首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Whereas a medium containing kinetin alone enabled a few Dianthus caryophyllus L. apical meristem dome explants to develop into rooted plants, the highest frequency of plants was obtained in one containing supplements of both IAA and kinetin. In an unsupplemented medium, continued development required that explants have 2 pairs of primordial and a pair of expanding leaves. Kinetin alone caused production of many new leaves, but the development was significantly less than when it was furnished in combination with IAA. IAA given alone caused meristem explants to develop primarily callus, roots, and a few leaves. Gibberellin and abscisic acid were without promotive effects on leaf and shoot formation. A balance of hormonal substances, synthesized in young leaf structures and relocated to the meristem, is proposed as the fundamental mechanism that regulates new leaf initiation in the shoot apex.  相似文献   

2.
Coleus blumei Benth. primordial leaves 1 through 4 and expanding leaves 5 to 8 were isolated and cultured to examine the effects of auxin and kinetin on development. Without the plant growth regulators in the medium, expanding leaves 7 and 8 developed as leaves; younger leaf primordia did not develop. With 0.01 to 5.0 mg/1 IAA, 2–7% of the youngest pair of primordial leaves (1 and 2) developed as roots. Small leaf blade development occurred on IAA at 0.5 to 5.0 mg/1 with 10–12% of the explants, and shoots developed from 2% of the youngest primordia explants at 3 mg/1 IAA. With 2–28% of the second set of primordial leaves (3 and 4), a leaf with a root developed with 0.01 to 5.0 mg/1 IAA. At 3.0 mg/1 IAA, in addition to leaf formation, 2% of the explants formed a rosette of leaves and 1% formed a shoot. With the highest level of IAA (5 mg/1), 2% of the explants formed a root. Expanding leaves 5 through 8 developed mostly into leaves without petioles on IAA and kinetin. Plant development occurred from 2% of the youngest primordial leaves on 0.03 mg/1 kinetin; otherwise, these primordia on 0.003 to 2 mg/1 kinetin developed into abnormal leaves. Primordia 3 and 4 developed into normal appearing leaves at levels of kinetin between 0.03 and 2 mg/1. At lower levels the leaves were abnormal.  相似文献   

3.
Axillary meristem development in Arabidopsis thaliana   总被引:4,自引:0,他引:4  
Axillary shoot apical meristems initiate post-embryonically in the axils of leaves. Their developmental fate is a main determinant of the final plant body plan. In Arabidopsis, usually a single axillary meristem initiates in the leaf axil even though there is developmental potential for formation of multiple branches. While the wild-type plants rarely form multiple branches in the leaf axil, tfl1-2 plants regularly develop two or more branches in the axils of the rosette leaves. Axillary meristem formation in Arabidopsis occurs in two waves: an acropetal wave forms during plant vegetative development, and a basipetal wave forms during plant reproductive development. We report here the morphological and anatomical changes, and the STM expression pattern associated with the formation of axillary and accessory meristems during Arabidopsis vegetative development.  相似文献   

4.
G Chuck  C Lincoln    S Hake 《The Plant cell》1996,8(8):1277-1289
Plant development depends on the activity of apical meristems, which are groups of indeterminate cells whose derivatives elaborate the organs of the mature plant. Studies of knotted1 (kn1) and related gene family members have determined potential roles for homeobox genes in the function of shoot meristems. The Arabidopsis kn1-like gene, KNAT1, is expressed in the shoot apical meristem and not in determinate organs. Here, we show that ectopic expression of KNAT1 in Arabidopsis transforms simple leaves into lobed leaves. The lobes initiate in the position of serrations yet have features of leaves, such as stipules, which form in the sinus, the region at the base of two lobes. Ectopic meristems also arise in the sinus region close to veins. Identity of the meristem, that is, vegetative or floral, depends on whether the meristem develops on a rosette or cauline leaf, respectively. Using in situ hybridization, we analyzed the expression of KNAT1 and another kn1-like homeobox gene, SHOOT MERISTEMLESS, in cauliflower mosaic virus 35S::KNAT1 transformants. KNAT1 expression is strong in vasculature, possibly explaining the proximity of the ectopic meristems to veins. After leaf cells have formed a layered meristem, SHOOT MERISTEMLESS expression begins in only a subset of these cells, demonstrating that KNAT1 is sufficient to induce meristems in the leaf. The shootlike features of the lobed leaves are consistent with the normal domain of KNAT1's expression and further suggest that kn1-related genes may have played a role in the evolution of leaf diversity.  相似文献   

5.
6.
7.
Regeneration of new shoots in plant tissue culture is often associated with appearance of abnormally shaped leaves. We used the adventitious shoot regeneration response induced by decapitation (removal of all preformed shoot apical meristems, leaving a single cotyledon) of greenhouse-grown cotyledon-stage seedlings to test the hypothesis that such abnormal leaf formation is a normal regeneration progression following wounding and is not conditioned by tissue culture. To understand why shoot regeneration starts with defective organogenesis, the regeneration response was characterized by morphology and scanning electron and light microscopy in decapitated cotyledon-stage Cucurbita pepo seedlings. Several leaf primordia were observed to regenerate prior to differentiation of a de novo shoot apical meristem from dividing cells on the wound surface. Early regenerating primordia have a greatly distorted structure with dramatically altered dorsoventrality. Aberrant leaf morphogenesis in C. pepo gradually disappears as leaves eventually originate from a de novo adventitious shoot apical meristem, recovering normal phyllotaxis. Similarly, following comparable decapitation of seedlings from a number of families (Chenopodiaceae, Compositae, Convolvulaceae, Cucurbitaceae, Cruciferae, Fabaceae, Malvaceae, Papaveraceae, and Solanaceae) of several dicotyledonous clades (Ranunculales, Caryophyllales, Asterids, and Rosids), stems are regenerated bearing abnormal leaves; the normal leaf shape is gradually recovered. Some of the transient leaf developmental defects observed are similar to responses to mutations in leaf shape or shoot apical meristem function. Many species temporarily express this leaf development pathway, which is manifest in exceptional circumstances such as during recovery from excision of all preformed shoot meristems of a seedling.  相似文献   

8.
Kalinina A  Mihajlović N  Grbić V 《Planta》2002,215(5):699-707
Axillary meristems form in the leaf axils during post-embryonic development. In order to initiate the genetic dissection of axillary meristem development, we have characterized the late-flowering branchless ecotype of Arabidopsis thaliana (L.) Heynh., Zu-0. The first-formed rosette leaves of Zu-0 plants all initiate axillary meristems, but later-formed leaves of the rosette remain branchless. Alteration in the meristem development is axillary meristem-specific because the shoot apical and floral meristems develop normally. Scanning electron microscopy, histology and RNA in situ analysis with SHOOTMERISTEMLESS ( STM), a marker for meristematic tissues, show that a mound of cells form and STM mRNA accumulates in barren leaf axils, indicating that axillary meristems initiate but arrest in their development prior to organizing a meristem proper. Expression and retention of the STM RNA in barren leaf axils further suggests that STM expression is not sufficient for the establishment of the axillary meristem proper.  相似文献   

9.
Apical meristem culture of Eichhornia crassipes has shown that for successful regeneration, the excised meristem dome must be associated with at least the youngest leaf primordium as part of the explant and a culture medium containing coconut milk (10 %, v/v), IAA (0.1 mg/l) and kinetin (1 mg/l) as growth supplements with 2 % sucrose as carbon source.  相似文献   

10.
Initiation of axillary and floral meristems in Arabidopsis   总被引:14,自引:0,他引:14  
Shoot development is reiterative: shoot apical meristems (SAMs) give rise to branches made of repeating leaf and stem units with new SAMs in turn formed in the axils of the leaves. Thus, new axes of growth are established on preexisting axes. Here we describe the formation of axillary meristems and floral meristems in Arabidopsis by monitoring the expression of the SHOOT MERISTEMLESS and AINTEGUMENTA genes. Expression of these genes is associated with SAMs and organ primordia, respectively. Four stages of axillary meristem development and previously undefined substages of floral meristem development are described. We find parallels between the development of axillary meristems and the development of floral meristems. Although Arabidopsis flowers develop in the apparent absence of a subtending leaf, the expression patterns of AINTEGUMENTA and SHOOT MERISTEMLESS RNAs during flower development suggest the presence of a highly reduced, "cryptic" leaf subtending the flower in Arabidopsis. We hypothesize that the STM-negative region that develops on the flanks of the inflorescence meristem is a bract primordium and that the floral meristem proper develops in the "axil" of this bract primordium. The bract primordium, although initially specified, becomes repressed in its growth.  相似文献   

11.
Organogenesis in plants is controlled by meristems. Shoot apical meristems form at the apex of the plant and produce leaf primordia on their flanks. Axillary meristems, which form in the axils of leaf primordia, give rise to branches and flowers and therefore play a critical role in plant architecture and reproduction. To understand how axillary meristems are initiated and maintained, we characterized the barren inflorescence2 mutant, which affects axillary meristems in the maize inflorescence. Scanning electron microscopy, histology and RNA in situ hybridization using knotted1 as a marker for meristematic tissue show that barren inflorescence2 mutants make fewer branches owing to a defect in branch meristem initiation. The construction of the double mutant between barren inflorescence2 and tasselsheath reveals that the function of barren inflorescence2 is specific to the formation of branch meristems rather than bract leaf primordia. Normal maize inflorescences sequentially produce three types of axillary meristem: branch meristem, spikelet meristem and floral meristem. Introgression of the barren inflorescence2 mutant into genetic backgrounds in which the phenotype was weaker illustrates additional roles of barren inflorescence2 in these axillary meristems. Branch, spikelet and floral meristems that form in these lines are defective, resulting in the production of fewer floral structures. Because the defects involve the number of organs produced at each stage of development, we conclude that barren inflorescence2 is required for maintenance of all types of axillary meristem in the inflorescence. This defect allows us to infer the sequence of events that takes place during maize inflorescence development. Furthermore, the defect in branch meristem formation provides insight into the role of knotted1 and barren inflorescence2 in axillary meristem initiation.  相似文献   

12.
13.
The enormous variation in architecture of flowering plants is based to a large extent on their ability to form new axes of growth throughout their life span. Secondary growth is initiated from groups of pluripotent cells, called meristems, which are established in the axils of leaves. Such meristems form lateral organs and develop into a side shoot or a flower, depending on the developmental status of the plant and environmental conditions. The phytohormone auxin is well known to play an important role in inhibiting the outgrowth of axillary buds, a phenomenon known as apical dominance. However, the role of auxin in the process of axillary meristem formation is largely unknown. In this study, we show in the model species Arabidopsis thaliana and tomato (Solanum lycopersicum) that auxin is depleted from leaf axils during vegetative development. Disruption of polar auxin transport compromises auxin depletion from the leaf axil and axillary meristem initiation. Ectopic auxin biosynthesis in leaf axils interferes with axillary meristem formation, whereas repression of auxin signaling in polar auxin transport mutants can largely rescue their branching defects. These results strongly suggest that depletion of auxin from leaf axils is a prerequisite for axillary meristem formation during vegetative development.  相似文献   

14.
Callus cultures were established on Murashige and Skoog medium from seedling hypocotyls and roots of Slylosanlhes guyanensis (Aubl.) Sw. cv. Cook and from leaves of 6-month-old) plants. Shoots developed in primary calli derived from seedling tissue with a number of benzyladenine or kinetin and naphthaleneacetic acid combinations. Shoot formation on primary leaf callus, occurred with 2.0 mg/1 benzyladenine and 2.0 or 1.0 mg/l naphthaieneacetic acid. Undifferentiated callus from all three sources was induced and maintained on medium with 2.0 mg/1 kinetin and 2.0 mg/1 2, 4-dichlorophenoxyacede acid in the dark. Shoot formation and regeneration of whole plants from these calli were achieved at high frequencies. The most successful combination of phytohormones for the induction of shoot development in undifferentiated callus, was 2.0 mg/1 benzyladenine and 1.0 mg/1 naphthaleneacetic acid. The regenerated plants showed no phenotypic abnormalities.  相似文献   

15.
Hu W  Feng B  Ma H 《Plant molecular biology》2011,76(1-2):57-68
A leaf undergoes determinate growth from a primordium on flank of the shoot apical meristem. Several intrinsic pathways restrict meristematic activity in the leaf of Arabidopsis; however, other factors remain to be defined. We report here that the overexpression of MINI ZINC FINGER1 (MIF1) or MIF3 disrupted the leaf determinate growth by inducing ectopic shoot meristems on leaf margins. These ectopic meristems occurred along margins of late rosette leaves at serration sinuses in an ERECTA-dependent manner. Expression of STM was activated in these ectopic meristems but not other leaf regions. The formation of ectopic meristems was independent of the BP gene but suppressed by exogenous gibberellic acid. In addition, reduced auxin response along leaf margins and subsequent response peak in the sinus were correlated with the occurrence of ectopic meristems. Our results suggest that the sinus of leaf serration is a quiescent domain possessing the potential for meristem formation. MIF1- or MIF3-overexpressing transgenic plants may provide a new genetic system for dissecting the molecular mechanism that maintains leaf determinate growth, and for understanding the interactions between hormone actions and meristematic activity.  相似文献   

16.
Embryogenesis occurred in Nigella sativa L. (Fam. Ranunculaceae) leaf callus tissue when coconut milk was replaced from the Murashige and Skoog's (MS) medium by casein hydrolysate. On MS + IAA (0.5 mg/l) + casein hydrolysate (100 and 500 mg/l) medium, tissue gained a capacity of growing embryoids for a pro-longed culture period. At a concentration of 1000 mg/l casein hydrolysate suppressed the differentiating capacity after the fifth subculture. 2.4-D and kinetin had inhibitory effects on morphogenesis. Histology of the differentiated tissue revealed that the origin of roots, shoot buds and leaves were from groups of meristematic cells whereas embryoids were initiated by the repeated division of a single cell.  相似文献   

17.
The fossil record reveals that seed plant leaves evolved from ancestral lateral branch systems. Over time, the lateral branch systems evolved to become determinate, planar and eventually laminar. Considering their evolutionary histories, it is instructive to compare the developmental genetics of shoot apical meristems (SAMs) and leaves in extant seed plants. Genetic experiments in model angiosperm species have assigned functions of meristem maintenance, specification of stem cell identity, boundary formation, polarity establishment and primordium initiation to specific genes. Investigation of roles of the same or homologous genes during leaf development has revealed strikingly similar functions in leaves compared to SAMs. Specifically, the marginal blastozone that characterizes many angiosperm leaves appears to function in a manner mechanistically similar to the SAM. We argue here that the similarities may be homologous due to descent from ancestral roles in an ancestral shoot system. Molecular aspects of SAM and leaf development in gymnosperms is largely neglected and could provide insight into seed plant leaf evolution.  相似文献   

18.
Bud break and multiple shoots were induced in apical and axillary meristems derived from 10-d old seedlings of Madhuca longifolia var. latifolia on Murashige and Skoog (MS) medium supplemented with 1.0 mg/l N6-benzyladenine (BA) singly or in combinatiobn with 1-naphthalene acetic acid (NAA), indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA). Excised shoots were rooted on half-strength MS with IBA (1.0 mg/l) after 18d of culture. Regenerated plantlets were acclimatized and successfully transferred to soil.Abbreviations BA N6 benzyladenine - KN kinetin - ADS adenine sulphate - IBA indole-3-butyric acid - IAA indole3-acetic acid - NAA 1-naphthaleneacetic acid - MS Murashige and Skoog (1962) medium  相似文献   

19.
Itoh JI  Kitano H  Matsuoka M  Nagato Y 《The Plant cell》2000,12(11):2161-2174
The mechanism regulating the pattern of leaf initiation was analyzed by using shoot organization (sho) mutants derived from three loci (SHO1, SHO2, and SHO3). In the early vegetative phase, sho mutants show an increased rate of leaf production with random phyllotaxy. The resulting leaves are malformed, threadlike, or short and narrow. Their shoot apical meristems are relatively low and wide, that is, flat shaped, although their shape and size are highly variable among plants of the same genotype. Statistical analysis reveals that the shape of the shoot meristem rather than its size is closely correlated with the variations of plastochron and phyllotaxy. Rapid and random leaf production in sho mutants is correlated with the frequent and disorganized cell divisions in the shoot meristem and with a reduction of expression domain of a rice homeobox gene, OSH1. These changes in the organization and behavior of the shoot apical meristems suggest that sho mutants have fewer indeterminate cells and more determinate cells than wild type, with many cells acting as leaf founder cells. Thus, the SHO genes have an important role in maintaining the proper organization of the shoot apical meristem, which is essential for the normal initiation pattern of leaf primordia.  相似文献   

20.
Brand A  Shirding N  Shleizer S  Ori N 《Planta》2007,226(4):941-951
Balancing shoot apical meristem (SAM) maintenance and organ formation from its flanks is essential for proper plant growth and development and for the flexibility of organ production in response to internal and external cues. Leaves are formed at the SAM flanks and display a wide variability in size and form. Tomato (Solanum lycopersicum) leaves are compound with lobed margins. We exploited 18 recessive tomato mutants, representing four distinct phenotypic classes and six complementation groups, to track the genetic mechanisms involved in meristem function and compound-leaf patterning in tomato. In goblet (gob) mutants, the SAM terminates following cotyledon production, but occasionally partially recovers and produces simple leaves. expelled shoot (exp) meristems terminate after the production of several leaves, and these leaves show a reduced level of compoundness. short pedicel (spd) mutants are bushy, with impaired meristem structure, compact inflorescences, short pedicels and less compound leaves. In multi drop (mud) mutants, the leaves are more compound and the SAM tends to divide into two active meristems after the production of a few leaves. The range of leaf-compoundness phenotypes observed in these mutants suggests that compound-leaf patterning involves an array of genetic factors, which act successively to elaborate leaf shape. Furthermore, the results indicate that similar mechanisms underlie SAM activity and compound-leaf patterning in tomato.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号