首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The developmental anatomy of the vascular cambium and periderm ofBotrypus virginianus was studied, and its bearing on the systematic position of Ophioglossacease is discussed. The cambial zone including cambium is initiated in a procambial ring of the stem before primary vascular tissue is well differentiated. The presumed cambium is composed of fusiform and ray initials. The cambium is extremely unequally bifacial, producing secondary xylem centripetally, and quite a small number of parenchymatous cells but no secondary phloem centrifugally. The cambial activity persists long, although it is very low in the mature part of the stem. It seems that the circumferential increase of the cambium is accommodated by an increase in the number of cambial initials. Secondary xylem is nonstoried and composed of tracheids with circular-bordered pits with evenly thick pit membranes, and uniseriate or partly biseriate radial rays. It makes up the bulk of the stem xylem. Periderm is formed almost entirely around the stem, simultaneous with its increment due to the secondary xylem. The combination of these anatomical features of secondary tissue supports the idea that Ophioglossaceae are living progymnosperms.  相似文献   

2.
Developmental morphology and anatomy of Botrychium s.l. were studied to clarify rhizome ontogeny and patterns of tissue maturation that can be used to test the hypothesis that ferns of the Ophioglossales may represent living progymnosperms. Serial anatomical sections of the rhizomes of B. virginianum and B. dissectum reveal that apical meristematic activity and vascular tissue maturation occur over an extended period of several years and then stop. Most of the xylem consists of radial rows of tracheids and interspersed ray-like xylem parenchyma cells that are similar in these respects to secondary xylem, but pits occur on all tracheid walls as is characteristic of primary xylem. No vascular cambium is initiated in mature primary tissues, nor is there secondary phloem. Radial rows of xylem cells are produced by the direct continuation of divisions that begin at the shoot apical meristem, forming a cylinder of radially aligned procambial cells before the differentiation of protoxylem. Continuing divisions over a period of several years increase the number of thin-walled cells and tracheids in each radial row back to about one internode behind where the current year's frond trace diverges from the rhizome stele. At more proximal levels of the rhizome, procambial cell divisions cease and there is no additional tracheid differentiation. These data reveal that the rhizome matures over an exceedingly long period of several years, but that growth is ultimately determinate, thus supporting hypotheses that the Ophioglossales is more closely related to other groups of living ferns than to progymnosperms and seed plants.  相似文献   

3.
The vascular connection between lateral roots and stem in the Ophioglossaceae and in two leptosporangiate fern species was examined. Two types of connections were found: “gradual” connections, which resemble leaf traces in ontogeny and morphology, and “abrupt” connections, which resemble the connections between lateral roots and their parent roots. Gradual root-stem connections occur in the genera Ophioglossum and Helminthostachys and in Woodwardia virginica. They are initiated in shoot apices distal to the level where cauline xylem elements mature. They resemble leaf traces in being provascular (procambial) strands that connect the cauline stele with the future vasculature of lateral appendages. As with leaf traces, gradual connections are part of the provascular and, later, protoxylem continuity between stems and lateral appendages. Gradual connections have many features in common with leaf traces, and the term root trace is applicable to them. The order of radial maturation of the primary xylem in gradual connections varies in different parts of the connections. It is endarch near the intersection with the cauline stele and exarch where the connections intersect root steles. Gradual connections resemble the transition regions of certain seed plants where protoxylem is also continuous from stem to root and the order of maturation is found to change continuously from stem to root. Abrupt connections occur in Botrychium and Osmunda cinnamomea. They develop in shoot apices at levels where cauline xylem is mature or maturing. The mature xylem does not dedifferentiate, so provascular and protoxylem continuity of the kind found in root traces does not occur. Also, reorientation of the order of maturation does not occur in abrupt connections. Xylem connectors are found in the region where radially oriented elements of the connections abut the longitudinally oriented cauline elements. Abrupt connections resemble the connection of secondary roots with their parent root systems since xylem connectors and the lack of continuity are also features found in these vascular systems. The resemblance of the vascular pattern of the fern root trace to the transition region of seed plants suggests that the radicle is more closely comparable to the cladogenous roots of pteridophytes than hitherto supposed.  相似文献   

4.
The vascular anatomy ofHelminthostachys zeylanica was examined with special reference to anomalous secondary tissue. Primary xylem development gradually takes place centrifugally. In branched rhizomes with destroyed apices, the vascular cylinder apical to the insertion of branch traces is generally composed of primary xylem, accessory xylem, inner parenchyma of radially arranged cells, outer parenchyma of irregularly arranged cells, and partly crushed phloem, listed in order going outwards. The accessory xylem as well as the inner parenchyma ofHelminthostachys zeylanica is probably secondarily produced, partly to contribute to the branch traces, in a position corresponding to that of secondary vascular tissue developed from a normal cambium inBotrychium sensu lato. It is suggested that although a cambium is lacking inHelminthostachys zeylanica, the secondary vascular tissues are comparable between the genera. The phylogenetic implication of this tissue is discussed.  相似文献   

5.
Patterns of activity in the vascular cambium of Carboniferous arborescent lycopods (Paralycopodites and Stigmaria) were studied by analysis of serial tangential sections of the secondary xylem. The analysis assumes that cell patterns in the wood accurately reflect those of the corresponding cambium. An evaluation using indirect evidence indicates that the assumption is valid as far as can be determined from comparison with living plants. The tracheids of the secondary xylem enlarge in a centrifugal pattern, suggesting a progressive enlargement of the fusiform initials. There is no evidence of periodic anticlinal division of these initials, and it is proposed that the increase in cambial circumference was accommodated primarily by an increase in fusiform initial size. In some axes with abundant secondary xylem there is evidence that isolated initials or groups of initials sporadically subdivided to form numerous, spindle-shaped meristematic cells. Some of these cells subsequently developed into typical cambial initials. Tissues presumably formed during the cessation of cambial growth in Lepidodendron and Stigmaria are described; the structure of the tissues is suggestive of a postmeristematic parenchymatous sheath. It is concluded that cambial activity in these arborescent cryptogams was clearly different from that of modern seed plants, further attesting to the distinctive nature of this ancient group.  相似文献   

6.
The pollen strobilus Cordaianthus concinnus is examined as a possible indicator of the basic pattern of vascular architecture in stems of the Cordaitales. Bract traces arise from two points in the stele of the bilateral primary axis and diverge to the regularly arranged, four-ranked bracts. Tracheids to the axillary secondary shoots arise as two traces that flank the position of bract trace emission. Distally, the secondary shoot traces unite to form a stele that becomes increasingly dissected at successively higher levels. Although radially aligned, these tracheids show thickening patterns on all walls and are not separated by vascular rays; they are therefore interpreted as primary xylem. The traces form sympodia that are similar to those of typical eustelic gymnosperms. Scale traces from the secondary shoots arise by the tangential division of an individual axial bundle and occur in arrangements that range from a ½ to a % spiral. The vascular architecture of these secondary axes is interpreted as the equivalent of that in the stems of extant conifers with spiral phyllotaxis.  相似文献   

7.
Quantitative and qualitative features of wood anatomy are reported for ten collections of seven species of Bubbia. Variations on the basic plan for Winteraceae can be interpreted in terms of taxonomic and ecological distinctions. Tracheid length is correlated with plant size and habit: tracheids are shortest in shrubs. Tracheid wall thickness and ray cell wall thickness distinguish species. Ray cell procumbency and multiseriate ray width increase with age. Growth rings occur only in a species from stream margins. SEM studies reveal absence of a warty layer within tracheids. Helical thickenings are absent. Presence of these two features in Pseudowintera may be correlated with the cool temperate habitats of that genus. Overlap areas of tracheids in Bubbia show various degrees of scalariform pitting, ranging from none (B. semecarpoides) to abundant presence (B. balansae). Perforation-like pits in tracheids of the latter prove, with SEM studies, to have pit membranes containing porosities less than 1 μm in diameter. Scalariform pitting on overlap areas is absent in earlier secondary xylem and increases during later secondary xylem. Scalariform lateral wall pitting can occur in abnormally wide tracheids formed after pauses in cambial activity. These facts show that primitive dicotyledon woods like those of Bubbia can activate genetic information for scalariform end wall patterns and lateral wall pitting such as primitive vessels show without the intervention of paedomorphosis. Paedomorphosis in dicotyledon woods is held still to apply only to special herbaceous and herblike growth forms, not to primarily woody plants. Progenesis (in xylem, loss of secondary xylem) is not held to be necessary to account for the scalariform patterns seen in tracheary elements of primitive dicotyledons. Reasons are given for rejection of the hypothesis that Winteraceae and other woody dicotyledons (Amborella, Sarcandra, Tetracentron, Trochodendron) are secondarily vesselless.  相似文献   

8.
Srivastava , L. M., and K. Esau , (U. California, Davis.) Relation of dwarfmistletoe (Arceuthobium) to the xylem tissue of conifers. II. Effect of the parasite on the xylem anatomy of the host. Amer. Jour. Bot. (48(3): 209–215. Illus. 1961.—The changes in the xylem anatomy induced by dwarfmistletoe infection were studied in 7 coniferous species. The most pronounced abnormalities are observed in the shape and size of the infected rays. Because of the presence of parasite tissue, the rays assume a hypertrophied appearance; moreover, they fuse to form large composite rays. The union of rays involves intrusive growth of ray cells and displacement of fusiform initials. Some division of fusiform initials also occurs. Rays may increase in number and they may contain more host cells than normal rays. Axial tracheids in infected host woods differ more or less strongly from those of noninfected woods. They may be shorter, wider, and more irregular in shape than the axial tracheids in healthy wood. The samples of xylem from infected pines had a larger number of resin canals than those from healthy trees. Resin canals were also found in infected Tsuga, which normally lacks these structures.  相似文献   

9.
Developmental changes in the vascular cambium of Leitneria floridana, a shrub, were determined primarily by an analysis of the secondary xylem. During the production of the first growth ring of secondary xylem, 37% of the anticlinal divisions in the fusiform initials were lateral, the remaining were oblique. The oblique partition averaged ½ of the length of the dividing initials during this period of growth. Following their origin in anticlinal division, daughter cells elongated at a rapid rate until they were about as long as the mean for all cells, and then most cells elongated at a slow rate. Almost all initials survived during the formation of the inner secondary xylem (growth rings 1–10), and few new rays were formed from fusiform initials. During the production of the outer secondary xylem (growth rings 22–26), lateral divisions accounted for less than 5% of all anticlinal divisions. The oblique partition averaged only ¼ of the length of the dividing cells during this period, although the mean length of dividing initials was relatively constant throughout secondary growth. About 20% of the initials studied during the deposition of the outer secondary xylem disappeared from the cambium, and many others were transformed into ray initials. The findings are discussed in relation to the developmental changes in the vascular cambium in plants of different habits.  相似文献   

10.
Wide-band tracheids are a specialized tracheid type in which an annular or helical secondary wall projects deeply into the cell lumen. They are short, wide and spindle-shaped, and their bandlike secondary walls cover little of the primary wall, leaving most of it available for water diffusion. Wide-band tracheids appear to store and conduct water while preventing the spread of embolisms. They may be the most abundant tracheary element in the xylem, but they are always accompanied by at least a few vessels. Typically, fibers are absent wherever wide-band tracheids are present. Wide-band tracheids occur in the primary and secondary xylem of succulent stems, leaves and roots in genera of all three subfamilies of Cactaceae but were not found in the relictual genusPereskia, which lacks succulent tissues. In the large subfamily Cactoideae, wide-band tracheids occur only in derived members, and wide-band tracheids of North American Cactoideae are narrower and are aligned in a more orderly radial pattern than those of South American Cactoideae. Wide-band tracheids probably arose at least three times in Cactaceae.  相似文献   

11.
油松茎次生结构中树脂道的结构分布和发育的研究   总被引:6,自引:0,他引:6  
油松茎的次生结构中树脂道存在于次生维管组织中。其中,次生木质部内具有水平的和垂直的两类树脂道,而次生韧皮部内则仅有水平的树脂道。两类树脂道都由上皮细胞和鞘细胞包围着胞间道构成,其中木质部内的树脂道具有死鞘细胞,而韧皮部中的则都系生活细胞。在心材中,垂直树脂道形成拟侵填体。在次生木质部内,垂直树脂道常分布于早材的外部区域和最初形成的晚材中,它们与水平树脂道连接,腔道贯通,从而形成二维网状结构。垂直树脂道来源于纺锤状原始细胞的衍生细胞,而水平树脂道来源于射线原始细胞,两者都以裂生方式发生。  相似文献   

12.
A cumulative correlation analysis of the maximum diameter of primary xylem tracheids recorded for 41 tracheophyte fossils, plotted against their ages (ranging from the Upper Silurian to the Lower Devonian), yields a Spearman rank coefficient (rsp) of 0.696 (P < 0.01). Data for specimens taxonomically referable to zosterophyllophytes and lycopods reveal an increase in the range and maximum diameter of tracheids from the Siegenian to the Emsian. Correlation analysis of these data yields an rsp value of 0.95 (P < 0.02). The mean and maximum tracheid diameters recorded for rhyniophytes, when correlated against stratigraphic occurrence, yield rsp values of 0.81 (P < 0.05) and 0.85 (P < 0.02), respectively. A correlation analysis of the data for rhyniophytes, trimerophytes and progymnosperms yields an rsp value of 0.87 (P < 0.01). Therefore, despite a relatively small sample size of early Paleozoic plants, the available data show a surprising level of statistical robustness. The data are interpreted to indicate that during the early evolution of tracheophytes, both the range and maximum tracheid diameter of the primary xylem increased, while in some plant lineages (zosterophyllophytes) there is evidence for a plateauing of maximum tracheid diameters by the Middle Devonian. The statistical trends in the data are interpreted within the context of the evolution of the hydraulic conductance of tracheophyte primary xylem.  相似文献   

13.
Plasmodesmata and pit development in secondary xylem elements   总被引:1,自引:0,他引:1  
J. R. Barnett 《Planta》1982,155(3):251-260
Developing pit membranes of secondary xylem elements in Drimys winteri, Fagus sylvatica, Quercus robur, Sorbus aucuparia, Tilia vulgaris and Trochodendron aralioides have been examined by transmission electron microscopy. Absence of plasmodesmata from the membranes of vessel elements and tracheids indicates that their pits develop independently of these structures. On the other hand, plasmodesmata are abundant in pit membranes between fibres, parenchyma cells, and combinations of these cell types in Fagus, Quercus and Tilia. In each case the plasmodesmata pass right through the developing pit membrane. In the case of Sorbus fibres, however, plasmodesmata were absent from the majority of pit membrane profiles seen in sections. Occasionally they were observed in large numbers associated with a swollen region on one side of the pit membrane between fibres and between fibres and parenchyma, radiating from a small area of the middle lamella. In the case of fibre to parenchyma pitting, this swelling was always found on the fibre side of the membrane, while on the other side a small number of plasmodesmata were present completing communication with the parenchyma cytoplasm. These observations are discussed with regard to the role of plasmodesmata in pit formation, and in the differentiation of the various cell types in secondary xylem. The significance their distribution may have for our understanding of xylem evolution is also discussed.  相似文献   

14.
The phloem of most fossil plants, including that of Sphenophyllum, is very poorly known. Sphenophyllum was a relatively small type of fossil arthrophyte with jointed stems bearing whorls of leaves ranging in form from wedge or fan-shaped to bifid, to linear. The aerial stem systems of the plant exhibited determinate growth involving progressive reduction in the dimensions of the stem primary bodies, fewer leaves per whorl, and smaller and simpler leaves distally. The primary phloem occurs in three areas alternating in position with the arms of the triarch centrally placed primary xylem. Cells of the primary phloem, presumably sieve elements, are axially elongate with horizontal to slightly tapered end walls. In larger stems with abundant secondary xylem and secondary cortex or periderm, a zone of secondary phloem occurs whose structure varies in the three areas opposite the arms of the primary xylem, as opposed to the three areas lying opposite the concave sides of the primary xylem. The axial system of the secondary phloem consists of vertical series of sieve elements with horizontal end walls. In the areas opposite the protoxylem the parenchyma is present as a prominent ray system showing dilation peripherally. Sieve elements in the areas opposite the protoxylem arms have relatively small diameters. In the areas between the protoxylem poles the secondary phloem sieve elements have large diameters and are less obviously in radial files, while the parenchyma resembles that of the secondary xylem in these areas in that it consists of strands of cells extending both radially and tangentially. An actively meristematic vascular cambium has not been found, indicating that this layer changed histologically after the cessation of growth in the determinate aerial stem systems and was replaced by a post-meristematic parenchyma sheath made up of axially elongate parenchyma lacking cells indicative of being either fusiform or ray initials. A phellogen arose early in development in a tissue believed to represent pericycle and produced tissue comparable to phellem externally. Normally, derivatives of the phellogen underwent one division prior to the maturation of the cells. Concentric bands of cells with dark contents apparently represent secretory tissue in the periderm and cell arrangements indicate that a single persistent phellogen was present. Sphenophyllum is compared with other arthrophytes as to phloem structure and is at present the best documented example of a plant with a functionally bifacial vascular cambium in any exclusively non-seed group of vascular plants.  相似文献   

15.
Pit membranes of stem tracheids of all recognized species of Barclaya, an Indomalaysian genus of Nymphaeaceae, were studied with scanning electron microscopy (SEM). Pit membranes of the tracheids are composed of two thick layers, both constructed of fibrils much larger than those of tracheary elements of angiosperms other than Nymphaeaceae. The outer (distal) layer, which comprises the continuous primary wall around the tracheids, is spongiform, perforated by porosities of relatively uniform size, and confined to or most prominent on end walls of stem tracheids. The second layer consists of thick widely spaced fibrils that are oriented axially and are laid down proximally (facing the cell lumen) to the first (outer) layer, although continuous with it. These axial fibrils are attached at their ends to the pit cavities. This peculiar microstructure is not known outside Nymphaeaceae except in Brasenia and Cabomba (Cabombaceae, Nymphaeales), and has not been previously described for Barclaya. The longitudinally oriented threads and strands in perforation plates of secondary xylem of wood and stems of a variety of primitive woody angiosperms (e.g., Illicium) are not homologous to the pit membrane structure observed in stem tracheids of Barclaya, which, like other Nymphaeaceae, has only primary xylem and no perforation plates. The tracheid microstructure reported here is different from pit structures observed in any other group of vascular plants, living or fossil. The tracheid stem microstructures of Barclaya and other Nymphaeaceae appear to be a synapomorphy of Nymphaeaceae and Cabombaceae, and need further study with respect to ultrastructure and function.  相似文献   

16.
The main stems of three young Douglas-fir (Pseudotsuga menziesii var. menziesii (Mirbel) Franco) trees were dissected to obtain samples of secondary xylem from internodes axially along the trunk and radially within each internode. From these samples, measurements were obtained of tracheid diameter, length, the number of inter-tracheid pits per tracheid, and the diameter of the pit membranes. In addition, samples were obtained along the trunks of three old growth trees and also a small sample of roots for measurement of tracheid diameter. A gradient was apparent in all measured anatomical characters vertically along a sequence among the outer growth rings. These gradients arose not because of a gradient vertically along the internodes, but because of the strong gradients present at each internode among growth rings out from the pith. Tracheid characteristics were correlated: wider and longer tracheids had more numerous pits and wider pits, such that total pit area was about 6% of tracheid wall area independent of tracheid size. A stem model combining growth rings in parallel and internodes in series allowed for estimates of whole trunk conductance as a function of tree age. Conductance of the stem (xylem area specific conductivity) declined during the early growth of the trees, but appeared to approach a stable value as the trees aged.  相似文献   

17.
Limb rust is a killing disease of hard pines caused by Peridermium spp. Study of tissue sections shows that growth of limb rust fungi differs from growth of other plant rusts: (1) longitudinal spread is mainly by hyphal growth within host tracheids; (2) hyphae grow radially in mature xylem, deep in host sapwood; (3) in larger stems mycelia avoid (rather than concentrate in) bark and outer xylem rings; and (4) mycelia become much larger than any previously described for rust fungi. Antibiotics being tested as therapeutants are unlikely to be effective against such deep-seated mycelia.  相似文献   

18.
Developmental changes in the vascular cambium of Polygonum lapathifolium were determined primarily by an analysis of the secondary xylem. The cambium and xylem consist of fascicular and interfascicular regions in this herbaceous dicotyledon. Near the pith vessels are restricted to the fascicular regions of the xylem. During secondary growth vessels are formed in some radial files in the interfascicular regions. Anticlinal divisions are of two types, oblique and lateral. In interfascicular files consisting of fibers only, about two-thirds of the anticlinal divisions are oblique. The oblique partition averages 31% of the length of the dividing initials. In interfascicular files consisting of vessel elements and fibers, there are almost equal numbers of oblique and lateral divisions. The oblique partition averages 37% of the length of the dividing initials in these files. Lateral divisions account for approximately three-fifths of the anticlinal divisions in the fascicular regions, consisting of vessel elements and fibers. The partitions formed in oblique anticlinal divisions average 64% of the length of the dividing cells in the fascicular regions. The frequency of anticlinal division is much higher in files consisting of vessel elements and fibers than in those consisting of fibers only. There is no loss of fusiform initials, except by ray formation. Ray initiation occurs by simple subdivision of fusiform initials. The findings are discussed in relation to the developmental changes in the vascular cambium in plants of different habits.  相似文献   

19.
Ascorbic acid and xylem development in trunks of the Siberian larch trees   总被引:1,自引:0,他引:1  
The contents of ascorbic acid (AA) and its oxidized form, dehydroascorbic acid (DHA), were assessed as related to the tracheid differentiation in the course of early and late wood development in the Siberian larch (Larix sibirica Ldb.) trees. The samples of the cambium, cell enlargement zone and mature cells were collected at the successive developmental stages by scraping tissues off layer by layer from trunk segments of the 20-year-old trees according to anatomical and histochemical criteria. While cambium initials were rapidly dividing, the AA contents per dry weight and per cell considerably exceeded the corresponding values characteristic of the late xylem development; such difference corresponded to the higher number of early tracheids per annual ring, as compared to the late tracheids. The AA content decreased as cells enlarged. The radial growth of the early wood tracheids, as compared to the late wood tracheids, was accompanied with a threefold increase in the AA and a decline in the DHA contents. The AA/DHA ratio was in line with the early tracheid enlargement. The maximum AA content was observed at the early stage of the secondary cell wall thickening in the tracheids of early and late xylem preceding lignification. During this stage of early wood development, the DHA content exceeded sixfold the corresponding value in the late xylem; as a result, the initial rates of lignification were different in two tissues. The rate of lignification in a newly developing layer of the early xylem increased gradually and was the highest in the completely differentiated tracheids. In the late xylem, the lignification rate was at its highest at the very beginning and then declined in the course of tracheid maturation. The dissimilar patterns of lignification in the early and late xylem were primarily associated with the DHA content, which increased in the early xylem and decreased in the maturing late xylem. Thus, the AA content and its accessibility to oxidation in the growing and mature xylem cells exhibited the diverse developmental patterns in the early and late xylem: two tissues differed in the tracheid number and radial diameter as well as in the rate of lignification.Translated from Fiziologiya Rastenii, Vol. 52, No. 1, 2005, pp. 97–107.Original Russian Text Copyright © 2005 by Antonova, Chaplygina, Varaksina, Stasova.  相似文献   

20.
Secondary growth in the stem of Dolichos lablab is achieved by the formation of eccentric successive rings of vascular bundles. The stem is composed of parenchymatous ground tissue and xylem and phloem confined to portions of small cambial segments. However, development of new cambial segments can be observed from the obliterating ray parenchyma, the outermost phloem parenchyma and the secondary cortical parenchyma. Initially cambium develops as small segments, which latter become joined to form a complete cylinder of vascular cambium. Each cambial ring is functionally divided into two distinct regions. The one segment of cambium produces thick-walled lignified xylem derivatives in centripetal direction and phloem elements centrifugally. The other segment produces only thin-walled parenchyma on both xylem and phloem side. In mature stems, some of the axial parenchyma embedded deep inside the xylem acquires meristematic activity and leads to the formation of thick-walled xylem derivatives centrifugally and phloem elements centripetally. The secondary xylem comprises vessel elements, tracheids, fibres and axial parenchyma. Rays are uni-multiseriate in the region of cambium that produces xylem and phloem derivatives, while in some of the regions of cambium large multiseriate, compound, aggregate and polycentric rays can be noticed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号