits in such analyses. The complexity of inheritance and the population dynamics of quantitative traits, however, imply that inferences regarding population structure based on such traits must be evaluated with appropriate cautions. Although many studies of quantitative traits in relation to population structure analysis underscore the importance of gene flow between subpopulations, I show that the role of selection in the evolution of a quantitative trait and its relationship to the inferred population structure cannot be overlooked. Finally, I review some recent advances in human quantitative genetic methodologies that can be used profitably in population structure analysis.  相似文献   

4.
Although fragmented rainforest environments represent hotspots for invertebrate biodiversity, few genetic studies have been conducted on rainforest invertebrates. Thus, it is not known if invertebrate species in rainforests are highly genetically fragmented, with the potential for populations to show divergent selection responses, or if there are low levels of gene flow sufficient to maintain genetic homogeneity among fragmented populations. Here we use microsatellite markers and DNA sequences from the mitochondrial ND5 locus to investigate genetic differences among Drosophila birchii populations from tropical rainforests in Queensland, Australia. As found in a previous study, mitochondrial DNA diversity was low with no evidence for population differentiation among rainforest fragments. The pattern of mitochondrial haplotype variation was consistent with D. birchii having undergone substantial past population growth. Levels of nuclear genetic variation were high in all populations while F(ST) values were very low, even for flies from geographically isolated areas of rainforest. No significant differentiation was observed between populations on either side of the Burdekin Gap (a long-term dry corridor), although there was evidence for higher gene diversity in low-latitude populations. Spatial autocorrelation coefficients were low and did not differ significantly from random, except for one locus which revealed a clinal-like pattern. Comparisons of microsatellite differentiation contrasted with previously established clinal patterns in quantitative traits in D. birchii, and indicate that the patterns in quantitative traits are likely to be due to selection. These results suggest moderate gene flow in D. birchii over large distances. Limited population structure in this species appears to be due to recent range expansions or cycles of local extinctions followed by recolonizations/expansions. Nevertheless, patterns of local adaptation have developed in D. birchii that may result in populations showing different selection responses when faced with environmental change.  相似文献   

5.
Crosses between laboratory strains of mice provide a powerful way of detecting quantitative trait loci for complex traits related to human disease. Hundreds of these loci have been detected, but only a small number of the underlying causative genes have been identified. The main difficulty is the extensive linkage disequilibrium (LD) in intercross progeny and the slow process of fine-scale mapping by traditional methods. Recently, new approaches have been introduced, such as association studies with inbred lines and multigenerational crosses. These approaches are very useful for interval reduction, but generally do not provide single-gene resolution because of strong LD extending over one to several megabases. Here, we investigate the genetic structure of a natural population of mice in Arizona to determine its suitability for fine-scale LD mapping and association studies. There are three main findings: (1) Arizona mice have a high level of genetic variation, which includes a large fraction of the sequence variation present in classical strains of laboratory mice; (2) they show clear evidence of local inbreeding but appear to lack stable population structure across the study area; and (3) LD decays with distance at a rate similar to human populations, which is considerably more rapid than in laboratory populations of mice. Strong associations in Arizona mice are limited primarily to markers less than 100 kb apart, which provides the possibility of fine-scale association mapping at the level of one or a few genes. Although other considerations, such as sample size requirements and marker discovery, are serious issues in the implementation of association studies, the genetic variation and LD results indicate that wild mice could provide a useful tool for identifying genes that cause variation in complex traits.  相似文献   

6.
Phenotypic traits have been used for centuries for the purpose of racial classification. Developments in quantitative population genetics have allowed global comparison of patterns of phenotypic variation with patterns of variation in classical genetic markers and DNA markers. Human skin color shows a high degree of variation among geographic regions, typical of traits that show extensive natural selection. Even given this high level of geographic differentiation, skin color variation is clinal and is not well described by discrete racial categories. Craniometric traits show a level of among-region differentiation comparable to genetic markers, with high levels of variation within populations as well as a correlation between phenotypic and geographic distance. Craniometric variation is geographically structured, allowing high levels of classification accuracy when comparing crania from different parts of the world. Nonetheless, the boundaries in global variation are not abrupt and do not fit a strict view of the race concept; the number of races and the cutoffs used to define them are arbitrary. The race concept is at best a crude first-order approximation to the geographically structured phenotypic variation in the human species. Am J Phys Anthropol 2009. © 2009 Wiley-Liss, Inc.  相似文献   

7.
Connelly CF  Akey JM 《Genetics》2012,191(4):1345-1353
Advances in sequencing technology have enabled whole-genome sequences to be obtained from multiple individuals within species, particularly in model organisms with compact genomes. For example, 36 genome sequences of Saccharomyces cerevisiae are now publicly available, and SNP data are available for even larger collections of strains. One potential use of these resources is mapping the genetic basis of phenotypic variation through genome-wide association (GWA) studies, with the benefit that associated variants can be studied experimentally with greater ease than in outbred populations such as humans. Here, we evaluate the prospects of GWA studies in S. cerevisiae strains through extensive simulations and a GWA study of mitochondrial copy number. We demonstrate that the complex and heterogeneous patterns of population structure present in yeast populations can lead to a high type I error rate in GWA studies of quantitative traits, and that methods typically used to control for population stratification do not provide adequate control of the type I error rate. Moreover, we show that while GWA studies of quantitative traits in S. cerevisiae may be difficult depending on the particular set of strains studied, association studies to map cis-acting quantitative trait loci (QTL) and Mendelian phenotypes are more feasible. We also discuss sampling strategies that could enable GWA studies in yeast and illustrate the utility of this approach in Saccharomyces paradoxus. Thus, our results provide important practical insights into the design and interpretation of GWA studies in yeast, and other model organisms that possess complex patterns of population structure.  相似文献   

8.
Genetic differentiation between co-occurring crops and their wild relatives will be greatly modified by crop-to-weed gene flow and variation between human and natural selective pressures. The maintenance of original morphological features in most natural populations of Medicago sativa in Spain questions the relative extent of these antagonistic forces. In this paper, we measured and compared the pattern of population differentiation within and among the wild and cultivated gene pool with respect to both allozymes and quantitative traits. Patterns of diversity defined three kinds of natural populations. First, some populations were intermediate with respect to both allozymes and quantitative traits. This suggests that crop-to-weed gene flow may have created hybrid populations in some locations. Second, some populations were different from all the cultivated landraces with respect to both allozymes and quantitative traits. This probably results from variable gene flow in space and in time, due to demographic stochasticity in either natural or cultivated populations. Third, differentiation from cultivated landraces was only achieved for the quantitative traits but not for allozymes in two populations. This suggests that natural selection in some locations may oppose gene flow to establish cultivated traits into the natural introgressed populations.  相似文献   

9.
Various mechanisms of isolation can structure populations and result in cultural and genetic differentiation. Similar to genetic markers, for songbirds, culturally transmitted sexual signals such as breeding song can be used as a measure of differentiation as songs can also be impacted by geographic isolation resulting in population‐level differences in song structure. Several studies have found differences in song structure either across ancient geographic barriers or across contemporary habitat barriers owing to deforestation. However, very few studies have examined the effect of both ancient barriers and recent deforestation in the same system. In this study, we examined the geographic variation in song structure across six populations of the White‐bellied Shortwing, a threatened and endemic songbird species complex found on isolated mountaintops or “sky islands” of the Western Ghats. While some sky islands in the system are isolated by ancient valleys, others are separated by deforestation. We examined 14 frequency and temporal spectral traits and two syntax traits from 835 songs of 38 individuals across the six populations. We identified three major song clusters based on a discriminant model of spectral traits, degree of similarity of syntax features, as well as responses of birds to opportunistic playback. However, some traits like complex vocal mechanisms (CVM), relating to the use of syrinxes, clearly differentiated both ancient and recently fragmented populations. We suggest that CVMs may have a cultural basis and can be used to identify culturally isolated populations that cannot be differentiated using genetic markers or commonly used frequency‐based song traits. Our results demonstrate the use of bird songs to reconstruct phylogenetic groups and impacts of habitat fragmentation even in complex scenarios of historic and contemporary isolation.  相似文献   

10.
Rafael D'Andrea  Annette Ostling 《Oikos》2016,125(10):1369-1385
Among approaches to establish the importance of niche differentiation for species coexistence, the use of functional traits is attractive for its potential to suggest specific coexistence mechanisms. Recent studies have looked for trait patterns reflective of niche differentiation, building on a line of research with a deep but somewhat neglected history. We review the field from its foundation in limiting similarity theory in the 1960s to its resurgence in 2000s, and find the theory of trait patterning still in a stage of development. Elements still to be accounted for include environmental fluctuations, multidimensional niche space, transient dynamics, immigration, intraspecific variation, evolution and spatial scales. Recent empirical methods are better than early approaches, but still focus on patterning arising in simplistic models, and should rigorously link niche space with trait space, use informative null models, and adopt new metrics of pattern as theory develops. Because tests based on overly simplistic expectations of trait pattern are of little value, we argue that progress in the field requires theory development, which should entail exploring patterns across a set of conceptual and system‐specific models of competition along trait axes. Synthesis Traits relate to ecological performance and are easy to measure. Trait patterns can thus be a practical tool for inferring community assembly processes, and have been extensively used for this purpose. Classical trait patterning theory dates back to the 1960s, and despite heavy criticism still persists in empirical studies. Here we highlight steps needed for traits to realize their potential. These include firmly linking them to niche axes, and updating pattern expectations to consider recent results from models of niche dynamics, such as the emergence of species clusters. Further theory development should reveal whether there is a common traits‐based signature across different niche mechanisms.  相似文献   

11.
12.
Background and Aims The effects of habitat fragmentation on quantitative genetic variation in plant populations are still poorly known. Saxifraga sponhemica is a rare endemic of Central Europe with a disjunct distribution, and a stable and specialized habitat of treeless screes and cliffs. This study therefore used S. sponhemica as a model species to compare quantitative and molecular variation in order to explore (1) the relative importance of drift and selection in shaping the distribution of quantitative genetic variation along climatic gradients; (2) the relationship between plant fitness, quantitative genetic variation, molecular genetic variation and population size; and (3) the relationship between the differentiation of a trait among populations and its evolvability.Methods Genetic variation within and among 22 populations from the whole distribution area of S. sponhemica was studied using RAPD (random amplified polymorphic DNA) markers, and climatic variables were obtained for each site. Seeds were collected from each population and germinated, and seedlings were transplanted into a common garden for determination of variation in plant traits.Key Results In contrast to previous results from rare plant species, strong evidence was found for divergent selection. Most population trait means of S. sponhemica were significantly related to climate gradients, indicating adaptation. Quantitative genetic differentiation increased with geographical distance, even when neutral molecular divergence was controlled for, and QST exceeded FST for some traits. The evolvability of traits was negatively correlated with the degree of differentiation among populations (QST), i.e. traits under strong selection showed little genetic variation within populations. The evolutionary potential of a population was not related to its size, the performance of the population or its neutral genetic diversity. However, performance in the common garden was lower for plants from populations with reduced molecular genetic variation, suggesting inbreeding depression due to genetic erosion.Conclusions The findings suggest that studies of molecular and quantitative genetic variation may provide complementary insights important for the conservation of rare species. The strong differentiation of quantitative traits among populations shows that selection can be an important force for structuring variation in evolutionarily important traits even for rare endemic species restricted to very specific habitats.  相似文献   

13.
Relationships of genetic diversity at microsatellite loci and quantitative traits were examined in hatchery-produced populations of Japanese flounder using a relatively straightforward experiment. Five hatchery populations produced by wild-caught and domesticated broodstocks were used to examine the effects of different levels (one to three generations) of domestication on the genetic characteristics of hatchery populations. Allelic richness at seven microsatellite loci in all hatchery populations was lower than that in a wild population. Genetic variation measured by allelic richness and heterozygosity tended to decrease with an increase in generations of domestication. In addition, the degree of genetic differentiation from a wild population increased with an increase in generations of domestication. Significant differences in three morphometric traits (dorsal and anal fin ray counts and vertebral counts) and three physiological traits (high temperature, salinity and formalin tolerance) were observed among the hatchery populations. The degree of phenotypic difference among populations was larger in morphometric traits than in physiological traits. The divergence pattern of some quantitative traits was similar to that observed at microsatellite loci, suggesting that domestication causes the decrease of genetic variation and the increase of genetic differentiation for some quantitative traits concomitantly with those for microsatellite loci. Significant positive correlation was observed between F ST and the degree of phenotypic difference in the three morphometric traits and formalin tolerance, indicating that genetic variation at microsatellite loci predicts the degree of phenotypic divergence in some quantitative traits.  相似文献   

14.
Relating geographic variation in quantitative traits to underlying population structure is crucial for understanding processes driving population differentiation, isolation and ultimately speciation. Our study represents a comprehensive population genetic survey of the yellow dung fly Scathophaga stercoraria, an important model organism for evolutionary and ecological studies, over a broad geographic scale across Europe (10 populations from the Swiss Alps to Iceland). We simultaneously assessed differentiation in five quantitative traits (body size, development time, growth rate, proportion of diapausing individuals and duration of diapause), to compare differentiation in neutral marker loci (F(ST)) to that of quantitative traits (Q(ST)). Despite long distances and uninhabitable areas between sampled populations, population structuring was very low but significant (F(ST) = 0.007, 13 microsatellite markers; F(ST) = 0.012, three allozyme markers; F(ST) = 0.007, markers combined). However, only two populations (Iceland and Sweden) showed significant allelic differentiation to all other populations. We estimated high levels of gene flow [effective number of migrants (Nm) = 6.2], there was no isolation by distance, and no indication of past genetic bottlenecks (i.e. founder events) and associated loss of genetic diversity in any northern or island population. In contrast to the low population structure, quantitative traits were strongly genetically differentiated among populations, following latitudinal clines, suggesting that selection is responsible for life history differentiation in yellow dung flies across Europe.  相似文献   

15.
Understanding population genetic structure is key to developing predictions about species susceptibility to environmental change, such as habitat fragmentation and climate change. It has been theorized that life‐history traits may constrain some species in their dispersal and lead to greater signatures of population genetic structure. In this study, we use a quantitative comparative approach to assess if patterns of population genetic structure in bees are driven by three key species‐level life‐history traits: body size, sociality, and diet breadth. Specifically, we reviewed the current literature on bee population genetic structure, as measured by the differentiation indices Nei's GST, Hedrick's GST, and Jost's D. We then used phylogenetic generalised linear models to estimate the correlation between the evolution of these traits and patterns of genetic differentiation. Our analyses revealed a negative and significant effect of body size on genetic structure, regardless of differentiation index utilized. For Hedrick's GST and Jost's D, we also found a significant impact of sociality, where social species exhibited lower levels of differentiation than solitary species. We did not find an effect of diet specialization on population genetic structure. Overall, our results suggest that physical dispersal or other functions related to body size are among the most critical for mediating population structure for bees. We further highlight the importance of standardizing population genetic measures to more easily compare studies and to identify the most susceptible species to landscape and climatic changes.  相似文献   

16.
Spawning, copulation and inbreeding coefficients in marine invertebrates   总被引:3,自引:0,他引:3  
Patterns of population genetic variation have frequently been understood as consequences of life history covariates such as dispersal ability and breeding systems (e.g. selfing). For example, marine invertebrates show enormous variation in life history traits that are correlated with the extent of gene flow between populations and the magnitude of differentiation among populations at neutral genetic markers (FST). Here we document an unexpected correlation between marine invertebrate life histories and deviation from Hardy-Weinberg equilibrium (non-zero values of FIS, the inbreeding coefficient). FIS values were significantly higher in studies of species with free-spawned planktonic sperm than in studies of species that copulate or have some form of direct sperm transfer to females or benthic egg masses. This result was robust to several different analytical approaches. We note several mechanisms that might contribute to this pattern, and appeal for more studies and ideas that might help to explain our observations.  相似文献   

17.
Pressoir G  Berthaud J 《Heredity》2004,92(2):95-101
To conserve the long-term selection potential of maize, it is necessary to investigate past and present evolutionary processes that have shaped quantitative trait variation. Understanding the dynamics of quantitative trait evolution is crucial to future crop breeding. We characterized population differentiation of maize landraces from the State of Oaxaca, Mexico for quantitative traits and molecular markers. Qst values were much higher than Fst values obtained for molecular markers. While low values of Fst (0.011 within-village and 0.003 among-villages) suggest that considerable gene flow occurred among the studied populations, high levels of population differentiation for quantitative traits were observed (ie an among-village Qst value of 0.535 for kernel weight). Our results suggest that although quantitative traits appear to be under strong divergent selection, a considerable amount of gene flow occurs among populations. Furthermore, we characterized nonproportional changes in the G matrix structure both within and among villages that are consequences of farmer selection. As a consequence of these differences in the G matrix structure, the response to multivariate selection will be different from one population to another. Large changes in the G matrix structure could indicate that farmers select for genes of major and pleiotropic effect. Farmers' decision and selection strategies have a great impact on phenotypic diversification in maize landraces.  相似文献   

18.
To date, differences in craniofacial robusticity among modern and fossil humans have been primarily addressed by analyzing adult individuals; thus, the developmental basis of such differentiation remains poorly understood. This article aims to analyze the ontogenetic development of craniofacial robusticity in human populations from South America. Geometric morphometric methods were used to describe cranial traits in lateral view by using landmarks and semilandmarks. We compare the patterns of variation among populations obtained with subadults and adults to determine whether population‐specific differences are evident at early postnatal ontogeny, compare ontogenetic allometric trajectories to ascertain whether changes in the ontogeny of shape contribute to the differentiation of adult morphologies, and estimate the amount of size change that occurs during growth along each population‐specific trajectory. The results obtained indicate that the pattern of interpopulation variation in shape and size is already established at the age of 5 years, meaning that processes acting early during ontogeny contribute to the adult variation. The ontogenetic allometric trajectories are not parallel among all samples, suggesting the divergence in the size‐related shape changes. Finally, the extension of ontogenetic trajectories also seems to contribute to shape variation observed among adults. Am J Phys Anthropol 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
Identifying the molecular basis for complex adaptations such as the toxic proteins used by venomous snakes to subdue and digest prey is an important step in understanding the evolutionary and functional basis for such traits. Recent proteomics-based analyses have made possible the identification of all constituent proteins in whole venom samples. Here we exploit this advance to study patterns of population-level variation in venom proteins from 254 adult eastern massasauga rattlesnakes (Sistrurus c. catenatus) collected from 10 populations. Analysis of presence–absence variation in specific proteins from 1D PAGE gels shows that: (1) The frequency spectra for individual protein bands is U-shaped with a large number of specific proteins either being consistently “common” or “rare” across populations possibly reflecting functional differences. (2) Multivariate axes which summarize whole venom variation consist of bands from all major types of proteins implying the integration of functionally distinct components within the overall venom phenotype. (3) There is significant differentiation in venom proteins across populations and the specific classes of proteins contributing to this differentiation have been identified. (4) Levels of population differentiation in venom proteins are not correlated with levels of neutral genetic differentiation, or genetically effective population sizes which argues that patterns of venom variation are not simply a consequence of population structure but leaves open the role of selection in generating population differences in venom. Our results identify particular classes of venom proteins and their associated genes as being fruitful targets for future studies of the molecular and functional basis for this complex adaptive phenotype.  相似文献   

20.
The Drosophila wing has been used as a model in studies of morphogenesis and evolution; the use of such models can contribute to our understanding of mechanisms that promote morphological divergence among populations and species. We mapped quantitative trait loci (QTL) affecting wing size and shape traits using highly inbred introgression lines between D. simulans and D. sechellia, two sibling species of the melanogaster subgroup. Eighteen QTL peaks that are associated with 12 wing traits were identified, including two principal components. The wings of D. simulans and D. sechellia significantly diverged in size; two of the QTL peaks could account for part of this interspecific divergence. Both of these putative QTLs were mapped at the same cytological regions as other QTLs for intraspecific wing size variation identified in D. melanogaster studies. In these regions, one or more loci could account for intra- and interspecific variation in the size of Drosophila wings. Three other QTL peaks were related to a pattern of interspecific variation in wing size and shape traits that is summarized by one principal component. In addition, we observed that female wings are significantly larger and longer than male wings and the second, fourth and fifth longitudinal veins are closer together at the distal wing area. This pattern was summarized by another principal component, for which one QTL was mapped.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号