首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extant Palaemonidae occupy aquatic environments that have generated physiological diversity during their evolutionary history. We analyze ultrastructural traits in gills and antennal glands of palaemonid species from distinct osmotic niches, and employ phylogenetic comparative methods to ascertain whether transformations in their osmoregulatory epithelia have evolved in tandem, driven by salinity. Gill pillar cells exhibit apical evaginations whose surface density (Sv, μm2 plasma membrane area/μm3 cytoplasmic volume) ranges from 6.3–7.1 in Palaemon, and 0.7–38.4 in Macrobrachium. In the septal cells, Sv varies from 8.9–10.0 in Palaemon, and 3.3–21.6 in Macrobrachium; mitochondrial volumes (Vmit) range from 43.3–46.8% in Palaemon and 34.9–53.4% in Macrobrachium. In the renal proximal tubule cells, apical microvilli Sv varies from 27.0–34.3 in Palaemon, and 38.3–47.8 in Macrobrachium; basal invagination Sv ranges from 18.7–20.0 in Palaemon and 30.8–40.8 in Macrobrachium. Septal cell Sv shows phylogenetic signal; evagination height/density, apical Sv, and Vmit vary independently of species relatedness. Salt transport capability by the gill and renal epithelia has increased during palaemonid evolution, reflecting amplified membrane availability for ion transporter insertion. These traits underpin the increased osmotic gradients maintained against the external media. Gill ultrastructure and osmotic gradient have evolved in tandem, driven by salinity at the genus level. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 673–688.  相似文献   

2.
Ultrastructural and physiological responses of Prorocentrum mariae-lebouriae (Parke & Ballantine) Faust are reported for cultures maintained at growth irradiances (Ig) ranging from 20.6 to 0.3 E m?2.d?1 and following downward shifts in light intensity. We tested the hypothesis that Prorocentrum grown under light regimes that elicit different responses in photosynthesis and pigmentation exhibit distinctive cell ultrastructures. Prorocentrum from high-light conditions had high saturation intensities for photosynthesis (Ik) and low levels of Chl a, Chl c and peridinin-cell?1 These cultures were morphologically distinguished by a large starch volume fraction (Vv), small chloroplast Vv and fewer thylakoids lamella?1. Ik values were lower and pigment concentrations higher in low-light treatments, and cells showed reduced starch Vv, large chloroplast Vv, and higher numbers of thylakoids · lamella ?1. Cells grown under extremely low-light conditions appeared stressed as indicated by the absence of starch reserves and the presence of large vacuoles within the cytoplasm. Results for presence of large vacuoles within the cytoplasm. Results for quantiative electron microscopy, photosynthesis-irradiance (P-I) relations and cell pigmentation indicate that photoadaptation in P. mariae-lebouriae involves a strategy that encompasses changes in both the “size” and “number” of photosynthetic units.  相似文献   

3.
The performance of a tapered reactor for the continuous cultivation of bakers' yeast (SCP) from cane molasses has been compared with that of a conventional cylindrical reactor. It is found that the tapered reactor has less non-idealities (bypass and deadspace).Using the experimentally evaluated bypass and deadspace values, a model for predicting conversions of substrate (cane molasses), based on the RTD model proposed by Cholette and Cloutier has been developed. The experimental substrate conversions are found to match the model satisfactorily.List of Symbols D h–1 dilution rate - E() exit age distribution function - K s kg/m3 Monod's saturation constant - -r sa kg/(m3 · h) rate of substrate utilization - S kg/m3 substrate concentration expressed as dextrose equivalent (DE) - S a kg/m3 substrate concentration in active zone - S 0 kg/m3 initial substrate concentration - S/S 0 dimensionless substrate concentration - v a dm3/h volumetric flow through active zone - v b dm3/h volumetric flow through bypass stream - u l dm3/h substrate feed rate - v g dm3/min air-flow rate - V dm3 total working volume of the reactor - V a dm3 volume of active zone in reactor - V d dm3 volume of dead zone in reactor - X kg/m3 biomass concentration Greek Letters fraction of bypass of feed, v b /v l - fraction of deadspace, V d /V - dimensionless residence time - m h–1 maximum specific growth rate - h mean residence time, V/v l   相似文献   

4.
Uptake rates of dissolved inorganic phosphorus and dissolved inorganic nitrogen under unsaturated and saturated conditions were studied in young sporophytes of the seaweeds Saccharina latissima and Laminaria digitata (Phaeophyceae) using a “pulse‐and‐chase” assay under fully controlled laboratory conditions. In a subsequent second “pulse‐and‐chase” assay, internal storage capacity (ISC) was calculated based on VM and the parameter for photosynthetic efficiency Fv/Fm. Sporophytes of S. latissima showed a VS of 0.80 ± 0.03 μmol · cm?2 · d?1 and a VM of 0.30 ± 0.09 μmol · cm?2 · d?1 for dissolved inorganic phosphate (DIP), whereas VS for DIN was 11.26 ± 0.56 μmol · cm?2 · d?1 and VM was 3.94 ± 0.67 μmol · cm?2 · d?1. In L. digitata, uptake kinetics for DIP and DIN were substantially lower: VS for DIP did not exceed 0.38 ± 0.03 μmol · cm?2 · d?1 while VM for DIP was 0.22 ± 0.01 μmol · cm?2 · d?1. VS for DIN was 3.92 ± 0.08 μmol · cm?2 · d?1 and the VM for DIN was 1.81 ± 0.38 μmol · cm?2 · d?1. Accordingly, S. latissima exhibited a larger ISC for DIP (27 μmol · cm?2) than L. digitata (10 μmol · cm?2), and was able to maintain high growth rates for a longer period under limiting DIP conditions. Our standardized data add to the physiological understanding of S. latissima and L. digitata, thus helping to identify potential locations for their cultivation. This could further contribute to the development and modification of applications in a bio‐based economy, for example, in evaluating the potential for bioremediation in integrated multitrophic aquacultures that produce biomass simultaneously for use in the food, feed, and energy industries.  相似文献   

5.
Total respiration (vT) increased after exposure to UV, but a decrease in the capacity of SHAM-sensitive-alternative respiration (Valt) was accompanied by an increase in residual respiration (vres). The capacity for CN sensitive-cytochrome c respiration (Vcyt) was not inhibited by UV-A. After 4 h of irradiation of high-CO2-grown cells of Chlamydomonas reinhardtii with UV-A (2 μW. CM?2) in the presence of white light (300μE.m?2.s?1), the capacity of Vast was reduced from 10 to 4 μmol O2. mg?1Chl.h?1, a 60 % reduction. After a similar exposure to UV-A, the capacity of Valt in pea leaves was reduced from 13 to 5 μmol O2.g?1 fr wt.h?1. Exposure to UV-C was not inhibitory, but UV-B caused up to 25% inhibition of the Valt. Twenty to 48 h after exposure to UV-A radiation, the capacity of alternative respiration had recovered. UV-A inhibition of the alternative respiration was consistent with UV-A absorption by quinones, except that UV-A did not inhibit the cyt c pathway of electron transport that also involves the ubiquinones.  相似文献   

6.
The relationship between pulmonary artery pressure (P LA) and oxygen saturation of mixed venous blood (S V ) has been studied in subjects (1750 men and 1026 women) subdivided into 12 groups. Functional relationships have been found between P LA and S V , P LA = f(S V ), and S V = f(P LA), which were estimated using direct measurement of P LA and S V for each group. These factors have been found to obey the following dependences: P LA = f(S V ) and P LA = a(S V )b , where b = −0.2284a + 0.6564 in men and b = −0.285a + 1.2947 in women; S V = f(P LA) and S V = c(P LA)d , where d = −0.25131Ln(c) + 1.0212; R 2 = 0.8993 in men and d = −1.9645Ln(c) + 2.852; and R 2 = 0.9674 in women. Each group occupies a position on the curves specified by the equations. Subjects with the diagnosis of a functional heart murmur and patients with congenital aortic valve stenosis were grouped together to form the so-called normal group characterized by specific P LA = f(S V ) and S V = f(P LA) dependences. Male patients with coronary heart disease were also included in the normal group. An equation was derived to relate P LA caused by different reasons with the corresponding saturation of mixed venous blood. In the case of the changing saturation of mixed venous blood, this equation gives the corresponding value of P LA. Equilibrium between systemic and pulmonary circulations is established through interdependent changes in the physiological indices of blood circulation and gas exchange in humans.  相似文献   

7.
Summary An experimental and theoretical investigation has been made of the rotation of protoplasts ofSecale cereale L. (cv Puma) in a rotating electric field for the purpose of determining the electrical properties of the protoplast plasma membrane. The dependence of the protoplast rotation rate on: (1) the rotation rate of the applied electric field; (2) the electrical conductivity of the external medium; and (3) cold acclimation or lack thereof were determined. A theoretical analysis of the rotation rate of polarizable spherical cells in a rotating electric field leads to a qualitatively similar formula to that of Arnold and Zimmermann (Z. Naturforsch. 37:908–915, 1982), but it differs from this earlier work by a large numerical factor (180). Detailed comparisons of the observed protoplast rotation rates with the new theory show generally good agreement. The protoplast rotation measurements allow a noninvasive determination of the specific plasma membrane capacitance,c m. The average value found in the present experiments isc m=(0.56±0.08)×10–2 F/m2. Within the experimental errors, thec m values are the same for cold-acclimated and noncold-acclimated protoplasts. Determination of plasma membrane resistance from protoplast rotation measurements does not appear feasible because of the high values of the specific resistance.  相似文献   

8.
Livers of rats between the 16th gestational and 100th postnatal day of age were subjected to quantitative biochemical and electron microscope, morphometric analyses. The amount of total mitochondrial protein per gram of liver remained at 34% of the adult level throughout the last 4 days of gestation but this was the period of rapid rise in the levels of cytochrome c oxidase, aspartate aminotransferase, and glutamate dehydrogenase in mitochondria; the nuclear fraction also acquired some glutamate dehydrogenase but lost most of it during postnatal development. During early postnatal life the amount of mitochondrial protein rose in parallel with the levels of cytochrome c oxidase and glutamate dehydrogenase but the upsurges of glutaminase and, later, of ornithine aminotransferase were accompanied by relatively little change in total mitochondrial protein. The surface area of rough endoplasmic reticulum per unit volume of hepatocyte cytoplasm (SvRER) did not change significantly throughout the period of development studied. From the 16th day of gestation to term the surface area of smooth ER (SvSER), the volume occupied by mitochondria (VvMT) and their number (NvMT) remained at 30, 66, and 45% of their adult values, respectively. VvMT and NvMT attained their maximal levels by the 2nd postnatal day and SvSER between days 2 and 12. Mitochondria of adult liver are thus smaller and contain more protein per unit volume than do those of fetal liver. After the 12th postnatal day, hepatocytes treble their size; they acquire more cytoplasm with additional enzymes but without further change in organelle concentration. The data reveal several distinct phases in the differentiation of hepatocytes. Each phase can be characterized by the extent to which the quantity and composition of various subcellular compartments evolve.  相似文献   

9.
Summary In European woodmice the amount and intensity of daily activity was compared to oxygen uptake and to the potential for oxidative metabolism of heart and skeletal muscle. One group of animals was inactivated by exposition to light during night time; another group of animals was trained by enforced running on a treadmill. The oxidative potential of the muscle tissue was assessed by morphometry of capillaries and mitochondria. A novel sampling technique was used which allowed us to obtain morphological data related to single muscles, to muscle groups, and finally to whole body muscle mass.Reducing the spontaneous activity by ten fold had no effect on oxygen uptake nor on capillaries or mitochondria in locomotory muscles. Mitochondrial volume was reduced, however, in heart and diaphragm. Enforced running increased the weight specific maximal oxygen uptake significantly. It also increased the mitochondrial volume in heart and diaphragm as well as in M. tibialis anterior. Capillary densities were neither affected by training nor by inactivation. A significant correlation was found between the capillary density and the volume density of mitochondria in all muscles analysed morphometrically. For the whole skeletal muscle mass of a European woodmouse the inner mitochondrial membranes were estimated to cover 30 m2. The oxygen consumption per unit time and per unit volume of muscle mitochondrion was found to be identical in all groups of animals (4.9 ml O2 min–1 cm–3).Symbols S v (im,m) surface area of inner mitochondrial membranes per unit mitochondrial volume - V v (mt, f) volume density of mitochondria (mitochondrial volume per fiber volume) - V (mt) total mitochondrial volume - V (f) muscle volume - N A (c, f) capillary density - (f) mean fiber cross-sectional area  相似文献   

10.
Objective: Obese patients without clinically apparent heart disease may have a high output state and elevated total and central blood volumes. Central circulatory congestion should result in elevated pulmonary diffusing capacity (DLCO) and capillary blood volume (Vc) reflecting pulmonary capillary recruitment; however, the effect on membrane diffusion (Dm) is uncertain. We examined DLCO and its partition into Vc and Dm in 13 severely obese subjects (BMI = 51 ± 14 kg/m2) without manifest cardiopulmonary disease before and after surgically induced weight loss. Research Methods and Procedures: DLCO and its partition into Vc and Dm [referenced to alveolar volume (VA)] as described by Roughton and Forster, total body water by tritiated water, and fat distribution by waist‐to‐hip ratio were performed. Results: Despite normal DLCO (mean 98 ± 16% predicted), Vc/VA was increased (mean 118 ± 30% predicted), and Dm/VA was reduced (mean 77 ± 34% predicted). Nine of 13 subjects were restudied after weight loss (mean 52 ± 43 kg); Vc/VA decreased to 89 ± 18% predicted (p = 0.01), and Dm/VA increased to 139 ± 30% predicted (p < 0.01). Increasing total body water was associated with both increasing Vc (r = 0.74, p = 0.01) and increasing waist‐to‐hip ratio (r = 0.65, p = 0.02), indicating that circulatory congestion increases with increasing central obesity. Discussion: Severely obese subjects without manifest cardiopulmonary disease may have increased Vc indicating central circulatory congestion and reduced Dm suggesting associated alveolar capillary leak, despite normal DLCO. Reversibility with weight loss is in accord with reversibility of the hemodynamic abnormalities of obesity.  相似文献   

11.
Isolated characean internodal cells of Nitellopsis obtusa can be stored in artificial pond water for many days, but they cannot survive in 100mol m?3 NaCl solution unless more than several mol m?3 Ca2+ is added. Short-term effects of NaCl stress on the cytosolic concentration of Ca2+ ([Ca2+]c), cytosolic pH (pHc) and vacuolar pH (pHv) were studied in relation to the external concentration of Ca2+ ([Ca2+]e). Changes in [Ca2+]c were measured with light emission from a Ca2+-sensitive photoprotein, semisynthetic fch-aequorin which had been injected into the cytosol. Both pHc and pHv were measured with double-barrelled pH-sensitive microelectrodes. When internodal cells were treated with 100 mol m?3 NaCl (0–1 mol m?3 NaCl (0.1 mol m?3 [Ca2+]e), [Ca2+]c increased and then recovered to the original level within 60 min. The time course of the transient change in [Ca2+]c was not influenced by the level of [Ca2+]c (0.1 and 10 mol m?3). In some cases, the transient increase in [Ca2+]c was induced only by increasing external osmotic pressure with sorbitol. In response to treatment with 100 mol m?3 NaCl (0.1 mol m?3 [Ca2+]c), pHc decreased by 0.1–0.2 units after 10min but recovered after 30–60 min, while pHv increased by 0.4–0.5 units after 2–50 min and tended to recover after 60 min. The initial changes in both pHc and pHv were suppressed when [Ca2+]e was raised from 0.1 to 10mol m?3. These results show that the charophyte alga Nitellopsis can regulate [Ca2+]c, pHc and pHv under NaCl stress in the short term and that the protective effect of Ca2+ on salinity stress is apparently unrelated to perturbation of Ca2+ and pH homeostasis.  相似文献   

12.
Summary HPLC was combined with a packable microbore guard column to obtain the adsorption isotherm of lysozyme in a Hydrophobic Interaction Chromatography system. The equipment configuration enabled isotherm determination of the protein on a relatively low pressure chromatographic media (TosoHaas 650M Phenyl).Notation Cm,i is the mobile phase concentration of protein. (M/L3 (liquid)) - Cm,0 =0 - Cs,i is the stationary phase concentration of protein. It is the concentration of protein on the chromatographic media. (M/L3 (solid)) - Cs,0 =0 - M,L is the dimensions mass and length - Vr,i is the retention volume of the peak front that corresponds to a mobile phase protein on the concentration Cm,i. (L3 (liquid)) - i i is a counter that is used to keep track of Cm, Cs, and Vr.For example, i=1 in the term Cm,i denotes the first, and lowest, mobile phase protein concentrations are described by higher values of i. - Vd is the system dead volume. It consists of all of the system volume that the mobile phase "sees" or contacts, includingchromatographic media interparticle and pore volume. (L3 liquid) - Vs the stationary phase volume. Vs is the nonporous bead volume. For porous beads, Vs is the bead volume - the porevolume. (L3 (solid)) - Ve is the empty column volume. (L3 liquid) - Vm is the packed column mobile phase volume and consists of the pore volume and the excluded volume. (L3 (liquid)) - Ve system is the empty column system volume. (L3 (liquid)) - Vfrit the volume of mobile phase that fills the column frits. (L3 (liquid)) - Vwoc the system volume without the column connected. (L3 (liquid))  相似文献   

13.
We report for the first time the use of liquid-liquid counter-current chromatography (CCC) for the preparative scale fractionation of plasmid DNA. Almost complete fractionation of supercoiled and open circular plasmid DNA (6.9 kb) could be achieved using a phase system comprising 12.5% (w/w) PEG 600 and 18% (w/w) K2HPO4. Experiments were carried out on a Brunel J-type CCC machine (100 ml PTFE coil) at a mobile phase flow rate of 0.5 ml min– 1 and a rotational speed of 600 rpm. Compared to conventional HPLC techniques the capacity of CCC is not limited by the surface area of resin available for adsorption. Symbols: C b, Concentration of plasmid in lower phase (g ml–1); C t, Concentration of plasmid in upper phase (g ml–1); CV, Total volume of mobile phase present in the coil and connecting leads (ml); K, Equilibrium solute partition coefficient (K=C t/C b); OC, Open circular plasmid; SC, Supercoiled plasmid; S f, Percentage stationary phase retention (S f=V s/V c); t s, Time for phase separation (s); V b, Volume of bottom phase (ml); V c, Coil volume (ml); V m, Volume of mobile phase present in coil at equilibrium (ml); V r, Volume ratio of two phases (V r=V t/V b); V s, Volume stationary phase present in coil at equilibrium (ml); V t, Volume of top phase (ml); V tot, Total volume of phase system (ml).  相似文献   

14.
Experimental study of a glow discharge with electrostatic confinement of electrons is carried out in the vacuum chamber volume V ≈ 0.12 m3 of a technological system “Bulat-6” in argon pressure range 0.005–5 Pa. The chamber is used as a hollow cathode of the discharge with the inner surface area S ≈ 1.5 m2. It is equipped with two feedthroughs, which make it possible to immerse in the discharge plasma interchangeable anodes with surface area S a ranging from ∼0.001 to ∼0.1 m2, as well as floating electrodes isolated from both the chamber and the anode. Dependences of the cathode fall U c = 0.4−3 kV on the pressure p at a constant discharge current in the range I = 0.2−2 A proved that aperture of the electron escape out of the electrostatic trap is equal to the sum S o = S a + S f of the anode surface S a and the floating electrode surface S f . The sum S o defines the lower limit p o of the pressure range, in which U c is independent of p. At p < p o the cathode fall U c grows up dramatically, when the pressure decreases, and the pressure p tends to the limit p ex, which is in fact the discharge extinction pressure. At pp ex electrons emitted by the cathode and the first generation of fast electrons produced in the cathode sheath spend almost all their energy up to 3 keV on heating the anode and the floating electrode up to 600–800°C and higher. In this case the gas in the chamber is being ionized by the next generations of electrons produced in the cathode sheath, their energy being one order of magnitude lower. When S a < (2m/M)1/2 S, where m is the electron mass and M is the ion mass, the anode may be additionally heated by plasma electrons accelerated by the anode fall of potential U a up to 0.5 kV.  相似文献   

15.
Cell culture density is shown to alter the parameters characterizing phagocytic activity of cells in vitro. Phagocytosis index (PI, mean number of beads per cell in the bead-containing population) and phagocytosis percent (PP, percentage of bead-containing cells in cell population under study) for IC-21 macrophages incubated in the presence of non-opsonized 2-μm fluorescent latex beads were determined using fluorescent microscopy and ImageJ software specially adapted for the purpose. Under control conditions (DMEM without serum), increase in cell culture density was accompanied with a decrease of both parameters of the phagocytic activity. At a mean density of 4 cells/105 μm2 (9 cells per a viewfield) PI was 7.1 ± 0.2 beads/cell and at 20 cells/105 μm2 (40 cells per a viewfield) PI dropped to 4.6 ± 0.1 beads/cell. PP was less sensitive, varied in the range of 95–100% but also decreased as the cell density grew. At any density, PI was 1.5–2 times higher than the expected value (number of beads per μm2 × cell contour area); apparently this divergence can be accounted for by cell locomotion and capture of a larger number of beads than could drop onto a motionless cell with a constant contour area. Increase in cell density was also accompanied by a decrease of the cell contour area (S c), which amounted to 750 ± 16 μm2 at a density of 4 cells/105 μm2 and 346 ± 4 μm2 at a density of 20 cells/105 μm2. As the bead concentration was the same in all experiments, density-dependent decrease in PI and PP may be related with the observed decrease in cell contour area. Yet, the bead number per cell area unit (PI/S c) was bigger at higher density and PI/S c was higher in cells with smaller S c. Thus, individual (specific) activity of the cells did not lessen with an increase of the cell culture density in the range studied (4–20 cells/105 μm2). Reduction of the cell contour area may reflect alteration in cell adhesion to the substrate as well as competitive relations between adhesion and phagocytic processes. The data obtained imply that cell culture density has to be controlled as a factor notably altering the phagocytic activity parameters. The effects of serum, methyl-β-cyclodextrin, and carbenoxolon reported earlier [Golovkina et al. 2009. Biol membrany. 26 (5), 379–386] are re-evaluated and confirmed here.  相似文献   

16.
Human HeLa cells transfected with mouse connexin Cx45 were used to examine the conductive and kinetic properties of Cx45 hemichannels. The experiments were carried out on single cells using a voltage-clamp method. Lowering the [Ca2+]o revealed an extra current. Its sensitivity to extracellular Ca2+ and gap junction channel blockers (18α-glycyrrhetinic acid, palmitoleic acid, heptanol), and its absence in non-transfected HeLa cells suggested that it is carried by Cx45 hemichannels. The conductive and kinetic properties of this current, I hc, were determined adopting a biphasic pulse protocol. I hc activated at positive V m and deactivated partially at negative V m. The analysis of the instantaneous I hc yielded a linear function g hc,inst = f(V m) with a hint of a negative slope (g hc,inst: instantaneous conductance). The analysis of the steady-state I hc revealed a sigmoidal function g hc,ss = f(V m) best described with the Boltzmann equation: V m,0 = −1.08 mV, g hc,min = 0.08 (g hc,ss: steady-state conductance; V m, 0:V m at which g hc,ss is half-maximally activated; g hc,min: minimal conductance; major charge carriers: K+ and Cl). The g hc was minimal at negative V m and maximal at positive V m. This suggests that Cx45 connexons integrated in gap junction channels are gating with negative voltage. I hc deactivated exponentially with time, giving rise to single time constants, τd. The function τd = f(V m) was exponential and increased with positive V md = 7.6 s at V m = 0 mV). The activation of I hc followed the sum of two exponentials giving rise to the time constants, τa1 and τa2. The function τa1 = f(V m) and τa2 = f(V m) were bell-shaped and yielded a maximum of ≅ 0.6 s at V m ≅ −20 mV and ≅ 4.9 s at V m ≅ 15 mV, respectively. Neither τa1 = f(V m) nor τa2 = f(V m) coincided with τd = f(V m). These findings conflict with the notion that activation and deactivation follow a simple reversible reaction scheme governed by first-order voltage-dependent processes.  相似文献   

17.
The balance equations for substrate in a cascade of CSTR's undergoing an enzyme-catalyzed reaction following Michaelis-Menten kinetics are developed in dimensionless form. Analytical expressions relating the intermediate concentrations are independently obtained for the cases of minimum overall volume and constant volume. The fractional deviations between the overall volumes following these two design criteria are calculated and presented for several values of the relevant parameters. For situations of practical interest, the fractional deviation is below 10%. Increasing values of the Michaelis-Menten parameter, K m(or decreasing values of the number of reactors in the cascade, N) lead to lower values of the maximum deviation; this maximum deviation is attained at lower conversions of substrate when K mis increased or N decreased.List of Symbols C S, imol.m–3 concentration of substrate at the outlet of the i-th reactor - C * S, i normalized concentration of substrate at the outlet of the i-th reactor - C * S, i, eq normalized concentration of substrate at the outlet of the i-th reactor using the design criterion of constant volume - C * S, i, opt normalized concentration of substrate at the outlet of the i-th reactor using the design criterion of minimum overall volume - C S, 0 mol.m–3 concentration of substrate at the inlet to the first reactor - Da i Damköhler number for the i-th reactor - Da eq constant Damköhler number for each reactor of the cascade - Da tot, eq overall Damköhler number for the cascade assuming equal-sized reactors - Da tot, min minimum overall Damköhler number for the cascade - Er fractional deviation between the overall volumes using the two different design criteria - K mmol. m–3 Michaelis-Menten constant - K * M dimensionless Michaelis-Menten constant - N number of reactors of the cascade - Q m3. s–1 volumetric flow rate - V im3 volume of the i-th reactor - v max mol. m–3. s–1 reaction rate under saturation conditions of the enzyme with substrate - V tot, opt m3 minimum overall volume of the cascade - V tot, eq m3 overall volume of the cascade assuming equal-sized reactors  相似文献   

18.
19.
The effect of micromixing and macromixing on enzyme reaction of Michaelis-Menten type in a real continuously stirred tank reactor (CSTR) is considered. The effect of bypassing of a fraction of feed stream, dead space, initial enzyme concentration and Michaelis-Menten constant on substrate conversion is evaluated. Bypass reduces the substrate conversion significantly compared with other parameters in the case of micro and macromixing. Micromixing predicts higher substrate conversions compared with macromixing. The effect of micro and macromixing on substrate conversion is negligible at low and high conversions.List of Symbols C kmol/m3 concentration of reactant - ¯C kmol/m3 average concentration of reactant - CA kmol/m3 exit concentration of reactant A - CAa kmol/m3 exit concentration of reactant A from active zone - CAO kmol/m3 initial concentration of reactant A - CEO kmol/m3 initial enzyme concentration - CO kmol/m3 initial concentration of reactant - E(t) 1/s exit age distribution function - k 1/s reaction rate constant - M kmol/m3 Michaelis-Menten constant - r kmol/(m3s) rate of reaction - –rA kmol/(m3s) rate of reaction with respect to A - t s time - v m3/s volumetric feed rate - va m3/s volumetric feed rate entering the active zone - vb m3/s volumetric feed rate entering the bypass stream - V m3 total volume of the vessel - Va m3 active volume of the vessel - Vd m3 volume of dead space - XA conversion of A Greek Letters fraction of feed stream bypassing the vessel (vb/v) - fraction of the total volume as dead space (Vd/V) - (t) 1/s Dirac delta function, an ideal pulse occurring at time t = 0 - s life expectancy of a molecule - 1/s intensity function or escape probability function - s space time or mean residence time  相似文献   

20.
Liquid circulation velocity was studied in externalloop air-lift bioreactors of laboratory and pilot scale, respectively for different gas input rates, downcomer-to-riser cross-sectional area ratio, A D/AR and liquid phase apparent viscosities.It was found that, up to a gas superficial velocity in the riser v SGR 0.04 m/s the dependency of v SLR on v SGR is in the following form: v SLR = a v SGR b , with the exponent b being 0.40. Over this value of v SGR, only a small increase in liquid superficial velocity, v SLR is produced by an increase in v SGR. A D/AR ratio affects the liquid superficial velocity due to the resistance in flow and overall friction.For non-Newtonian viscous liquids, the circulation liquid velocity in the riser section of the pilot external-loop airlift bioreactor is shown to be dependent mainly on the downcomer-to-riser cross-sectional area ratio, A D/AR, the effective (apparent) liquid viscosity, eff and the superficial gas velocity, v SGR.The equation proposed by Popovic and Robinson [11] was fitted well, with an error of ± 20%.List of Symbols A D m2 downcomer cross-sectional area - A Rm2 riser cross-sectional area - a = coefficient in Eq. (7) - b = exponent in Eq. (7) - c s m–1 Coefficient in Eq. (3) - D D m downcomer diameter - D R m riser diameter - g m2/s gravitational acceleration - H D m dispersion height - H L m ungassed liquid height - K Pa s n consistency index - K B = friction factor at the bioreactor bottom - K F = friction factor - K T = friction factor at the bioreactor top - V L m3 liquid volume in the bioreactor - V D m3 liquid volume in downcomer - V R m3 liquid volume in riser - v LDm/s downcomer linear liquid velocity - v LR m/s riser linear liquid velocity - v SGR m/s riser superficial liquid velocity - v SLR m/s riser superficial liquid velocity - s–1 shear rate - GD = downcomer gas holdup - GR = riser gas holdup - eff Pa s effective (apparent) viscosity - Pa shear stress The authors wish to thank Mrs. Rodica Roman for the help in experimental data collection and to Dr. Stefanluca for the financial support.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号