首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Silicified stems with typical cycadalean anatomy are described from specimens collected from the Fremouw Formation (Triassic) in the Transantarctic Mountains of Antarctica. Axes are slender with a large parenchymatous pith and cortex separated by a narrow ring of vascular tissue. Mucilage canals are present in both pith and cortex. Vascular tissue consists of endarch primary xylem, a narrow band of secondary xylem tracheids, cambial zone, and region of secondary phloem. Vascular bundles contain uni- to triseriate rays with larger rays up to 2 mm wide separating the individual bundles. Pitting on primary xylem elements ranges from helical to scalariform; secondary xylem tracheids exhibit alternate circular bordered pits. Traces, often accompanied by a mucilage canal, extend out through the large rays into the cortex where some assume a girdling configuration. A zone of periderm is present at the periphery of the stem. Large and small roots are attached to the stem and are conspicuous in the surrounding matrix. The anatomy of the Antarctic cycad is compared with that of other fossil and extant cycadalean stems.  相似文献   

2.
扁圆封印木(相似种)茎干的解剖特征   总被引:2,自引:1,他引:1  
贵州省水城矿区晚二叠世煤核中扁圆封印木(相似种Sigillaria cf.brardiiBrongn.)茎干的主要解剖特征如下:管状中柱,具多边形薄壁细胞组成的髓。初生木质部成环带状,外缘呈规则的齿槽状,向心式发育。次生木质部显束状特征,横切面管胞为方圆至长方形,纵切面为梯状壁增厚,并具流苏纹。射线1—2列细胞宽,数个至十余个细胞高。叶迹起源于初生木质部外缘的槽中,中始式,但以向心发育为主。  相似文献   

3.
The stem specimens of Sigillaria cf. brardii were collected from the coal balls of Upper Permian in Shuicheng Coal Mines in Guizhou Province. The main anatomical characteristics of Sigillaria cf. brardii are described as follows: The stem is siphonostelic, with pith composed entirely of polygonal parenchyma cells, there are secondary walls in some pith cell cavities these secondary walls show the characters of cell division. Surrounding the pith is the continuous cylindrical primary xylem which consists entirely of tracheids. The outermost, and part are the protoxylem elements show spiral secondary thickenings. In cross section, the outer edge of exarch primary xylem appears regularly sinuous, with trace of mesarch leaf originating from the furrows. The centripetal metaxylem is characterized by scalariform wall thickenings on the tracheids, and delicated strands of secondary wall materials extending between abjacent bars, these structures are called fimbris, or williamson striations, and are characteristic in lepidodendrids. The secondary xylem consists of tracheids and vascular rays. The tracheids, too, have scalariform wall thickenings and fimbris. The rays are one-to twocell width and several to more than ten cells in height.  相似文献   

4.
A petrified stem of Leptophloeum rhombicum is described from the Huangjiadeng Formation of the Upper Devonian in Changyang, Hubei. In the xylem of the axis, the secondary xylem is not preserved, the greatest part of the primary xylem is composed of metaxylem tracheids that are scalariform and have Williamson's striations. Based on their connections between adjacent transverse bars Witliamson's striations would be considered as a part of the secondary wall material. The small protoxylem tracheids form vertical ridges at the periphery of primary xylem cylinder. In cross section, the ridges appear as small radiating teeth of protoxylem. It provides further evidence that primary xylem in Leptophloeum rhombicum is similar to that in Carboniferous lepidodendrid lycopods. The opinion that the systematic position of Leptophloeum should be transferred from the Protolepidodendrales to the Lepidodendrales could be accepted and reaffirmed.  相似文献   

5.
Stems and buds of Glossopteris skaarensis Pigg and buds of G. schopfii Pigg from the Permian Skaar Ridge locality in the central Transantarctic Mountains, Antarctica demonstrate the first anatomically preserved glossopterids known with stem/leaf attachment. Stems of G. skaarensis are 1–12 mm in diameter ( = 3.1 mm) with a broad pith, poorly defined primary xylem, and a zone of secondary xylem up to 6 mm thick. Pycnoxylic wood conforming to Araucarioxylon Kraus is composed of tracheids with uni- to biseriate oval to hexagonal bordered pits on radial walls, uniseriate rays one to a few cells high, and cupressoid to taxodioid cross-field pitting. Stems have a narrow zone of secondary phloem, aerenchymatous cortex with scattered sclereids, and sometimes a narrow periderm. Two wedge-shaped leaf traces each bifurcate to form four strands in the base of each petiole. Small axillary branches are vascularized by double branch traces that fuse at the margin of the main axis. Buds of G. skaarensis have leaves with narrow lateral laminae and a thickened midrib containing a wide lacuna, delicate vascular strands, and a prominent hypodermis. In contrast, buds of G. schopfii have uniformly thick leaves with prominent, circular vascular bundle sheaths. These anatomical details are used to reconstruct individual types of glossopterid plants, providing new information toward understanding the ecology and evolution of this important group of Permian seed plants.  相似文献   

6.
Pit membranes of stem tracheids of all recognized species of Barclaya, an Indomalaysian genus of Nymphaeaceae, were studied with scanning electron microscopy (SEM). Pit membranes of the tracheids are composed of two thick layers, both constructed of fibrils much larger than those of tracheary elements of angiosperms other than Nymphaeaceae. The outer (distal) layer, which comprises the continuous primary wall around the tracheids, is spongiform, perforated by porosities of relatively uniform size, and confined to or most prominent on end walls of stem tracheids. The second layer consists of thick widely spaced fibrils that are oriented axially and are laid down proximally (facing the cell lumen) to the first (outer) layer, although continuous with it. These axial fibrils are attached at their ends to the pit cavities. This peculiar microstructure is not known outside Nymphaeaceae except in Brasenia and Cabomba (Cabombaceae, Nymphaeales), and has not been previously described for Barclaya. The longitudinally oriented threads and strands in perforation plates of secondary xylem of wood and stems of a variety of primitive woody angiosperms (e.g., Illicium) are not homologous to the pit membrane structure observed in stem tracheids of Barclaya, which, like other Nymphaeaceae, has only primary xylem and no perforation plates. The tracheid microstructure reported here is different from pit structures observed in any other group of vascular plants, living or fossil. The tracheid stem microstructures of Barclaya and other Nymphaeaceae appear to be a synapomorphy of Nymphaeaceae and Cabombaceae, and need further study with respect to ultrastructure and function.  相似文献   

7.
The radially seriate xylem of Botrychium dissectum Sprengel resembles secondary xylem, particularly that of gymnosperms, in many important details. It is derived from a layer of cells which strongly resembles a vascular cambium. Presumptive cambial initials are fusiform, and derivatives are radially seriate. The walls of the initials and derivatives have a beaded appearance when viewed in tangential section. The number of xylem elements increases in seasonal increments. Circular-bordered pit pairs occur where tracheids abut other tracheids, and specialized cross-field pit pairs occur where they abut the radially-aligned parenchyma or rays. Cambial activity in Botrychium differs from that found in seed plants and progymnosperms in not producing secondary phloem. Tracheids are less similar to those known in progymnosperms than previously assumed, and some supposed similarities may be less significant than previously assumed. The significance of these dissimilarities is unclear. The recognition that the bulk of the xylem is secondary and that protoxylem strands are arranged as sympodia suggests that Botrychium may be eustelic rather than siphonostelic.  相似文献   

8.
BACKGROUND AND AIMS: Petioles of huge solitary leaves of mature plants of Amorphophallus resemble tree trunks supporting an umbrella-like crown. Since they may be 4 m tall, adaptations to water transport in the petioles are as important as adaptations to mechanical support of lamina. The petiole is a cylindrical shell composed of compact unlignified tissue with a honeycomb aerenchymatous core. In both parts numerous vascular bundles occur, which are unique because of the scarcity of lignified elements. In the xylemic part of each bundle there is a characteristic canal with unlignified walls. The xylem pecularities are described and interpreted. MATERIAL: Vascular bundles in mature petioles of Amorphophallus titanum and A. gigas plants were studied using light and scanning electron microscopy. KEY RESULTS: The xylemic canal represents a file of huge metaxylem tracheids (diameter 55-200 microm, length >30 mm) with unlignified lateral walls surrounded by turgid parenchyma cells. Only their end walls, orientated steeply, have lignified secondary thickenings. The file is accompanied by a strand of narrow tracheids with lignified bar-type secondary walls, which come into direct contact with the wide tracheid in many places along its length. CONCLUSIONS: The metaxylem tracheids in A. petioles are probably the longest and widest tracheids known. Only their end walls have lignified secondary thickenings. Tracheids are long due to enormous intercalary elongation and wide due to a transverse growth mechanism similar to that underlying formation of aerenchyma cavities. The lack of lignin in lateral walls shifts the function of 'pipe walls' to the turgid parenchyma paving the tracheid. The analogy to carinal canals of Equisetum, as well as other protoxylem lacunas is discussed. The stiff partitions between the long and wide tracheids are interpreted as structures similar to the end walls in vessels.  相似文献   

9.
Maintenance of water transport is very important for plant growth and survival. We studied seven woody species that inhabit the semi-arid Mu Us Sandy Land, China, to understand their strategies for maintaining hydraulic function. We evaluated water transport properties, including cavitation resistance, hydraulic recovery, and water loss regulation by stomatal control, which are associated with xylem structural and leaf physiological traits. We also discussed the water-use characteristics of these species by comparing them with those of species in other regions. Species with tracheids had higher levels of xylem resistance to cavitation and a smaller midday transpiration rate than the other species studied. Although species with vessels were less resistant to cavitation, some recovered hydraulic conductivity within 12 h of rehydration. Species with xylem tracheids could maintain their hydraulic function through resistance to cavitation and by relaxing xylem tension. Although species with vessels had less resistant xylem, they could maintain hydraulic function through hydraulic recovery even when xylem dysfunction occurred. Additionally, the species studied here were less resistant to cavitation than species in semi-arid environments, and equally or less resistant than species in humid environments. Rather than allow hydraulic dysfunction due to drought-induced dehydration, they may develop water absorption systems to avoid or recover quickly from hydraulic dysfunction. Thus, not only stem cavitation resistance to drought but also stem–root coordination should be considered when selecting plants for the revegetation of arid regions.  相似文献   

10.
Gradual accumulation of natural inhibitor in tissues comprising the cambial zone and about 1 mm of the youngest phloem of the basal region of the Pinus silvestris stem during the season was detected by both extraction and diffusion methods followed by bioassays. The purified inhibitor was chromatographically identified as similar to abscisic acid. Taking into account earlier numerous results, the hypothesis is formulated that the seasonal accumulation of abscisic acid affects phenomena associated with auxin polar transport, so that autolytic breakdown of protoplasts, which terminates differentiation of tracheids in stem secondary xylem is delayed. This effect extends the maturation phase and results in formation of thick-walled tracheids, characteristic for the late-wood in conifers.  相似文献   

11.
Secondary growth in the stem of Dolichos lablab is achieved by the formation of eccentric successive rings of vascular bundles. The stem is composed of parenchymatous ground tissue and xylem and phloem confined to portions of small cambial segments. However, development of new cambial segments can be observed from the obliterating ray parenchyma, the outermost phloem parenchyma and the secondary cortical parenchyma. Initially cambium develops as small segments, which latter become joined to form a complete cylinder of vascular cambium. Each cambial ring is functionally divided into two distinct regions. The one segment of cambium produces thick-walled lignified xylem derivatives in centripetal direction and phloem elements centrifugally. The other segment produces only thin-walled parenchyma on both xylem and phloem side. In mature stems, some of the axial parenchyma embedded deep inside the xylem acquires meristematic activity and leads to the formation of thick-walled xylem derivatives centrifugally and phloem elements centripetally. The secondary xylem comprises vessel elements, tracheids, fibres and axial parenchyma. Rays are uni-multiseriate in the region of cambium that produces xylem and phloem derivatives, while in some of the regions of cambium large multiseriate, compound, aggregate and polycentric rays can be noticed.  相似文献   

12.
朱俊义  陆静梅  肖智 《植物研究》2006,26(5):563-564
研究白檀茎次生木质部结构研究,其为散孔材。射线为异形Ⅱ型射线,导管分子穿孔板为梯状穿孔板。另外还有纤维管胞。  相似文献   

13.
Pyritized axes of the vegetative branching system of Rellimia thomsonii, from the Givetian of New York were described with emphasis on the presence and position of the secondary tissues in relation to the known axis orders. The morphology and anatomy of four axis orders (N, N + 1, N + 2, N + 3) was described using two well-preserved specimens. One specimen showed the largest known (N) axis order, with spirally attached N + 1 axes. The other specimen, from a more distal portion of the plant, showed the N + 2 axis order with spirally arranged N + 3 axes. The shape of the primary xylem, discernible in three of the axis orders (N + 1, N + 2, N + 3), was a three-lobed protostele with mesarch maturation of the primary xylem. The protostele of the N + 3 axis order, with only primary growth, was identical to that of fertile N + 3 axes. The other axis orders (N + 2, N + 1, N) had wood surrounding the primary xylem. The wood of the N+2 axis was limited, and occurred only in the basal portion of the axis, but that of the N+1 and N axes was extensively developed with two and three growth layers, respectively. This wood was pycnoxylic with narrow rays similar to other aneurophytalean progymnosperms. Surrounding the secondary xylem was secondary phloem indicating the vascular cambium in Rellimia was bifacial. The presence of growth layers was discussed in relation to the climatic interpretation placed on their presence and how it correlates with paleogeographic reconstructions of the Devonian.  相似文献   

14.
Wide-band tracheids are a specialized tracheid type in which an annular or helical secondary wall projects deeply into the cell lumen. They are short, wide and spindle-shaped, and their bandlike secondary walls cover little of the primary wall, leaving most of it available for water diffusion. Wide-band tracheids appear to store and conduct water while preventing the spread of embolisms. They may be the most abundant tracheary element in the xylem, but they are always accompanied by at least a few vessels. Typically, fibers are absent wherever wide-band tracheids are present. Wide-band tracheids occur in the primary and secondary xylem of succulent stems, leaves and roots in genera of all three subfamilies of Cactaceae but were not found in the relictual genusPereskia, which lacks succulent tissues. In the large subfamily Cactoideae, wide-band tracheids occur only in derived members, and wide-band tracheids of North American Cactoideae are narrower and are aligned in a more orderly radial pattern than those of South American Cactoideae. Wide-band tracheids probably arose at least three times in Cactaceae.  相似文献   

15.
The developmental anatomy of the vascular cambium and periderm ofBotrypus virginianus was studied, and its bearing on the systematic position of Ophioglossacease is discussed. The cambial zone including cambium is initiated in a procambial ring of the stem before primary vascular tissue is well differentiated. The presumed cambium is composed of fusiform and ray initials. The cambium is extremely unequally bifacial, producing secondary xylem centripetally, and quite a small number of parenchymatous cells but no secondary phloem centrifugally. The cambial activity persists long, although it is very low in the mature part of the stem. It seems that the circumferential increase of the cambium is accommodated by an increase in the number of cambial initials. Secondary xylem is nonstoried and composed of tracheids with circular-bordered pits with evenly thick pit membranes, and uniseriate or partly biseriate radial rays. It makes up the bulk of the stem xylem. Periderm is formed almost entirely around the stem, simultaneous with its increment due to the secondary xylem. The combination of these anatomical features of secondary tissue supports the idea that Ophioglossaceae are living progymnosperms.  相似文献   

16.
The genus Palaeosmunda was established by R. E. Gould in 1970 based upon some Late Permian Osmundaceous trunks with well-developed leaf gaps and rhomboidal sclerotic ring within petiolar base seen in cross section. As he thinks that the latter character is more important than the former, this genus could not be assigned to any subfamily of Osmundaceae. However, the leaf gap is one of the most important characters in the structure of the fern stem, so the author suggests that this genus should be assigned to subfamily Osmundoideae and its diagnosis must be emended as follows: The genus Palaeosmunda is represented by some rhizomes (or trunks), roots and leaf bases of ferns which structurally are preserved, resembling Osmundacaulis but which can’t be assigned to any group of this genus. Stem containing an ectophloic dictyoxylic siphonostele; if tracheids present in the pith, they being multiseriate scalariform pitted; pith or cortex sometimes contain ing groups of secretory cells or sclerenchyma; number of leaf traces seen in a tran sverse section of cortex more than 30; leaf traces adaxially curvature, rarely oblong shaped; petiolar bases with or without stipular expansion, containing a C-shaped vascular strand; root diarch. Type species——Palaeosmunda williamsii. According to this diagnosis some primitive osmundaceous species with the leaf gaps, which have already found in Upper Permian and Lower Triassic, could be assigned to this genus. Two of them are P. williamsii Gould and P. playfordii Gould, and Osmundacaulis beardmorensis, which was from Lower Triassic of Antarctica in 1978, should be assigned to the genus Palaeosmunda. In this paper two osmundaceous new species: P. primitiva and P. plenasioides were found in the coal balls of Upper Permian age from Wangjiazhai of Shuicheng of Guizhou Province, China. P. primitiva is represented by two trunks; stem about 4 cm in diameter; stele actophloic dictyoxylic siphonostele; pith cavity about 3—4 mm in diameter, contianing parenchyma and tracheids; xylem cylinder thin, less than 10 tracheids in radial thickness, dissected by leaf gaps. Inner cortex about 1.5 cm thick, mainly parenchymatous, but sometimes containing a few sclerenchymatous; number of leaf traces seen in a transverse section about 50—60; leaf traces departing at 35—45º,open C-shaped at point of departure, gradually becoming shallow C-shaped or V-shaped in different parts; protoxylem in base of leaf traces single, endarch; when leaf traces pass through inner cortex, protoxylem biturcating. Petiole bases without stipular expansion, probablyloosely embracing the stem; xylem strand of potiole trace shallow C-shaped, surrounded by selerenchyma; sclerotic ring round, connected with single sclerenchyma mass in the concavity of the petiole trace. Root arising singly from leaf trace, diarch, with inner and outer cortex. P. plenasioides is represented by a rhizome; stem more than 4 cm in diameter; stele actophloic dictyoxylic siphonostele; xylem cylider with about 20 tracheids in radial thickness, dissected by leaf gaps; xylem bundle U-, O-, or crosier- (i.e. query-) shaped; pith and inner cortex parenchymatous, with many groups of secretory cells; leaf trace C-shaped, its base containing two endarch protoxylem groups; root diareh,with inner and outer cortex, arising singly from leaf trace or its base.  相似文献   

17.
The chi-chi of Ginkgo biloba L. are cylindrical woody structures that grow downwards from the branches and trunks of old trees, eventually entering the soil where they give rise to adventitious shoots and roots. Examination of segments of young chi-chi taken from a mature ginkgo tree revealed an internal woody portion with irregular growth rings of tracheid-containing secondary xylem covered by a vascular cambium and bark. The cambium was composed of both fusiform cells and parenchymatous ray cells. Near the tip of the chi-chi, these two types of cambial cells had orientations ranging between axial, radial and circumferential with respect to the cylindrical form of the chi-chi. The xylem rays and tracheids that derived from the cambium showed correspondingly variable orientations. Towards the base of the chi-chi, the fusiform cells and young tracheids were aligned parallel to the axis, indicating that the orientation of the cambial cells in basal regions of the chi-chi gradually became normalised as the tip of the chi-chi extended forwards. Nevertheless, in such basal sites, tracheids near the centre of the chi-chi showed variable orientations in accordance with their mode of formation during the early stages of chi-chi development. The initiation of a chi-chi is proposed to derive from a localised hyperactivity of vascular cambial-cell production in the supporting stem. The chi-chi elongates by tip growth, but it does so in a manner different from organ growth driven by an apical meristem. It is suggested that the chi-chi of Ginkgo is an “evolutionary experiment” that makes use of the vascular cambium, not only for its widening growth but also for its elongation.  相似文献   

18.
The Middle Triassic flora of the Fremouw Formation in the central Transantarctic Mountains consists of conifers, cycads, ferns, pteridosperms, and sphenophytes. Stems with an unusual anatomy have been discovered within silicified peat from the same locality. The diameters of the stems range from 1.4 to 1.7 cm; the longest specimen is approximately 12 cm. In transverse section the vascular system consists of segments that occur as single traces or are connected in the center and anastomose at varying levels within the stem. Each segment contains a bifacial vascular cambium. Secondary tissues of each segment surround a central area of parenchyma and small tracheids presumed to represent primary xylem. Surrounding the stem is a periderm. Traces are produced near the periphery of the axis and consist of radially arranged secondary xylem and a thick periderm. The absence of leaves and reproductive organs leads to uncertain phylogenetic relationships. We are unaware of any Triassic plants with this type of vascular tissue organization, and those plants with a similar type of arrangement occur only in the Devonian and Carboniferous. Possible phylogenetic affinities with the Cladoxylales and Lycophyta are examined, but the anatomical differences, along with stratigraphic age, preclude formal assignment to any known taxon at this time. Therefore, we have assigned it to a new taxon: Hapsidoxylon terpsichorum gen. et sp. nov.  相似文献   

19.
In pine wilt disease (PWD), embolized tracheids arise after virulent pine wood nematodes (PWN), Bursaphelenchus xylophilus, invade the resin canal of pine tree; infected pine trees finally die from significant loss of xylem water conduction. We used a compact magnetic resonance imaging system with a U-shaped radio frequency (rf) probe coil to reveal the developmental process of the xylem dysfunction in PWD. Multiple cross-sectional slices along the stem axis were acquired to periodically monitor the total water distribution in each 1-year-old main stem of two 3-year-old Japanese black pines (Pinus thunbergii) after inoculation of PWN. During the development of PWD, a mass of embolized tracheids around the inoculation site rapidly enlarged in all directions. This phenomenon occurred before the significant decrease of water potential. Some patch-like embolisms were observed at all monitoring positions during the experimental period. Patchy embolisms in a cross-section did not expand, but the number of patches increased as time passed. When the significant decrease of water potential occurred, the xylem dysfunctional rate near the inoculation point exceeded 70%. Finally, almost the whole area of xylem was abruptly embolized in all cross-sections along the stem. This phenomenon occurred just after water conduction was mostly blocked in one of the cross-sections. Thus, it appears that the simultaneous expansion of embolized conduit clusters may be required to induce a large-scale embolism across the functional xylem. Consequently, xylem dysfunction in infected trees may be closely related to both the distribution and the number of PWN in the pine stem.  相似文献   

20.
Anomalous secondary thickening occurs in the main axis of Bougainvillea spectabilis as a result of a primary thickening meristem which differentiates in pericycle. The primary thickening meristem first appears in the base of the primary root about 6 days after germination and differentiates acropetally as the root elongates. It begins differentiating from the base of the hypocotyl toward the shoot apex about 33 days after germination. The primary thickening meristem is first observable at the base of the first internode about 60 days after germination. It then becomes a cylinder in the main axis of the seedling. No stelar cambial cylinder forms in the primary root, hypocotyl, or stem because vascular cambium differentiation occurs neither in the pericycle opposite xylem points in the primary root nor in interfascicular parenchyma in the hypocotyl or stem. The primary vascular system of the stem appears anomalous because an inner and an outer ring of vascular bundles differentiate in the stele. Bundles of the inner ring anastomose in internodes, whereas those of the outer ring do not. Desmogen strands each of which is composed of phloem, xylem with both tracheids and vessels, and a desmogic cambium, differentiate from prodesmogen strands in conjunctive tissue. The parenchymatous cells surrounding desmogen strands then differentiate into elongated simple-pitted fibers and thick-walled fusiform cells that are about the same length as the primary thickening meristem initials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号