首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The red alga Acrosymphton purpuriferum (J. Ag.) Sjöst. (Dumontiaceae) is a short day plant in the formation of its tetrasporangia. Tetrasporogenesis was not inhibited by 1 h night-breaks when given at any time during the long (16 h) dark period (tested at 2 h intervals). However, tetrasporogenesis was inhibited when short (8 h) main photoperiods were extended beyond the critical daylength with supplementary light periods (8 h) at an irradiance below photosynthetic compensation. The threshold irradiance below photosynthetic compensation. The threshold irradiance for inhibition of tetrasporogenesis was far lower when supplementary light periods preceded the main photoperiod than when they followed it (< 0.05 μmol.m−2. s−1 vs. 3 μmol.m−2.s−1. The threshold level also depended on the irradiance given during the main photoperiod and was higher after a main photoperiod in bright light than after one in dim light (threshold at 3 μmol.m−2.s−1 after a main photoperiod at ca. 65 μmol.m−2.s−1 vs. threshold at <0.5 μmol.m−2.s−1 after a main photoperiod at ca. 35 μmol.m−2.s−1. The spectral dependence of the response was investigated in day-extensions (supplementary light period (8 h) after main photoperiod (8 h) at 48 μmol. m−2.s−1) with narrow band coloured light. Blue light (λ= 420 nm) was most effective, with 50% inhibition at a quantum-dose of 2.3 mmol.m−2. However, yellow (λ= 563 nm) and red light (λ= 600 nm; λ= 670 nm) also caused some inhibition, with ca. 30% of the effectiveness of blue light. Only far-red light (λ= 710 nm; λ= 730 nm) was relatively ineffective with no significant inhibition of tetrasporogenesis at quantum-doses of up to 20 mmol. m−2.  相似文献   

2.
Gametophytes of Macrocystis pyrifera (L.) C. Ag. were cultured under a series of quantum irradiances in three photoperiod regimes. The quantum irradiances in each photoperiod were adjusted to provide equal daily irradiation dosages between photoperiods which allowed a critical examination of the interactions between quantum irradiance and quantum dose in determining gametophyte fertility. The lowest quantum irradiance which stimulated gametogenesis in more than 50% of the female gametophytes was 5 μE·m?2·s?1. The saturating irradiance was ca. 10 μE·m?2·s?1 at photoperiods of 12 h or greater. In terms of daily quantum dose, the lowest dose at which greater than 50% gametogenesis occurred was 0.2 E·m?2·d?1. However, this critical quantum dose was higher (0.4 E·m?2·d?1) when instantaneous irradiances were less than 5 μE·m?2·s?1. The saturation quantum dose was also affected by the rate at which the quantum dose was received and varied from 0.4 to 0.8 E·m?2·d?1. Gametophytes in all three photoperiods reached 100% fertility at quantum irradiances above 5 μE·m?2·s?1. Photoperiod effects were small and could be accounted for by quantum dosage effects.  相似文献   

3.
We investigated the composition of benthic microbial mats in permanently ice-covered Lake Hoare, Antarctica, and their irradiance vs. photosynthetic oxygen exchange relationships. Mats could be subdivided into three distinct depth zones: a seasonally ice-free “moat” zone and two under-ice zones. The upper under-ice zone extended from below the 3.5 m thick ice to approximately 13 m and the lower from below 13 m to 22 m. Moat mats were acclimated to the high irradiance they experienced during summer. They contained photoprotective pigments, predominantly those characteristic of cyanobacteria, and had high compensation and saturating irradiances (Ec and Ek) of 75 and 130 μmol photons·m−2·s−1, respectively. The moat mats used light inefficiently. The upper under-ice community contained both cyanobacteria and diatoms. Within this zone, biomass (as pigments) increased with increasing depth, reaching a maximum at 10 m. Phycoerythrin was abundant in this zone, with shade acclimation and efficiency of utilization of incident light increasing with depth to a maximum of 0.06 mol C fixed·mol−1 incident photons under light-limiting conditions. Precipitation of inorganic carbon as calcite was associated with this community, representing up to 50% of the carbon sequestered into the sediment. The lower under-ice zone was characterized by a decline in pigment concentrations with depth and an increasing prevalence of diatoms. Photosynthesis in this community was highly shade acclimated and efficient, with Ec and Ek below 0.5 μmol·m−2·s−1 and 2 μmol·m−2·s−1, respectively, and maximum yields of 0.04 mol C fixed·mol−1 incident quanta. Carbon uptake in situ by both under-ice and moat mats was estimated at up to 100 and 140 mg·m−2·day−1, based on the photosynthesis–irradiance curves, incident irradiance, and light attenuation by ice and the water column.  相似文献   

4.
The effects of irradiance on the biochemical composition of the prymnesiophyte microalga, Isochrysis sp. (Parke; clone T-ISO), a popular species for mariculture, were examined. Cultures were grown under a 12:12 h light: dark (L:D) regime at five irradiances ranging from 50 to 1000 μE·m 2·s?1 and harvested at late-logarithmic phase for analysis of biochemical composition. Gross composition varied aver the range of irradiances. The highest levels of protein were present in cells from cultures grown at 100 and 250 μE·m 3·s1, and minimum levels of carbohydrate and lipid occurred at 50 μE·m?2·s?1. Because the cell dry weight was reduced at lower irradiances, different trends were evident when results were expressed as percentage of dry weights. Protein percentages were highest at Wand 100 μE·m?2·s?1 and carbohydrate at 100 μE·m?2·s?1. The composition of amino acids did not differ over the range of irradiances. Glutamate and aspartate were always present in high proportions (9.0–13.5%); histidine. methionine, tryptophan, cystine, and hydroxy-proline were minor constituents (0.0–2.6%). Glucose was the predominant sugar in all cultures, ranging from 23.0% (50 μE·m?2·s?1) to 45.0% (100 μE·m?2·s?1) of total polysaccharide. No correlation was found between the proportion of any of the sugars and irradiance. The proportions of the lipid class components and fatty acids showed little change with irradiance. The main fatty acids were 14:0, 16:0, 16:1(n-7), 18:1(n-9), 18:3(n-3). 18:4(n-3), 18:5(n-3), and 22:6(n-3). Proportions of 22: 6(n-3) increased, whereas l8:3(n-3). 18:3(n-6). and 18:4(n-3) decreased, with increasing irradiance. Pigment concentrations were highest in cultures grown at 50 μE·m?2·s?1, except for fucoxanthin and diadinoxanthin (100 μE·m?2·s?1). The concentrations of accessory pigments correlated with chlorophyll a, which decreased in concentration with increasing irradiance. On the basts of biochemical composition, an irradiance of 100 μE·m?1·s?1 (12:12 h L:D cycle)for the culture of Isochrysis sp. (clone T-ISO) may provide optimal nutritional value for maricultured animals, although feeding trials are now necessary to substantiate this.  相似文献   

5.
The importance that frond crowding represents for the survival of fronds of the clonal intertidal alga Mazzaella cornucopiae (Postels et Ruprecht) Hommersand (Rhodophyta, Gigartinaceae) was investigated in Barkley Sound, British Columbia, Canada. Frond density is high for this species, up to 20 fronds·cm?2 in the most crowded stands. Frond crowding imposes a cost in the form of reduced net photosynthetic rates when fronds are fully hydrated as a result of reduced irradiance compared with experimental (not found naturally) low-density stands. However, the interaction between desiccation and irradiance alters this relationship between net photosynthetic rates and frond density. During a typical daytime low tide in spring, irradiance is 10–30 μmol·m?2·s?1 below the canopy of fronds, and frond desiccation (relative to total water content) can reach 43% at the end of the low tide. In contrast to natural stands, fronds from experimentally thinned stands are subjected to irradiances up to 2000 μmol·m?2·s?1 because of the spatial separation among fronds and can desiccate up to 81% at the end of the same low tide. Laboratory experiments showed that negative net photosynthetic rates occur between 40% and 80% desiccation at an irradiance of 515 μmol·m?2·s?1, and the literature suggests that strong bleaching could occur as a result. At 20 μmol·m?2·s?1 of irradiance and desiccation levels up to 40%, simulating understory conditions of natural stands, net photosynthetic rates are never negative. Experimental thinning of stands of M. cornucopiae done during spring effectively resulted in a stronger extent of frond bleaching compared with natural stands. Therefore, the cost of reduced net photosynthetic rates at high frond densities when fronds are fully hydrated is counterbalanced by the protective effects of frond crowding against extensive bleaching, essential for survival at the intertidal zone. Future research will have to demonstrate the possible relationship between the frequency and duration of negative net photosynthetic rates and the extent of frond bleaching.  相似文献   

6.
Growth, dark respiration rate, photosynthetic parameters, and chemical composition were determined for Emiliania huxleyi (Lohmann) Hay et Mohler acclimated to different combinations of day length (12, 18, 24 h) and irradiance (30, 100, 200, 800 μmol·m−2·s−1). Specific growth rate (μ, day−1) and carbon-specific dark respiration rate (rCd, day−1) were independent of day length, but increased significantly with increasing irradiance. The photosynthetic parameters depended on the initial acclimation day length and irradiance: Chlorophyll a-specific maximum photosynthetic rate (PmB) increased up to threefold with decreasing day length and twofold with increasing irradiance. The maximum light utilization coefficient (αB) and maximum quantum yield (φm) increased up to threefold with decreasing day length. αB increased almost four-fold with decreasing irradiance, whereas φm was independent of irradiance. Literature data for phytoplankton indicate that PmB consistently increases with increasing irradiance, and day length-irradiance responses of αB and φm are species specific. Results from the present experiment and other studies indicate that if day length-irradiance variability in the photosynthetic parameters are neglected, this may cause an over- or underestimation up to a factor of two in the photosynthetic rate estimation based on these parameters.  相似文献   

7.
Ceratium fusus (Ehrenb.) Dujardin was exposed to light of different wavelengths and photon flux densities (PFDs) to examine their effects on mechanically stimulable bioluminescence (MSL). Photoinhibition of MSL was proportional to the logarithm of PFD. Exposure to I μmol photons·m?2s?1 of broadband blue light (ca. 400–500 nm) produced near-complete photoinhibition (≥90% reduction in MSL) with a threshold at ca. 0.01 μmol photons·m?2·s?1. The threshold of photoinhibition was ca. an order of magnitude greater for both broadband green (ca. 500–580 nm) and red light (ca. 660–700 nm). Exposure to narrow spectral bands (ca. 10 nm half bandwidth) from 400 and 700 nm at a PFD of 0.1 μmol photons·m?2·s?1 produced a maximal response of photoinhibition in the blue wavelengths (peak ca. 490 nm). A photoinhibition response (≥ 10%) in the green (ca. 500–540 nm) and red wavelengths (ca. 680 nm) occurred only at higher PFDs (1 and 10 μmol photons·m?2·s?1). The spectral response is similar to that reported for Gonyaulax polyedra Stein and Pyrocystis lunula Schütt and unlike that of Alexandrium tamarense (Lebour) Balech et Tangen. The dinoflagellate's own bioluminescence is two orders of magnitude too low to result in self-photoinhibition. The quantitative relationships developed in the laboratory predict photoinhibition of bioluminescence in populations of C. fusus in the North Atlantic Ocean.  相似文献   

8.
Mesodinium rubrum (=Myrionecta rubra), a marine ciliate, acquires plastids, mitochondria, and nuclei from cryptophyte algae. Using a strain of M. rubrum isolated from McMurdo Sound, Antarctica, we investigated the photoacclimation potential of this trophically unique organism at a range of low irradiance levels. The compensation growth irradiance for M. rubrum was 0.5 μmol quanta · m−2 · s−1, and growth rate saturated at ∼20 μmol quanta · m−2 · s−1. The strain displayed trends in photosynthetic efficiency and pigment content characteristic of marine phototrophs. Maximum chl a–specific photosynthetic rates were an order of magnitude slower than temperate strains, while growth rates were half as large, suggesting that a thermal limit to enzyme kinetics produces a fundamental limit to cell function. M. rubrum acclimates to light‐ and temperature‐limited polar conditions and closely regulates photosynthesis in its cryptophyte organelles. By acquiring and maintaining physiologically viable, plastic plastids, M. rubrum establishes a selective advantage over purely heterotrophic ciliates but reduces competition with other phototrophs by exploiting a very low‐light niche.  相似文献   

9.
Photoautotrophic growth of a marine non-heterocystous filamentous cyanobacterium, Symploca sp. strain S84, was examined under nitrate-assimilating and N2-fixing conditions. Under continuous light, photon flux density of 55 μmol photons·m−2 ·s−1 was at a saturating level for growth, and light did not inhibit the growth rate under N2-fixing conditions even when the photon flux density was doubled (110 μmol photons·m−2 ·s−1). Doubling times of the N2-fixing cultures under 55 and 110 μmol photons·m−2 ·s−1 were about 30 and 31 h, respectively. Under 110 μmol photons·m−2 ·s−1 during the light phase of an alternating 12:12-h light:dark (L:D) cycle, the doubling time of the N2-fixing culture was also about 30 h. When grown diazotrophically under a 12:12-h L:D regime, C2H2 reduction activity was observed mainly during darkness. In continuous light, relatively large cyclic fluctuations in C2H2 reduction were observed during growth. The short-term (<4 h) effect of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU; 5 μM) indicated that C2H2 reduction activity was not influenced by photosynthetic O2 evolution. Long-term (24 h) effects of DCMU indicated that photosynthesis and C2H2 reduction activity occur simultaneously. These results indicate that strain S84 grows well under diazotrophic conditions when saturating light is supplied either continuously or under a 12:12-h L:D diel light regime.  相似文献   

10.
In many lakes in the northern United States and Canada the filamentous green alga Ulothrix zonata (Weber and Mohr) Kütz grows abundantly in early spring in shallow waters. Asexual reproduction occurs by formation of quadriflagellate zoospores which disrupt, the integrity of the cells upon release causing the filament to disintegrate. Study of the effects of 100 different combinations of irradiance, temperature and photoperiod revealed that zoospore formation is favored by high temperatures near 20°C, high light levels of 520 μE·m?2·s?1 and photoperiods of either short day (8:16 h light-dark) or long day cycles (16:8 h light-dark). Zoospore formation is minimal under conditions of low temperature (5°C), low irradiance (32.5 μE·m?2·s?1) and neutral day-lengths (12:12 h light-dark). These observations explain the decline in U. zonata biomass when water temperatures rise above 10° C. The combined effect of rising water temperatures and increasing daylengths causes progressively more filaments to switch from vegetable growth to zoospore production resulting in an increasing loss of biomass.  相似文献   

11.
A multichannel automated chamber system was developed for continuous monitoring of CO2 exchange at multiple points between agro-ecosystem or soil and atmosphere. This system consisted of an automated chamber subsystem with a CO2 concentration analyzer and a data logging subsystem. Both subsystems were under the control of a programmable logic controller (PLC). The automated chamber subsystem contained 18 chambers (50 cm × 50 cm × 50 cm) and a compressor. The chamber lids were closed and can be automatically opened. During measurement, one of the 18 chambers was kept closed for three minutes for measuring and the other chambers were kept open to maintain the natural soil conditions to the maximum extent. Environmental variables were simultaneously measured using sensors and recorded by the data logger. The reliability of the multichannel automated chamber system was tested and the results showed that the turbulence of the fans had no significant effect on the CO2 exchange. The changes in the air and the temperature of soil and soil moisture inside the chambers, caused by the enclosure of the chambers, were not significant. The net ecosystem CO2 exchange for the wheat ecosystem was ?2.35 μmol·m?2·s>?1 and the soil respiration was 3.87 μmol·m?2·s>?1 in the wheat field, and 6.61 μmol·m?2·s>?1 in the apple orchard.  相似文献   

12.
The metabolic fate of photosynthetically-fixed CO2 was determined by labeling samples of Merismopedia tenuissima Lemmerman for 30 min with NaH14CO3 and analyzing its incorporation into low molecular weight compounds, polysaccharide and protein. In N- and P-sufficient cultures, relative incorporation into protein increased as the irradiance used during the labeling period was decreased to 20 μE · m-2 s-1. This pattern was found for cells grown at irradiances of either 20 or 180 μE · m-2· s-1, although incorporation into protein was greater in cultures grown at the higher irradiance. In N-limited continuous cultures, relative incorporation into protein was low, independent of growth rate, and the same for samples tested at 20 or 180 μE · m-2· s-1 irradiance. In contrast, 14C incorporation into protein by P-limited cultures increased as growth rate increased, and at relative growth rates greater than 0.25, the incorporation was greater at 20 than at 180 μE · m-2· s-1. However, the total RNA content and maximum photosynthetic rate of the cultures was the same at all growth rates tested. The interaction between nutrient concentration and light intensity was studied by growing-limited continuous cultures at the same dilution rate, but different irradiances. Relative incorporation into protein was highest in cultures grown at 20 μE · m-2· s-1, in which the relative growth rate was 0.4. These results suggest that photosynthetic carbon metabolism may respond to relative growth rate μ/μmax rather than to growth rate directly.  相似文献   

13.
Optimum light, temperature, and pH conditions for growth, photosynthetic, and respiratory activities of Peridinium cinctum fa. westii (Lemm.) Lef were investigated by using axenic clones in batch cultures. The results are discussed and compared with data from Lake Kinneret (Israel) where it produces heavy blooms in spring. Highest biomass development and growth rates occurred at ca. 23° C and ≥50 μE· m?2·s1 of fluorescent light with energy peaks at 440–575 and 665 nm. Photosynthetic oxygen release was more efficient in filtered light of blue (BG 12) and red (RG 2) than in green (VG 9) qualities. Photosynthetic oxygen production occurred at temperatures ranging from 5° to 32° C in white fluorescent light from 10 to 105 μE·m?2·s?1 with a gross maximum value of 1500 × 10?12 g·cell?1·h?1 at the highest irradiance. The average respiration amounted to ca. 12% of the gross production and reached a maximum value of ca. 270·10?12 g·cell?1·h?1 at 31° C. A comparison of photosynthetic and respiratory Q10-values showed that in the upper temperature range the increase in gross production was only a third of the corresponding increase in respiration, although the gross production was at maximum. Short intermittent periods of dark (>7 min) before high light exposures from a halogen lamp greatly increased oxygen production. Depending on the physiological status of the alga, light saturation values were reached at 500–1000 μE·m?2·s?1 of halogen light with compensation points at 20–40 μE·m?2·s?1 and Ik-values at 100–200 μE·m?2·s?1. The corresponding values in fluorescent light in which it was cultured and adapted, were 25 to 75% lower indicating the ability of the alga to efficiently utilize varying light conditions, if the adaptation time is sufficient. Carbon fixation was most efficient at ca. pH 7, but the growth rates and biomass development were highest at pH 8.3.  相似文献   

14.
Growth responses of Pithophora oedogonia (Mont.) Wittr. and Spirogyra sp. to nine combinations of temperature (15°, 25°, and 35°C) and photon flux rate (50, 100, and 500 μmol·m?2·s?1) were determined using a three-factorial design. Maximum growth rates were measured at 35°C and 500 pmol·m?2·s?1 for P. oedogonia (0.247 d?1) and 25°C and 500 μmol·m?2·s?1 for Spirogyra sp. (0.224 d?1). Growth rates of P. oedogonia were strongly inhibited at 15°C (average decrease= 89%of maximum rate), indicating that this species is warm stenothermal. Growth rates of Spirogyra sp. were only moderately inhibited at 15° and 35°C (average decrease = 36 and 30%, respectively), suggesting that this species is eurythermal over the temperature range employed. Photon flux rate had a greater influence on growth of Spirogyra sp. (31% reduction at 50 pmol·m?2·s?1 and 25°C) than it did on growth of P. oedogonia (16% reduction at 50 μmol·m?2·s?1 and 35°C). Spirogyra sp. also exhibited much greater adjustments to its content of chlorophyll a (0.22–3.34 μg·mg fwt?1) than did P. oedogonia (1.35–3.08 μg·mg fwt?1). The chlorophyll a content of Spirogyra sp. increased in response to both reductions in photon flux rate and high temperatures (35°C). Observed species differences are discussed with respect to in situ patterns of seasonal abundance in Surrey Lake, Indiana, the effect of algal mat anatomy on the internal light environment, and the process of acclimation to changes in temperature and irradiance conditions.  相似文献   

15.
Although Spirogyra Link (1820) is a common mat‐forming filamentous alga in fresh waters, little is known of its ecology. A 2‐year field study in Surrey Lake, Indiana, showed that it grew primarily in the spring of each year. The population consisted of four morphologically distinct filamentous forms, each exhibiting its own seasonal distribution. A 45‐μm‐wide filament was present from February to late April or early May, a 70‐μm‐wide form was present from late April to mid‐June, a 100‐μm‐wide form was present from February to mid‐June, and a 130‐μm‐wide form appeared only in February of 1 of 2 study years. The 70‐ and 100‐μm‐wide forms contributed to the peak amount of biomass observed in late May and early June. Multiple regression analysis indicated that the presence of the 45‐, 70‐, and 100‐μm‐wide forms was negatively correlated with temperature. Presence of the 130‐μm‐wide form was negatively correlated with irradiance. Isolates of these filament forms were exposed to temperature (15, 25, and 35° C)/irradiance (0, 60, 200, 400, 900, and 1500 μmol·m?2·s?1) combinations in the laboratory. Growth rates of the 45‐μm‐wide form were negative at all irradiances at 35° C, suggesting that this form is susceptible to high water temperatures. However, growth rates of the other forms did not vary at the different temperatures or at irradiances of 60 μmol·m?2·s?1 or above. Net photosynthesis was negative at 35° C and 1500 μmol·m?2·s?1 for the 100‐ and 130‐μm‐wide forms but positive for the 70‐μm‐wide form. All forms lost mat cohesiveness in the dark, and the 100‐ and 130‐μm‐wide forms lost mat cohesiveness under high irradiances and temperature. Thus, the morphological forms differed in their responses to irradiance and temperature. We hypothesize that the rapid disappearance of Spirogyra populations in the field is due to loss of mat cohesiveness under conditions of reduced net photosynthesis, for example, at no to low light for all forms or at high light and high temperatures for the 100‐ and 130‐μm‐wide forms. Low light conditions can occur in the interior of mats as they grow and thicken or under shade produced by other algae.  相似文献   

16.
Ulothrix zonata (Weber and Mohr) Kütz. is an unbranched filamentous green alga found in rocky littoral areas of many northern lakes. Field observations of its seasonal and spatial distribution indicated that it should have a low temperature and a high irradiance optimum for net photosynthesis, and at temperatures above 10°C it should show an increasingly unfavorable energy balance. Measurements of net photosynthesis and respiration were made at 56 combinations of light and temperature. Optimum conditions were 5°C and 1100 μE·m?2·s?1 at which net photosynthesis was 16.8 mg O2·g?1·h?1. As temperature increased above 5° C optimum irradiance decreased to 125 μE·m?2·s?1 at 30°C. Respiration rates increased with both temperature and prior irradiance. Light-enhanced respiration rates were significantly greater than dark respiration rates following irradiance exposures of 125 μE·m?2·s?1 or greater. Polynomials were fitted to the data to generate response surfaces. Polynomial equations represent statistical models which can accurately predict photosynthesis and respiration for inclusion in ecosystem models.  相似文献   

17.
The cosmopolitan presence of Ulva spp. is partly due to its great reproductive ability, but relatively little information is available for the radiation conditions triggering reproduction. In the present study, we investigated the effect of photon irradiance, photoperiod, and spectral qualities of light on growth and reproduction of Ulva pertusa.During 8-day culture of discs cut from marginal parts of the thallus of U. pertusa, the size of the thallus discs was greatest at 10 μmol m−2 s−1, while saturation of reproduction occurred at 30 μmol m−2 s−1. The minimum photon irradiance allowing growth and reproduction was 5 and 10 μmol m−2 s−1, respectively. Rapid increases in the size and subsequent initiation of sporulation were observed in samples transferred to saturating irradiance from 5 μmol m−2 s−1 or darkness for 9 days. When exposed to different photoperiods (8:16-, 12:12-, 16:8-h LD and continuous light regimes) combined with different photon irradiances (10 and 100 μmol m−2 s−1), U. pertusa thallus showed that the thallus size attained at the low irradiance was similar in daylengths longer than 12 h per day, while the surface area increased in parallel with increasing light duration at the high irradiance. The degree of sporulation at 10 μmol m−2 s−1 varied, ranging from no sporulation in 8:16-h LD to 80% in 16:8-h LD and continuous light. On the other hand, there was no remarkable difference in the degree of sporulation between the photoperiods except for slightly smaller percentage sporulation in 8:16-h LD at 100 μmol m−2 s−1.At 5 μmol m−2 s−1, the growth of U. pertusa was markedly lower in green than in blue or red light, but there was no sporulation in any spectral quality. The degree of sporulation at 20 μmol m−2 s−1 was almost twice as much in blue or red as in green light.The size of plants irradiated with 1.0 W m−2 of UV-B for 20-40 min increased by 18-21% relative to control, whereas higher UV irradiance caused inhibition of growth. There was a significantly lower incidence of sporulation in UV-B-irradiated plants with the degree of reduction being greater in those exposed to higher UV doses. The total biologically effective UV-B dose for 50% inhibition of sporulation was 0.085 Doseeff kJ m−2. The time required to achieve 50% inhibition would be longer than 13 h at depths below 1 m in Ahnin coastal waters. The vertical attenuation coefficient of PAR (λ=400-700 nm) and UV-B (λ=300-320 nm) in April 1998 at Ahnin on the eastern coast of Korea was 0.21 m−1 for KPAR and 0.54 m−1 for KUV-B. A large reduction of light quantity and rapid disappearance of blue wavelength occurred by shading from overlying thalli.Percentage inhibition of sporulation was only 14-18% at 150-200 μmol m−2 s−1 compared with 70% at 10 μmol m−2 s−1, when plants were incubated under different irradiances of PAR immediately after UV-B exposures.These different photoadaptive strategies for sporulation may in part account for the great ecological success of U. pertusa.  相似文献   

18.
Microalgae growing within brine channels (85 psu salinity) of the surface ice layers of Antarctic pack ice showed considerable photosynthetic tolerance to the extreme environmental condition. Brine microalgae exposed to temperatures above ?5°C and at irradiances up to 350 μmol photons·m?2·s?1 showed no photosynthetic damage or limitations. Photosynthesis was limited (but not photoinhibited) when brine microalgae were exposed to ?10°C, provided the irradiance remained under 50 μmol photons·m?2·s?1. The highest level of photosynthetic activity (maximum relative electron transport rate [rETRmax]) in brine microalgae growing within the surface layer of sea ice was at approximately 18 μmol electrons·m?2·s?1, which occurred at ?1.8°C. Effective quantum yield of PSII and rETRmax of the halotolerant brine microalgae exhibited a temperature‐dependent pattern, where both parameters were higher at ?1.8°C and lower at ?10°C. Relative ETRmax at temperatures above ?5°C were stable across a wide range of irradiance.  相似文献   

19.
The efficacy of visual and non-visual feeding among pelagic striped bass Morone saxatilis larvae adapted to a turbid estuary was determined in the laboratory in clear water. Capture of Artemia salina (density 100 l1) was significantly affected by the interaction between age of larvae (range: 8–25 days post-hatch, dph) and light intensity (range: 0–10·6 μmol s1 m2 at the water surface). Visual feeding by larvae aged 9–11 dph was highest in dim light (0·086–0·79 μmol s1 m2), with fish capturing up to 5 prey larva1 h1. As the larvae grew, prey capture in brighter light improved, associated with an increasing proportion of twin cone photoreceptors and improving ability of the retina to light- and dark-adapt. By age >22 dph, mean prey capture was greatest at highest light intensities (0·79 and 10·6 μmol s1 m2) exceeding 100 prey larva1 h1. Incidence of feeding larvae generally improved as the larvae grew, reaching >80% in all light intensities from 16 dph onwards. The lower threshold for visual feeding, between 0·0084 and 0·03 μmol s1 m2, remained constant as the larvae grew, despite an increasing density of rod photoreceptors. Below this threshold, non-visual feeding was evident at a low rate (<6 prey larva1 h1) that was independent of larval age.  相似文献   

20.
Responses of tomato leaves in a greenhouse to light and CO2 were examined at the transient stage at the end of winter, when both photoperiod and irradiance gradually increase. Additionally, CO2 fluxes were calculated for a greenhouse without supplementary lighting and without CO2 enrichment based on CO2 sinks (plant photosynthesis) and CO2 sources (plant and substrate respiration). In January, tomato leaves in the greenhouse showed low photosynthesis with a maximum assimilation of 6–8 μmol CO2 m−2 s−1, a quantum yield of 0.06 μmol CO2 μmol−1 photosynthetic active radiation (PAR) and a low light compensation point of 26 μmol PAR m−2 s−1, a combination which classifies them as shade leaves. In February, tomato leaves increased their light compensation point to 39 μmol PAR m−2 s−1 and quantum yield to 0.08, the former indicating the adaptation to increased irradiance and photoperiod. These tomato leaves increased their transpiration from 0.4 to 0.9 in January to ∼2 mmol H2O m−2 s−1 in February. Both photosynthesis and transpiration were primarily limited by light but neither by stomatal conductivity nor by CO2. In January, light response of photosynthesis, dark respiration and transpiration were negligibly affected by increasing CO2 concentrations from 600 to 900 ppm CO2 under low light conditions, indicating no benefit of CO2 enrichment unless light intensity increased. In February, tomato leaves were photoinhibited at inherent greenhouse CO2 concentrations on the first sunny day; this photoinhibition was further enhanced by an increased CO2 concentration of 1000 ppm. CO2 fluxes in the greenhouse appeared strongly dependent on solar radiation. After exceeding the light compensation point in the morning, greenhouse CO2 concentrations decreased by 58 or by 110 ppm CO2 h−1 on a sunny day in January or February and by 23 ppm on overcast days in both months. Calculated per overall tomato canopy, plant photosynthesis contributed 42–50% to the morning CO2 depletion in the greenhouse. Dark respiration of tomato leaves was ∼2 μmol CO2 m−2 s−1 in January and ∼3 μmol CO2 m−2 s−1 in February. This dark respiration resulted in rises of 15 and 17 ppm CO2 h−1 at night in the greenhouse compartment and was identified as primary source of CO2. Respiration of the substrate used to grow the plants, which produced 7.3 ppm CO2 h−1, was identified as secondary source of CO2. The combined plant and substrate respiration resulted in peaks of up to 900 ppm CO2 in the greenhouse before dawn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号