首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complex formation with alkali and alkaline earth metal ions of cyclic octapeptides, cyclo(Phe-Pro)4, cyclo(Leu-Pro)4, and cyclo[Lys(Z)-Pro]4 was investigated in relation to conformation. In an alcohol solution, cyclo(Phe-Pro)4 did not form complexes. However, cyclo(Leu-Pro)4 and cyclo[Lys(Z)-Pro]4 formed complexes selectively with Ba2+ and Ca2+ ions. Changing the solvent from alcohol to acetonitrile, the complexation behavior was very different. In acetonitrile, cyclo(Phe-Pro)4 was found to form a complex with Ba2+, and CD spectra of cyclo(Leu-Pro)4 and cyclo[Lys(Z)-Pro]4 changed sharply on complexation with K+. Rate constants of the complex formation between the cyclic octapeptides and metal salts were in the range of 0.7–12 L mol?1 min?1 in an alcohol solution. One of the two types of complex formation in acetonitrile was much faster than that in an alcohol solution.  相似文献   

2.
Stereoisomers of cyclo(Gly-Pro-Phe-Ala-Asn-Ala-Val-Ser) were synthesized. NMR studies of their solution conformations, focusing on peptide N-H solvent exposure, were made. These indicated that a single proline residue in the cyclic octapeptide ring is insufficient constraint to stabilize the backbone conformations that were previously established for cyclo(Gly-Pro-Phe-Ala)2.  相似文献   

3.
A single-crystal X-ray diffraction analysis has been made of the structure of the cyclic octapeptide cyclo(L-Pro-Sar)4. The material [C32H48O8N8 X (21/4) H2O X (1/2) CH3OH, Mr = 799.43] crystallizes in the monoclinic space group C2 with cell dimensions a = 14.544 (3), b = 11.902 (2), c = 14.064 (3), and beta = 122.26 (2) degrees (lambda = 1.54178 A, T = 293 K). The final R value for the 1980 observed reflections is 0.079. The ring conformation has the peptide bond sequences of cis-cis-trans-trans-cis-cis-trans-trans (Pro-Sar-Pro peptide bond linkages are cis-cis- or trans-trans). The pyrrolidine rings in the four proline residues take an envelope form in which the gamma-carbon atom deviates from the plane of the remaining four atoms in the ring.  相似文献   

4.
A cyclic hexapeptide, cyclo(Pro-Sar-Sar)2, which consists of N-substituted amino acids only was synthesized, and its solution conformation was investigated by n.m.r. spectroscopy. Seven different C2-symmetric conformations were detected, which were distinguishable from each other on the n.m.r. time scale. This is due to the cis/trans isomerization of N-substituted peptide bonds. Allowed C2-symmetric conformations were computed on the basis of a hard-sphere model. Some conformations detected in n.m.r. spectra were not allowed in the calculation. This disagreement suggests that some asymmetric conformations with regard to the single bond rotation are averaged out due to a rapid rotation on the n.m.r. time scale. These points indicate that the molecule of cyclo (Pro-Sar-Sar)2 is very flexible  相似文献   

5.
X-ray diffraction data were used to determine the crystal structure of cyclo-(L-Val-L-Pro-Gly)4, the cyclic tetramer of a repeat tripeptide of elastin. The crystals are monoclinic, space group C2, with a = 29.639(3), b = 7.099(1), c = 20.325 (2) A, and beta = 130.4(4) degrees. The structure was solved by direct methods and refined by least squares to R = 0.082 for 2603 observed reflections. The cyclic dodecapeptide contains two beta (II) turns. Hydrophilic and hydrophobic channels that run parallel to the b axis are formed by the stacking of cyclic peptides on twofold axes.  相似文献   

6.
By applying the method of amino-acyl incorporation to sulfonamido peptides, cyclo(-MeTau-Phe-DPro-) 3 has been synthesized in high yield starting from Z-MeTau-Phe-Pro-OH. The crystal structure and the molecular conformation of 3 have been determined. Crystals are orthorhombic, s.g. P2(1)2(1)2(1), with a = 5.454, b = 13.486, c = 24.025 A. The structure has been solved by direct methods and refined to R = 0.039 for 1974 reflections with I greater than 1.5 sigma (I). The 10-measured cyclopeptide adopts a backbone conformation in the crystals characterized by Phe-DPro and DPro-MeTau peptide bonds in trans and cis conformation, respectively. Both the peptide bonds deviate significantly from planarity and the corresponding [delta omega[ values are ca. 12 degrees. The sulfonamide SO2NH junction adopts a cisoidal conformation with a C alpha 1-S1-N2-C alpha 2 torsion angle of 70.8 degrees. 13C n.m.r. data show that the trans geometry at the Phe-DPro junction found in the crystals is retained in DMSO solution. The 10-membered ring of 3 is characterized by a pseudo mirror-plane passing through the Phe nitrogen and the DPro carbonylic carbon. The DPro ring adopts a half-chair conformation. The Phe side chain conformation corresponds to the statistically most favored g- rotamer (chi 1 = -68.6 degrees). The crystal packing is characterized by a weak intermolecular hydrogen bond between NH group and the MeTau O1' oxygen.  相似文献   

7.
Cyclic hexapeptides, cyclo (L-Leu-L-Phe-L-Pro)2 and cyclo[L-Cys(Acm)-L-Phe-L-Pro]2, in which Acm represents an acetoamide-methyl group, were synthesized, and the conformation and complexation with metal ions were investigated. Cooperation of the carbonyl groups of the Cys(Acm) side chains with those of the cyclic skeleton in complexation was especially examined. Cyclo(L-Leu-L-Phe-L-Pro)2, which possesses no functional groups on side chains, was taken as the reference compound. 13C- and two-dimensional n.m.r. measurements revealed that cyclo(L-Leu-L-Phe-L-Pro)2 and cyclo[L-Cys(Acm)-L-Phe-L-Pro]2 took a C2-symmetric conformation containing cis L-Phe-L-Pro bonds in chloroform and acetonitrile. Both cyclic hexapeptides were found to complex selectively with Ba2+ and Ca2+ in acetonitrile. On complexation the conformation of either cyclic hexapeptide changed into a similar one. However, the binding constant of cyclo[L-Cys(Acm)-L-Phe-L-Pro]2 was higher than that of cyclo(L-Leu-L-Phe-L-Pro)2. The n.m.r. measurements showed that the amide carbonyl groups of Cys(Acm) side chains as well as those of cyclic skeleton in cyclo[L-Cys(Acm)-L-Phe-L-Pro]2 cooperatively bound the cations.  相似文献   

8.
The conformational behavior of a heterodetic bicyclic decapeptide (BCPLT) in the absence and in the presence of calcium ions has been studied by means of mono and two-dimensional nmr techniques. Free BCPLT possesses a quite compact structure stabilized by intramolecular bonds and turns. In the structure a cluster of carbonyls is located in a cavity that is supposed to be the cation binding site.  相似文献   

9.
Novel upper-rim modified tetraphosphinocalix[4]arenes (5a-b) adopting 1,3-alternate conformation have been synthesized. Reaction of 5,11,17,23-tetrachloromethyl-25,26,27,28-tetrahydroxycalix[4]arene (1) with Ph2POEt gave 5,11,17,23-tetrakis(diphenylphosphinoylmethyl)-25,26,27,28-tetrahydroxycalix[4]arene (2). Tetra-O-substitution of 2 with n-propyl iodide or benzyl bromide in the presence of K2CO3 carried out to afford 5,11,17,23-tetrakis(diphenylphosphinoylmethyl)-25,26,27,28-tetrapropoxy-(3a) or -benzyloxycalix[4]arene (3b), whereas di-O-substituted calix[4]arene, 5,11,17,23-tetrakis(diphenylphosphinoylmethyl)-25,27-dipropoxy-26,28-dihydroxycalix[4]arene (4), was obtained exclusively when Na2CO3 was used as base. Reduction of 3a-b with PhSiHCl2 afforded 5,11,17,23-tetrakis(diphosphinomethyl)-25,26,27,28-tetrapropoxy-(5a) and -tetrabenzyloxycalix[4]arene (5b). 1H and 13C NMR analysis reveals that the phosphines (5a-b) and the tetra-O-substituted phosphine oxides (3a-b) adopt 1,3-alternate conformation, while the parent tetrahydroxy-(2) and the di-O-propylated phosphine oxide (4) adopt cone-conformation. The X-ray structure indicates that the calix[4]arene moieties in 4 a pinched-cone conformation in solid state. Complexation of the phosphine ligand (5a) with [RuCl2(p-cymene)]2 affords the tetranuclear complexes, [{RuCl2(p-cymene)}2 · 5a] (6), as 1,3-alternate conformer.  相似文献   

10.
The stabilities and electronic properties of gold clusters containing up to six atoms trapped inside cyclo[8]thiophene (CS8), cyclo[8]selenophene (CSe8), and cyclo[8]tellurophene (CTe8) nanoaggregates have been studied using the M06 functional. The 6-31G(d) basis set was used for all atoms except Au and Te, for which the LANL2DZ(d,p) pseudopotential basis set was applied. Single-point energy calculations were performed with the 6-311G(d,p) basis set for all atoms except for Au and Te, for which the cc-TZVP-pp pseudopotential basis set was used. Among the three studied macrocycles, only CS8 and CSe8 were found to be capable of nanoaggregate formation. In the lowest-energy conformer of CTe8, the tellurophene fragments adopt an anti orientation, thus impeding a tubular arrangement of the macrocycles. The formation of gold clusters inside the CS8 and CSe8 nanoaggregates is a thermodynamically favorable process, and could represent a potentially useful method of stabilizing metal nanowires. The binding energy between the nanoaggregate and the gold cluster is always higher for selenium-containing complexes than for sulfur-containing ones because Se has a higher affinity than S for Au in such complexes. Interactions of the gold cluster with the nanoaggregate walls can change the geometry of the most stable isomer for the cluster. The relative energies of different isomers are rather similar, suggesting that they coexist. For nanoaggregates containing Au6 clusters, the cluster geometry when it is inside a nanoaggregate is different from the geometry of the cluster when it is not inside the nanoaggregate, due to the geometric restrictions imposed by the nanoaggregate cavity. The reorganization energy needed to change the geometry leads to lower binding energies for these complexes compared to those of some smaller systems, although the formation of a complex between Au6 and a nanoaggregate with six CS8 or CSe8 macrocycles is still thermodynamically viable.  相似文献   

11.
The 10-membered cyclotripeptide cyclo(-Me beta Ala-Phe-Pro) 3 and its diastereoisomer cyclo(-Me beta Ala-Phe-DPro-) 4 have been synthesized under mild cyclization conditions starting from linear precursors containing C-terminal proline. The crystal and molecular structure of the two models has been determined by X-ray crystallography. Analysis of the NMR spectra supported by NOE data clearly indicates that the conformations found in the crystals are retained in solution. Both cyclotripeptides exhibit a cis-cis-trans backbone conformation. The two tertiary peptide bonds, at the proline and Me beta Ala nitrogen atoms, adopt a cis conformation whereas the CO-NH junctions are trans in both the models. The deviations from planarity of the peptide units vary from delta omega values of ca. 18 degrees for the Pro-Me beta Ala and DPro-Me beta Ala bonds to ca. 7 degrees for Phe-Pro and Phe-DPro bonds. Relevant conformational details of 3 and 4, as revealed by X-ray and NMR analysis, are reported. Crystals of 3 are monoclinic: P2(1), a = 5.317(2), b = 17.059(6), c = 9.514(3) A, beta = 99.18(3), Z = 2. The final R and Rw are 0.054 and 0.071 respectively. Crystals of 4 are orthorhombic: P2(1)2(1)2(1), a = 8.797(2), b = 19.440(9), c = 21.605(10) A, Z = 8. The final R and Rw are 0.069 and 0.104 respectively.  相似文献   

12.
The crystal structure and conformation of the synthetic cyclic tetrapeptide, cyclo(L -Pro-Sar)2, was determined by x-ray analysis. The peptide crystallizes in the orthorhombic space group P212121 with cell parameters a = 9.277(1), b = 12.884(1), and c = 15.581(2) Å. The crystal structure was solved by the symbolic addition procedure for direct phase determination and least-squares refinement using 1796 reflections, which led to the final R value of 0.043. This structure provides the first example observed in a crystal of a cyclic tetrapeptide in which all four peptide units have been found in the cis conformation with ω angles deviating slightly by 2°–10° from the ideal value of 0°. It was also found that the two Pro Cα-CO single bonds assumed a trans′ (ψ = 159.6° and 158.4°) conformation. Adjoining average planes of the peptide groups fall at nearly right angles to each other. The pyrrolidine ring conformations of the two prolyl residues are in the envelope form, with Cγ carbon out of the least-squares planes for the remaining four atoms.  相似文献   

13.
It has been reported previously that a cyclic dipeptide, cyclo(D -Leu-L -His), showed a high hydrolytic activity toward a hydrophobic ester, p-nitrophenyl laurate. In order to determine the reason for the high catalytic activity, the conformation of cyclo(D -Leu-L -His) in aqueous solution was investigated by nuclear magnetic resonance and circular dichroism spectroscopy and compared with the conformation of cyclo(L -Leu-L -His), which was nearly inactive in otherwise the same conditions for the hydrolysis. It was demonstrated that the spatial arrangement of the hydrophobic isobutyl group of the D -leucyl residue and of the nucleophilic imidazolyl group of the L -histidyl residue in cyclo(D -Leu-L -His) matches very well with the long acyl chain and the active ester function of p-nitrophenyl laurate. On the other hand, in cyclo(L -Leu-L -His) the hydrophobic and the nucleophilic pendant groups are too close with each other to cooperate intramolecularly for the hydrolysis. It was concluded that the different steric structures of the diastereomers can explain the large difference of the catalytic activities.  相似文献   

14.
We have isolated a Lactobacillus plantarum strain (MiLAB 393) from grass silage that produces broad-spectrum antifungal compounds, active against food- and feed-borne filamentous fungi and yeasts in a dual-culture agar plate assay. Fusarium sporotrichioides and Aspergillus fumigatus were the most sensitive among the molds, and Kluyveromyces marxianus was the most sensitive yeast species. No inhibitory activity could be detected against the mold Penicillium roqueforti or the yeast Zygosaccharomyces bailii. An isolation procedure, employing a microtiter well spore germination bioassay, was devised to isolate active compounds from culture filtrate. Cell-free supernatant was fractionated on a C(18) SPE column, and the 95% aqueous acetonitrile fraction was further separated on a preparative HPLC C(18) column. Fractions active in the bioassay were then fractionated on a porous graphitic carbon column. The structures of the antifungal compounds cyclo(L-Phe-L-Pro), cyclo(L-Phe-trans-4-OH-L-Pro) and 3-phenyllactic acid (L/D isomer ratio, 9:1), were determined by nuclear magnetic resonance spectroscopy, mass spectrometry, and gas chromatography. MIC values against A. fumigatus and P. roqueforti were 20 mg ml(-1) for cyclo(L-Phe-L-Pro) and 7.5 mg ml(-1) for phenyllactic acid. Combinations of the antifungal compounds revealed weak synergistic effects. The production of the antifungal cyclic dipeptides cyclo(L-Phe-L-Pro) and cyclo(L-Phe-trans-4-OH-L-Pro) by lactic acid bacteria is reported here for the first time.  相似文献   

15.
In order to study the metabolic pathway and the physiological effects of 9c,11t-18:2 (major isomer of conjugated linoleic acid) and its C(18:3) and C(20:3) metabolites, 6c,9c,11t-18:3 and 8c,11c,13t-20:3 and their [1-(14)C]-radiolabeled analogs were prepared stereoselectively by total synthesis. The 8c,11c,13t-20:3 was obtained in 11 steps. The synthesis involves a highly stereoselective Wittig reaction between 3-(t-butyldiphenylsilyloxy)propanal and the ylide of 7-(2-tetrahydropyranyloxy)heptanylphosphonium salt which gave (3Z)-1-(t-butyldiphenylsilyloxy)-10-(2-tetrahydropyranyloxy)dec-3-ene in a first step. Then the t-butyldiphenylsilyl derivative was deprotected selectively and the resulting alcohol function was converted via a bromide into a phosphonium salt. The second stereoselective Wittig condensation between the phosphonium salt and commercial (2E)-non-2-enal under cis-olefinic conditions using Lithium hexamethyldisilazide as base afforded the (7Z,10Z,12E)-1-(2-tetrahydropyranyloxy)nonadeca-7,10,12-triene in a very good isomeric purity. The intermediate product was brominated and transformed by reaction with magnesium into Grignard reagent, which was one-carbon elongated by unlabeled or labeled carbon dioxide to obtain the 8c,11c,13t-20:3 in good isomeric purity (95%) and high radiochemical purity for its [1-(14)C]-radiolabeled analog (99%). 6c,9c,11t-18:3 was synthesized in a similar way by using 5-(2-tetrahydropyranyloxy)pentanylphosphonium salt in place of 7-(2-tetrahydropyranyloxy)heptanylphosphonium salt in a first step. Other reactions were unchanged and products were obtained in similar yields. Similar to 8c,11c,13t-20:3, the 6c,9c,11t-18:3 was obtained in a very good isomeric purity (95%) and its [1-(14)C]-radiolabeled analog in a high radiochemical purity (95%).  相似文献   

16.
Ian Mc Ewen 《Biopolymers》1993,33(4):693-702
The cyclic hexapeptide cyclo[-Pro1-Gly2-Glu3(OBzl)-Pro4-Phe5-Leu6-] ( 1 ; OBzl: benzyl ester) was modeled and synthesized to be used as a chiral site for the separation of enantiomers. Total correlation spectroscopy and nuclear Ovehauser effect spectroscopy spectra of the peptide in CDCl3 showed the presence of three stereoisomers. The two dominant stereoisomers 1a and 1b exchanged chemically with each other, while the minor stereoisomer 1c exchanged exclusively with the stereoisomer 1b . Stereoisomer 1a had two cis proline peptide bonds while stereoisomer 1b had all-trans peptide bonds. The stereoisomer 1c had, for nonstrained peptides, an unusual cis phenylalanine peptide bond while both proline peptide bonds were trans. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
18.
The crystal structure of a synthetic analogue of valinomycin, cyclo[-(L-Val-L-Hyi-L-Val-D-Hyi)2-(D-Val-L-Hyi-L-Val-D -Hyi)-] ([L-Val1, L-Val5]meso-valinomycin), C60H102N6O18, has been determined. Crystals grown from petroleum ether are orthorhombic, space group P2(1)2(1)2(1), with cell parameters a = 16.41(1), b = 18.76(1), c = 25.86(1) A, and Z = 4. The atomic coordinates for nonhydrogen atoms, except those of terminal carbons on one side chain, were refined in the anisotropic thermal motion approximation. The coordinate parameters of the H atoms were incorporated into the structure factor calculations at geometrically expected positions. Values of the standard and weighted R factors after refinement are 0.074 and 0.083, respectively. The crystal structure of the molecule is asymmetric and adopts a conformation with four 4----1 type and one 6----1 type intramolecular hydrogen bonds between amide nitrogens and carbonyl oxygens. Valinomycin binds potassium more than 100 times strongly than the D,L stereoisomeric analogue, as a result of a different spatial orientation of potentially interacting carbonyl groups.  相似文献   

19.
In an effort to explore the residue preferences in three-residue reverse turns (so-called gamma-turns), two cyclic pentapeptides--cyclo(Gly1-Pro2-D-Phe3-Gly4-Ala5) (I) and cyclo(Gly1-Pro2-D-Phe3-Gly4-Val5) (II)--have been synthesized and analyzed by nmr. It was anticipated that the Gly-Pro-D-Phe-Gly portions of these molecules would favor a beta-turn conformation, leaving the remainder of the molecule to adopt a gamma turn, as seen in several previously studied model cyclic pentapeptides. The nmr data for both peptides in CDCl3 (5% DMSO-d6) and in neat DMSO-d6 indicate that the most populated conformation contains a distorted beta turn around Pro2-D-Phe3, which includes a gamma turn around D-Phe3. The distortion in the beta turn does not impede the formation of an inverse gamma turn around residue 5, and indeed, this conformation is observed in both peptides. Both the alanine and the bulkier valine residues are therefore found to be compatible with an inverse gamma turn. Molecular dynamics simulations on the title peptides are reported in the following paper. These simulations indicate that there is conformational flexibility around the D-Phe3-Gly4 peptide bond, which enables the formation of the gamma turn around D-Phe3. The third paper in this series explores the impact of a micellar environment on conformational equilibria in II.  相似文献   

20.
Two novel cyclic tetrapeptides: cyclo[Lys-Tyr-Lys-Ahx-] 7a and cyclo[Lys-Trp-Lys-Ahx-] 7b were synthesized by coupling protected amino acid in solution and the subsequent cyclization effected by the pentafluorophenyl ester method as described in previous papers. These cyclic peptides were designed and synthesized to study their interaction with DNA, based on previous reports that linear peptides Lys-Tyr-Lys and Lys-Trp-Lys could bind to various forms of DNA and cleaved supercoiled DNA at apurinic sites. Ethidium bromide displacement assay showed that the apparent DNA binding constant of linear Lys-Tyr-Lys and cyclic peptide 7a are far below 1 x 10(3) M(-1), whereas those of cyclic peptide 7b and linear Lys-Trp-Lys are 1.9 x 10(4) M(-1) and 9.5 x 10(3) M(-1), respectively. Kinetic studies using agarose gel electrophoresis showed that cyclic peptide 7b and Lys-Trp-Lys possessed DNA nicking activity on natural supercoiled phi X174 DNA with nicking rate of 50.7 and 75.6 pM min(-1) at 65 degrees C, respectively, whereas cyclic peptide 7a and linear Lys-Tyr-Lys were devoid of the corresponding activity. The DNA nicking rate increased significantly with increase in reaction temperature. At reaction temperatures lower than 65 degrees C, the DNA nicking rate of cyclic peptide 7b exceeded that of linear Lys-Trp-Lys. The addition of 1 microM ferrous ion did not give significant enhancement effect on the DNA nicking rate by the peptides. UV irradiation gave a marked rate enhancement on the DNA nicking rate of linear Lys-Trp-Lys and a moderate enhancement on the DNA nicking rate of cyclic peptide 7b.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号