首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A computer-based video digitizer system is described which allows automated tracking of markers placed on a plant surface. The system uses customized software to calculate relative growth rates at selected positions along the plant surface and to determine rates of gravitropic curvature based on the changing pattern of distribution of the surface markers. The system was used to study the time course of gravitropic curvature and changes in relative growth rate along the upper and lower surface of horizontally-oriented roots of maize (Zea mays L.). The growing region of the root was found to extend from about 1 mm behind the tip to approximately 6 mm behind the tip. In vertically-oriented roots the relative growth rate was maximal at about 2.5 mm behind the tip and declined smoothly on either side of the maximum. Curvature was initiated approximately 30 min after horizontal orientation with maximal (50°) curvature being attained in 3 h. Analysis of surface extension patterns during the response indicated that curvature results from a reduction in growth rate along both the upper and lower surfaces with stronger reduction along the lower surface.  相似文献   

2.
Ishikawa H  Hasenstein KH  Evans ML 《Planta》1991,183(3):381-390
We used a video digitizer system to measure surface extension and curvature in gravistimulated primary roots of maize (Zea mays L.). Downward curvature began about 25 +/- 7 min after gravistimulation and resulted from a combination of enhanced growth along the upper surface and reduced growth along the lower surface relative to growth in vertically oriented controls. The roots curved at a rate of 1.4 +/- 0.5 degrees min-1 but the pattern of curvature varied somewhat. In about 35% of the samples the roots curved steadily downward and the rate of curvature slowed as the root neared 90 degrees. A final angle of about 90 degrees was reached 110 +/- 35 min after the start of gravistimulation. In about 65% of the samples there was a period of backward curvature (partial reversal of curvature) during the response. In some cases (about 15% of those showing a period of reverse bending) this period of backward curvature occurred before the root reached 90 degrees. Following transient backward curvature, downward curvature resumed and the root approached a final angle of about 90 degrees. In about 65% of the roots showing a period of reverse curvature, the roots curved steadily past the vertical, reaching maximum curvature about 205 +/- 65 min after gravistimulation. The direction of curvature then reversed back toward the vertical. After one or two oscillations about the vertical the roots obtained a vertical orientation and the distribution of growth within the root tip became the same as that prior to gravistimulation. The period of transient backward curvature coincided with and was evidently caused by enhancement of growth along the concave and inhibition of growth along the convex side of the curve, a pattern opposite to that prevailing in the earlier stages of downward curvature. There were periods during the gravitropic response when the normally unimodal growth-rate distribution within the elongation zone became bimodal with two peaks of rapid elongation separated by a region of reduced elongation rate. This occurred at different times on the convex and concave sides of the graviresponding root. During the period of steady downward curvature the elongation zone along the convex side extended farther toward the tip than in the vertical control. During the period of reduced rate of curvature, the zone of elongation extended farther toward the tip along the concave side of the root. The data show that the gravitropic response pattern varies with time and involves changes in localized elongation rates as well as changes in the length and position of the elongation zone. Models of root gravitropic curvature based on simple unimodal inhibition of growth along the lower side cannot account for these complex growth patterns.  相似文献   

3.
Zieschang HE  Sievers A 《Planta》1991,184(4):468-477
Roots of Phleum pratense L. were photographed during both vertical growth and gravitropic bending, and positions of anticlinal rhizodermal cell walls were digitized on the physically upper and lower flanks of the root in the curvature plane. By using B-splines, arc lengths of these positions, i.e. distances along the root surface, values of curvature, and relative elemental rates of elongation were estimated. The whole graviresponse can be divided into phases according to growth-rate values: (i) an increase of rates on the upper side of the root and a decrease on the lower side during the first 1–11/2h after the root has been moved from the vertical to a horizontal position, (ii) a transient equality of the rates on both sides, (iii) 2–3 h after the beginning of graviresponse, the growth gradient is inverted, and (iv) finally, after about 4 h, the growth rates of both flanks are approximately equal again. Curvature begins 15–20 min after horizontal placement of the root. During the first 2 h of graviresponse, plots of curvature versus arc length show one maximum value. After 2–21/2 h, two maximum values can be observed, the apical one near the root tip always keeping the same distance from the tip, the other one drifting basipetally relative to the growing tip. By evaluating photographs of high magnification, a group of six rhizodermal cells on each side of the root was identified which are the first cells showing gravitropic bending. These cells are located at the beginning of the elongation zone, enclosing the region 480–680 m from the root tip. These cells might be target cells for a signal which the statenchyma, the site of graviperception, sends to the reacting zone of gravicurvature.Abbreviations curvature - RELEL relative elemental rate of elongation A preliminary report was presented at the Meeting of the Deutsche Botanische Gesellschaft, Regensburg, 30 Sept–5 Oct 1990This work was supported by Deutsche Forschungsgemeinschaft. We thank Dr. Brigitte Buchen and Professor Zygmunt Hejnowicz (Botanisches Institut, Universität Bonn, Bonn, FRG) for critical reading of the mansucript.  相似文献   

4.
When growing roots are placed in a horizontal position gravity induces a positive curvature. It is classically considered to be the consequence of a faster elongation rate by the upper side compared to the lower side. A critical examination indicates that the gravireaction is caused by differential cell extension depending on several processes. Some of the endogenous regulators which may control the growth and gravitropism of elongating roots are briefly presented. The growth inhibitors produced or released from the root cap move preferentially in a basipetal direction and accumulate in the lower side of the elongation zone of horizontally maintained roots. The identity of these compounds is far from clear, but one of these inhibitors could be abscisic acid (ABA). However, indol-3y1 acetic acid (IAA) is also important for root growth and gravitropism. ABA may interact with IAA. Two other aspects of root cell extension have also to be carefully considered. An elongation gradient measured from the tip to the base of the root was found to be important for the growth of both vertical and horizontal gravireactive roots. It was changed significantly during the gravipresentation and can be considered as the origin of the differential elongation. Sephadex beads have been used as both growth markers and as monitors of surface pH changes when they contain some pH indicator. This technique has shown that the distribution of cell extension along the main root axis is related to a pH gradient, the proton efflux being larger for faster growing parts of roots. A lateral movement of calcium is obtained when Ca2+ is applied across the tips of horizontally placed roots with a preferential transport towards the lower side. Endogenous calcium, which may accumulate inside the endoplasmic reticulum of some cap cells, may also act in the gravireception. These observations and several others strongly suggest that calcium may play an essential role in controlling root growth and several steps of the root gravireaction.  相似文献   

5.
The movement of auxin in Phaseolus vulgaris roots has been examined after injection of IAA?3H into the basal root/hypocotyl region of intact, dark-grown seedlings. Only a portion of the applied IAA?3H was transported unchanged to the root tip. The major part of the chromatographed, labelled compounds translocated to the roots was indole-3-acetylaspartic acid (IAAsp) and an unidentified compound running near the front in isopropanol, ammonia, water. The velocity of the auxin transport (7.2 mm per hour) was calculated from scintillation countings of methanol extracts from serial sections of the root. An accumulation of radioactive compounds in the extreme root tip, was observed 5 h after the injection of IAA. The influence of exogenous IAA on the geotropical behaviour of the bean seedling roots was examined. Pretreated roots were stimulated for 5 min in the horizontal position and then rotated parallel to the horizontal axis of the klinostat for 60 or 90 min. The resulting geotropic curvature of IAA-injected and control roots showed significantly different patterns of development. When the stimulation was started 5 h after application of the auxin, the geotropic curvature became larger in roots of the injected plants than in the controls. If, however, the translocation period was extended to 20 h the geotropic curvature was significantly smaller in the roots of the injected plants. The auxin injection did not significally affect the rate of root elongation. The change in geotropical behaviour of the roots is interpreted as a result of the influence of the conversion products of the applied IAA on the geotropical responsiveness.  相似文献   

6.
We examined the response of primary roots of maize (Zea mays L. cv Merit) to unilateral application of calcium with particular attention to the site of application, the dependence on growth rate, and possible contributions of thigmotropic stimulation during application. Unilateral application of agar to the root cap induced negative curvature whether or not the agar contained calcium. This apparent thigmotropic response was enhanced by including calcium in the agar. Curvature away from objects applied unilaterally to the extreme root tip occurred both in intact and detipped roots. When agar containing calcium chloride was applied to one side of the postmitotic isodiametric growth zone (a region between the apical meristem and the elongation zone), the root curved toward the side of application. This response could not be induced by plain agar. We conclude that curvature away from calcium applied to the root tip results from a thigmotropic response to stimulation during application. In contrast, curvature toward calcium applied to the postmitotic isodiametric growth zone results from direct calcium-induced inhibition of growth.  相似文献   

7.
Maimon E  Moore R 《Annals of botany》1991,67(2):145-151
We examined the gravitropic responses of surgically altered primary roots of Zea mays to determine the route by which gravitropic inhibitors move from the root tip to the elongating zone. Horizontally oriented roots, from which a 1-mm-wide girdle of epidermis plus 2-10 layers of cortex were removed from the apex of the elongating zone, curve downward. However, curvature occurred only apical to the girdle. Filling the girdle with mucilage-like material transmits curvature beyond the girdle. Vertically oriented roots with a half-girdle' (i.e. the epidermis and 2-10 layers of the cortex removed from half of the circumference of the apex of the elongating zone) curve away from the girdle. Inserting the half-girdle at the base of the elongating zone induces curvature towards the girdle. Filling the half-circumference girdles with mucilage-like material reduced curvature significantly. Stripping the epidermis and outer 2-5 layers of cortex from the terminal 1.5 cm of one side of a primary root induces curvature towards the cut, irrespective of the root's orientation to gravity. This effect is not due to desiccation since treated roots submerged in water also curved towards their cut surface. Coating a root's cut surface with a mucilage-like substance minimizes curvature. These results suggest that the outer cell-layers of the root, especially the epidermis, play an important role in root gravicurvature, and the gravitropic signals emanating from the root tip can move apoplastically through mucilage.  相似文献   

8.
9.
Plant roots are known to orient growth through the soil by gravitropism, hydrotropism, and thigmotropism. Recent observations of plant roots that developed in a microgravity environment in space suggested that plant roots may also orient their growth toward oxygen (oxytropism). Using garden pea (Pisum sativum L. cv. Weibul's Apollo) and an agravitropic mutant (cv. Ageotropum), root oxytropism was studied in the controlled environment of a microrhizotron. A series of channels in the microrhizotron allowed establishment of an oxygen gradient of 0.8 mmol · mol−1 · mm−1. Curvature of seedling roots was determined prior to freezing the roots for subsequent spectrophotometric determinations of alcohol dehydrogenase activity. Oxytropic curvature was observed all along the gradient in both cultivars of pea. The normal gravitropic cultivar showed a maximal curvature of 45° after 48 h, while the agravitropic mutant curved to 90°. In each cultivar, the amount of curvature declined as the oxygen concentration decreased, and was linearly related to the root elongation rate. Since oxytropic curvature occurred in roots exposed to oxygen concentrations that were not low enough to induce the hypoxically responsive protein alcohol dehydrogenase, we suspect that the oxygen sensor associated with oxytropism does not control the induction of hypoxic metabolism. Our results indicate that oxygen can play a critical role in determining root orientation as well as impacting root metabolic status. Oxytropism allows roots to avoid oxygen-deprived soil strata and may also be the basis of an auto-avoidance mechanism, decreasing the competition between roots for water and nutrients as well as oxygen. Received: 14 January 1998 / Accepted: 10 February 1998  相似文献   

10.
Björkman T  Cleland RE 《Planta》1988,176(4):513-518
In order to determine the role of the epidermis and cortex in gravitropic curvature of seedling roots of maize (Zea mays L. cv. Merit), the cortex on the two opposite flanks was removed from the meristem through the growing zone; gravitropic curvature was measured with the roots oriented horizontally with the cut flanks either on the upper and lower side, or on the lateral sides as a wound control. Curvature was slower in both these treatments (53° in 5 h) than in intact roots (82°), but there was no difference between the two orientations in extent and rate of curvature, nor in the latent time, showing that epidermis and cortex were not the site of action of the growth-regulating signal. The amount of cortex removed made no difference in the extent of curvature. Curvature was eliminated when the endodermis was damaged, raising the possibility that the endodermis or the stele-cortex interface controls gravitropic curvature in roots. The elongation rate of roots from which just the epidermis had been peeled was reduced by 0.01 mM auxin (indole-3-acetic acid) from 0.42 to 0.27 mm h-1, contradicting the hypothesis that only the epidermis responds to changes in auxin activity during gravistimulation. These observations indicate that gravitropic curvature in maize roots is not driven by differential cortical cell enlargement, and that movement of growth regulator(s) from the tip to the elongating zone is unlikely to occur in the cortex.Abbreviations df degrees of freedom - IAA indole-3-acetic acid  相似文献   

11.
M. Schurzmann  V. Hild 《Planta》1980,150(1):32-36
The effect of externally applied indoleacetic acid (IAA) and abscisic acid (ABA) on the growth of roots of Zea mays L. was measured. Donor blocks of agar with IAA or ABA were placed laterally on the roots and root curvature was measured. When IAA was applied to vertical roots, a curvature directed toward the donor block was observed. This curvature corresponded to a growth inhibition at the side of the root where the donor was applied. When IAA was applied to horizontal roots from the upper side, normal geotropic downward bending was delayed or totally inhibited. The extent of retardation and the inhibition of curvature were found to depend on the concentration of IAA in the donor block. ABA neither induced curvature in vertical roots nor inhibited geotropic curvature in horizontal roots; thus the growth of roots was not inhibited by ABA. However, when, instead of donor blocks, root tips or coleoptile tips were placed onto vertical roots, a curvature of the roots was observed.Abbreviations ABA abscisic acid - IAA 3-indoleacetic acid  相似文献   

12.
Wolfram Hartung 《Planta》1976,128(1):59-62
Summary One h and 3 h after point source application of [2-14C] ABA to the upper side of geotropically stimulated root tips of intact seedlings of Phaseolus coccineus L. a weak downward lateral transport of radioactivity was observed. A clear upward lateral translocation, however, occurred when ABA was applied to the lower side of the root tip. Thus a uniform distribution of radioactivity was established in horizontal roots regardless of the site of the application point, while in upright roots the distribution was asymmetric. Six h after ABA injection radioactivity was uniformly distributed in both the vertical and horizontal root tips.
Abkürzungen ABA Abscisinsäure - dpm disintegrations perminute - FG Frischgewicht - GA Gibberellinsäure  相似文献   

13.
The pH patterns at the surfaces of both vertically growing roots of Phleum pratense L. and roots tilted by 45° were recorded using H +-sensitive microelectrodes. During vertical growth the root cap exhibited lower pH values than the meristematic zone. The highest pH values were found at the border between meristematic and elongation zones. In the apical part of the elongation zone the values strongly decreased basipetally. They reached a minimum value of pH 5.4–5.5 (medium pH of about 6.0) at a distance of 700 m from the root tip. This region of strongest acidification usually coincided with that of the highest relative rates of elongation. The region of the first visible curvature following gravistimulation was positioned at 100–200 m more apically. The pH values increased in the basal elongation zone towards the mature zone. The H+-flux pattern around a vertically growing Phleum root was characterized by high influxes in the meristematic zone and smaller effluxes in the elongation zone. Tilting the root by 45° induced changes in the pH values of the upper and lower sides of a Phleum root. At a distance of 300–500 m from the root tip, the upper side was strongly acidified while the pH of the lower side slightly increased compared with the values during vertical orientation. pH differences of up to 0.9 pH units between the two sides of a root were detected. These differences decreased basipetally and could not be measured more distant than 700–800 m from the tip. Compared with a vertically growing root, the H+-flux pattern of a Phleum root tilted by 45° exhibited effluxes on the entire upper organ flank while the pattern was scarcely altered on the lower side. The curvature-initiating zone in Phleum roots is positioned within that section of the root in which pH changes occur after tilting. The region of highest pH differences, however, is nearer to the apex of the root than the curvature-initiating zone. The pH changes began 8.2 min after a root had been tilted. The bending process started after 17.2 min, i.e. after double the time needed for differential acidification. After reorienting a root, which had just begun to bend, to its previous vertical position the inversion of the pH gradient could be measured within the same mean time of about 8 min. This is again significantly earlier than the beginning of the rebending process. The results indicate that, during the graviresponse, ionic movements occur much earlier than the changes in hormonal activities reported in the literature.Abbreviation CIZ curvature-initiating zone A preliminary report was presented at the 29th Plenary Meeting of the Committee on Space Research (COSPAR) in Washington D.C., USA, 28 Aug – 5 Sept 1992 (Zieschang and Sievers 1993)This work was supported by the Deutsche Forschungsgemeinschaft. We thank Professor H. Felle (Botanisches Institut, Universität Gießen, Gießen, FRG) for practical instructions concerning the method of H+-sensitive microelectrodes and Professor W. Simonis (Botanisches Institut, Universität Würzburg, Würzburg, FRG) for allowing to use the microelectrode amplifier.  相似文献   

14.
Applying a photographic recording method, and working on enlargements of the plates so obtained, the shape of the geotropically curving coleoptile of Avena was studied. This shape is expressed in terms of curvature of the neutral axis of the coleoptile; for the true geotropic response of the strain of Avena used, the curvature of the neutral axis is an arc of a circle. The "rate of curvature" is taken as the derivative of the curve relating time with the angle with the horizontal made by the tangent to the neutral axis at the tip. This rate increases up to a maximum and then decreases gradually. No "geogrowth" of the whole coleoptile is found. It is shown that the curvature is due to an increase in the elongation of the lower side of the horizontally placed coleoptile with a concomitant decrease of the rate of elongation of the upper side. This is correlated with a shift in distribution of "growth substance" in the tip as affected by change of position of the coleoptile.  相似文献   

15.
The curvature of roots in response to gravity is attributed to the development of a differential concentration gradient of IAA in the top and bottom of the elongation region of roots. The development of the IAA gradient has been attributed to the redistribution of IAA from the stele to cortical tissues in the elongation region. The gravistimulated redistribution of IAA was investigated by applying [3H]IAA to the cut surface of 5 mm apical primary root segments. The movement of label from the stele-associated [3H]IAA into the root, tip, root cap, and cortical tissues on the top and bottom of the elongation region was determined in vertically growing roots and gravistimulated roots. Label from the stele moved into the region of cell differentiation (root tip) prior to accumulating in the elongation region. Little label was observed in the root cap. Gravistimulation did not increase the amount of label moving from the stele; but gravistimulation did increase the amount of label accumulating in cortical tissues on the lower side of the elongation region, and decreased the amount of label accumulating in cortical tissues on the upper side of the elongation region. Removal of the cap prior to or immediately following gravity stimulation rendered the roots partially insensitive to gravity and also prevented gravity-induced asymmetric redistribution of label. However, removal of the root cap following 30 min of gravistimulation did not alter root curvature or the establishment of an IAA asymmetry across the region of root elongation. These results suggest that a signal originating in the root cap directs auxin redistribution in tissues behind the root cap, leading to the development of an asymmetry of IAA concentration in the elongation region that in turn causes the differential growth rate in the elongation region of a graviresponding root.  相似文献   

16.
The curvature of roots in response to gravity is attributed to the development of a differential concentration gradient of IAA in the top and bottom of the elongation region of roots. The development of the IAA gradient has been attributed to the redistribution of IAA from the stele to cortical tissues in the elongation region. The gravistimulated redistribution of IAA was investigated by applying [3H]IAA to the cut surface of 5 mm apical primary root segments. The movement of label from the stele-associated [3H]IAA into the root, tip, root cap, and cortical tissues on the top and bottom of the elongation region was determined in vertically growing roots and gravistimulated roots. Label from the stele moved into the region of cell differentiation (root tip) prior to accumulating in the elongation region. Little label was observed in the root cap. Gravistimulation did not increase the amount of label moving from the stele; but gravistimulation did increase the amount of label accumulating in cortical tissues on the lower side of the elongation region, and decreased the amount of label accumulating in cortical tissues on the upper side of the elongation region. Removal of the cap prior to or immediately following gravity stimulation rendered the roots partially insensitive to gravity and also prevented gravity-induced asymmetric redistribution of label. However, removal of the root cap following 30 min of gravistimulation did not alter root curvature or the establishment of an IAA asymmetry across the region of root elongation. These results suggest that a signal originating in the root cap directs auxin redistribution in tissues behind the root cap, leading to the development of an asymmetry of IAA concentration in the elongation region that in turn causes the differential growth rate in the elongation region of a graviresponding root.  相似文献   

17.
Using a highly sensitive vibrating electrode, the pattern of naturally occurring electric currents around 1-day-old primary roots of Lepidium sativum L. growing vertically downward and the current pattern following gravistimulation of the root has been examined. A more or less symmetrical pattern of current was found around vertically oriented, downward growing roots. Current entered the root at the root cap, the meristem, and the beginning of the elongation zone and left the root along most of the elongation zone and in the root hair zone. After the root was tilted to a horizontal position, we observed current flowing acropetally at the upper side of the root cap and basipetally at the lower side within about 30 seconds in most cases. After a delay of several minutes, acropetally oriented current was also found flowing along the upper side of the meristematic zone. The apparent density of the acropetal current in the root cap region increased and then decreased with time. Gravitropic curvature was first visible approximately 10 minutes after tilting of the root to the horizontal position. Since the change in the pattern of current in the root cap region precedes bending of the root and is different for the upper and lower side, a close connection is suggested between the current and the transduction of information from the root cap to the elongation zone following graviperception in the cap.  相似文献   

18.
When a plant root is reoriented within the gravity field, it responds by initiating a curvature which eventually results in vertical growth. Gravity sensing occurs primarily in the root tip. It may involve amyloplast sedimentation in the columella cells of the root cap, or the detection of forces exerted by the mass of the protoplast on opposite sides of its cell wall. Gravisensing activates a signal transduction cascade which results in the asymmetric redistribution of auxin and apoplastic Ca2+ across the root tip, with accumulation at the bottom side. The resulting lateral asymmetry in Ca2+ and auxin concentration is probably transmitted to the elongation zone where differential cellular elongation occurs until the tip resumes vertical growth. The Cholodny-Went theory proposes that gravity-induced auxin redistribution across a gravistimulated plant organ is responsible for the gravitropic response. However, recent data indicate that the gravity-induced reorientation is more complex, involving both auxin gradient-dependent and auxin gradient-independent events.  相似文献   

19.
Rhythmic fluctuation in the basipetal movement of auxin occurs in corn (Zea mays) coleoptiles oriented either in the vertical or in the horizontal position. This periodicity of transport rate varies from region to region in a horizontal coleoptile. Between an upper and lower half coleoptile (with respect to gravity), the comparable regions in the coleoptile do not exhibit similar periods. The velocity of transport also varies from region to region along a geostimulated coleoptile. In the upper half coleoptile, the velocities are 29 millimeters per hour (tip), 8 millimeters per hour (mid), and 30 millimeters per hour (base); in the lower, 41 millimeters per hour (tip), 12 millimeters per hour (mid) and 12 millimeters per hour (base).  相似文献   

20.
Curvature of a plane curve is a measurement related to its shape. A Mathematica code was developed [Cervantes E, Tocino A. J Plant Physiol 2005;162:1038-1045] to obtain parametric equations from microscopic images of the Arabidopsis thaliana root apex. In addition, curvature values for these curves were given. It was shown that ethylene-insensitive mutants (etr1-1 and ein2-1) have reduced curvature values in the root apex. It has also been shown that blocking ethylene action by norbornadiene, an ethylene inhibitor, results in reduced curvature values in the two outer cell layers of the root apex [Noriega A, Cervantes E, Tocino A. J Plant Physiol 2008, in press]. Because ethylene action has been related with hydrogen peroxide [Desikan R, Hancock JT, Bright J, Harrison J, Weir I, Hooley R, Neill SJ. Plant Physiol 2005;137:831-834], the effect of a treatment with hydrogen peroxide in the curvature values of three successive layers of the root apex in Arabidopsis thaliana was investigated by confocal microscopy. Treatment with 10mM hydrogen peroxide resulted in reduced curvature values in the three layers. The effect was associated with smaller cells having higher circularity indices. The results are discussed in the context of the role of ethylene in development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号