首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Abstract Neoglycoproteins specific for liver and phagocytic cell membrane lectins inhibited the blood clearance and the attachment to mouse macrophages of group B streptococci bearing surface sugar residues specific for the lectins. It is concluded that lectins present on the surfaces of liver, and other phagocytic cells are involved in the elimination of invading bacteria by receptor-mediated phagocytosis, which does not require the participation of opsonins.  相似文献   

2.
The nature of cell-associated carbohydrates in the human intestine that may mediate transepithelial transport of bacterial and dietary lectins and their processing by the lymphoid cells of Peyer's patches is not known. Because the cell surface carbohydrate receptors for lectins may vary in different species, the glycoconjugates of human and mouse follicle-associated epithelium and gut-associated lymphoid tissue were compared. A panel of 27, mainly recently isolated, lectins were used to identify glycoconjugate expression in M-cells, enterocytes, goblet cells, lymphocytes and macrophages in mouse and human intestine. Mouse M-cells were exclusively labelled by fucose-specific lectins but in human follicle-associated epithelium no distinct M-cell staining pattern was observed. In the human Peyer's patches,Bryonia dioica lectin bound selectively to paracortical T-lymphocytes andChelidonium majus lectin to germinal centre B-cells. Certain mannose-specific lectins (Galanthus nivalis, Hippeastrum hybrid) stained the tingible body macrophages in the germinal centre of human Peyer's patches but labelled the macrophages in the paracortical T-cell region of the mouse. The results indicate distinct differences in glycosylation between mouse and human Peyer's patches and their associated lymphoid cells. When considering cell surface glycoconjugates as target molecules for the gut immune system, care has to be taken to choose the appropriate lectin for each species.  相似文献   

3.
Lysozyme-like activity has been demonstrated in both cell-free haemolymph and, more abundantly, in haemocyte-lysate supernatants of Blaberus discoidalis. This activity was non-inducible, but heat-stable, with a maximum activity at pH 6.2. When B. cereus was pre-incubated in a concentration of chicken egg-white lysozyme equivalent to the concentration of lysozyme-like activity in cell-free haemolymph, the phagocytosis of B. cereus opsonized with GlcNAc-specific lectins, i.e. BDL2, WGA and HPA, was significantly reduced by up to 50%, while phagocytosis of B. cereus opsonized with mannose-specific lectins, such as BDL1 and Con A, was significantly increased. Pre-incubation of B. cereus in a higher concentration of lysozyme resulted in a smaller, shorter lived increase in the phagocytic rate of bacteria opsonized with these mannose-specific lectins. The action of lysozyme on the peptidoglycan in the cell wall of B. cereus probably resulted in a reduction in the number of binding sites for the GlcNAc-specific lectins, and, therefore, reduced the phagocytic rate of BDL2, HPA and WGA-opsonized B. cereus. Concomitantly, the breakdown of peptidoglycan probably exposed mannose-containing polysaccharides, previously embedded in the peptidoglycan layer, resulting in an increase in the phagocytic rate of the BDL1- and Con A-opsonized B. cereus. These results are discussed in relation to the immune-potential of B. discoidalis.  相似文献   

4.
The balance of phagocytic function among Kupffer cells, hepatic endothelial cells and splenic macrophages in the chronically ethanol-fed rats has been investigated. Clearance of latex particles in the blood was measured to estimate the function of the reticuloendothelial system. Phagocytosis of latex particles by Kupffer cells, hepatic endothelial cells or splenic macrophages in vivo was measured by counting the number of ingested particles in a cell after isolation of hepatic nonparenchymal cells or spleen cells following injection of different amounts of latex particles. Latex particle clearance was suppressed in the ethanol-fed rats, demonstrating a decreased phagocytic capacity of the reticuloendothelial system. Markedly decreased phagocytic function was found in 40% of Kupffer cells of the chronically ethanol-fed rats. In contrast, the number of latex particles in hepatic endothelial cells and in splenic macrophages was increased after injection of a triggering dose of latex particles. From these results it may be concluded that an increased phagocytosis of hepatic endothelial cells and splenic macrophages could compensate for the decreased phagocytic function of Kupffer cells.  相似文献   

5.
Rapid phagocytosis of non-opsonized particles including apoptotic cells is an important process that involves direct recognition of the target by multiple scavenger receptors including P2X7 on the phagocyte surface. Using a real-time phagocytosis assay, we studied the effect of serum proteins on this phagocytic process. Inclusion of 1-5% serum completely abolished phagocytosis of non-opsonized YG beads by human monocytes. Inhibition was reversed by pretreatment of serum with 1-10 mM tetraethylenepentamine, a copper/zinc chelator. Inhibitory proteins from the serum were determined as negatively charged glycoproteins (pI < 6) with molecular masses between 100 and 300 kDa. A glycoprotein-rich inhibitory fraction of serum not only abolished YG bead uptake but also inhibited phagocytosis of apoptotic lymphocytes or neuronal cells by human monocyte-derived macrophages. Three copper- and/or zinc-containing serum glycoproteins, ceruloplasmin, serum amyloid P-component, and amyloid precursor protein, were identified, and the purified proteins were shown to inhibit the phagocytosis of beads by monocytes as well as phagocytosis of apoptotic neuronal cells by macrophages. Human adult cerebrospinal fluid, which contains very little glycoprotein, had no inhibitory effect on phagocytosis of either beads or apoptotic cells. These data suggest for the first time that metal-interacting glycoproteins present within serum are able to inhibit the scavenger activity of mononuclear phagocytes toward insoluble debris and apoptotic cells.  相似文献   

6.
In vitro phagocytosis of erythrocytes by hemocytes of B. glabrata, intermediate host of S. mansoni, is strongly influenced by calcium, several lectins, and plasma factors. Our results indicate that two different mechanisms of non-self-recognition in B. glabrata may occur: (1) In the presence of calcium, phagocytosis occurs in noninfected and in infected snails without involvement of any other substances, and hemocytes of schistosome resistant as well as those of susceptible snails are able to recognize and phagocytose the target cells. (2) In the absence of calcium, phagocytosis occurs if bridging molecules (heterologous lectins in our assays) were present for which effector and target cells possess binding sites or if target cells were plasma coated prior to the assays. In suspensions in homologous plasma, hemocytes of both snail strains, infected or noninfected, subsequently showed phagocytic activities of about 70-80%. Preincubation of target cells in homologous plasma resulted in similar high phagocytic activities of hemocytes even in the absence of plasma during the standard assay. In these assays, a significantly higher proportion of hemocytes of resistant snails phagocytosed plasma-opsonized erythrocytes, whereas hemocytes of susceptible snails internalized less erythrocytes per cell and needed 60 min to phagocytose at percentages equivalent to that of resistant hemocytes within 10 min. Preincubation of erythrocytes in resistant plasma significantly increased the subsequent phagocytic activity of susceptible hemocytes, whereas preincubation of erythrocytes in susceptible plasma decreased the phagocytosis level of resistant hemocytes.  相似文献   

7.
Mannose-specific binding sites for horseradish peroxidase (HRP) were studied in fixed sections of various tissues by a method reported previously. Liver sinusoidal cells, mast cells of lymph nodes, and alveolar macrophages of the lung and skin fibroblasts were main cell types showing mannose-specific binding of HRP. Macrophages, fibroblasts, and mast cells in the connective tissue of other organs also showed the reaction. However, macrophages of the spleen, and cultured 3T3 cells and L-cells did not give the reaction. The specificities of the binding reaction were studied by determining the approximate concentrations of competing sugars that suppressed the specific binding of HRP. It was found that the endogenous lectins in macrophages, fibroblasts, mast cells, and liver sinusoidal cells showed similar specificities toward various carbohydrates. D-Mannose and L-fucose had the highest affinity toward the lectins (competing ability for the binding of HRP). D-Mannose-6-phosphate, N-acetyl-D-glucosamine, D-glucose, D-ribose, and D-arabinose showed intermediate affinity, whereas D-xylose and D-galactose showed low affinity. Polymerized mannose in mannan and glycoproteins rich in mannose groups (invertase and ribonuclease B) showed much higher affinity to the binding sites than free mannose.  相似文献   

8.
The Yersinia outer surface protein invasin binds to β1 integrins on target cells and has been shown to trigger phagocytic uptake by macrophages. Here, we investigated the role of the actin regulator Wiskott–Aldrich syndrome protein (WASp), its effector the Arp2/3 complex and the Rho-GTPases CDC42Hs, Rac and Rho in invasin/β1 integrin-triggered phagocytosis. During uptake of invasin-coated latex beads, the α5β1 integrin, WASp and the Arp2/3 complex were recruited to the developing actin-rich phagocytic cups in primary human macrophages. Blockage of β1 integrins by specific antibodies, inhibition of Arp2/3 function by microinjection of inhibitors or the use of WASp knockout macrophages inhibited phagocytic cup formation and uptake. Furthermore, microinjection of the dominant negative GTPase mutants N17CDC42Hs, N17Rac or the Rho-specific inhibitor C3-transferase into macrophages greatly attenuated invasin-induced formation of cups. These data suggest that during invasin-triggered phagocytosis β1 integrins activate actin polymerization via CDC42Hs, its effector WASp and the Arp2/3 complex. The contribution of Rac and Rho to phagocytic cup formation also suggests a complex interplay between different Rho GTPases during phagocytosis of pathogens.  相似文献   

9.
Recent studies have demonstrated that communication takes place between the autophagic and phagocytic pathways, indicating that the convergence of these two pathways plays an important role in the innate immune response against intracellular microbes. The present study investigated the effect of autophagic induction on the phagocytic capacity of murine macrophages. Autophagy induced by physiological and pharmacological means was shown to reduce the phagocytic capacity of murine macrophages, regardless of cell origin or the nature of the phagocytosed particles themselves. This autophagic inhibitory effect on phagocytosis was shown to be an early and reversible event that results in no loss of cell viability. Furthermore, the data presented herein demonstrate that the induction of autophagy does not affect a macrophage’s capacity to recognize and bind to particles, indicating that autophagy does not inhibit the particle recognition process, even though particle internalization is suppressed. The findings herein support the notion that phagocytosis and autophagy may be interdependent and complementary processes.  相似文献   

10.
A significant amount of evidence has been accumulated to show that Toll-like receptors (TLRs) function as sensors for microbial invasion. However, little is known about how signalling triggered by TLRs leads to the phagocytosis of pathogens. This study was designed to determine whether stimulation of TLR2 mainly with the lipopeptide FSL-1 plays a role in the phagocytosis of pathogens by macrophages. FSL-1 enhanced the phagocytosis of Escherichia coli to a markedly greater extent than it did that of Staphylococcus aureus, but did not enhance the phagocytosis of latex beads. FSL-1 stimulation resulted in enhanced phagocytosis of bacteria by macrophages from TLR2(+/+) mice but not by those from TLR2(-/-) mice. Chinese hamster ovary cells stably expressing TLR2 failed to phagocytose these bacteria, but the cells expressing CD14 did. FSL-1 induced upregulation of the expression of phagocytic receptors, including MSR1, CD36, DC-SIGN and Dectin-1 in THP-1 cells. Human embryonic kidney 293 cells transfected with DC-SIGN and MSR1 phagocytosed these bacteria. These results suggest that the FSL-1-induced enhancement of phagocytosis of bacteria by macrophages may be explained partly by the upregulation of scavenger receptors and the C-type lectins through TLR2-mediated signalling pathways, and that TLR2 by itself does not function as a phagocytic receptor.  相似文献   

11.
Phagocytosis is an uptake of large particles governed by the actin-based cytoskeleton. Binding of particles to specific cell surface receptors is the first step of phagocytosis. In higher Eucaryota, the receptors able to mediate phagocytosis are expressed almost exclusively in macrophages, neutrophils, and monocytes, conferring immunodefence properties to these cells. Receptor clustering is thought to occur upon particle binding, that in turn generates a phagocytic signal. Several pathways of phagocytic signal transduction have been identified, including the activation of tyrosine kinases and (or) serine/threonine kinase C in pivotal roles. Kinase activation leads to phosphorylation of the receptors and other proteins, recruited at the sites of phagocytosis. Monomeric GTPases of the Rho and ARF families are likely to be engaged downstream of activated receptors. The GTPases, in cooperation with phosphatidylinositol 4-phosphate 5-kinase and phosphatidylinositol 3-kinase lipid modifying enzymes, can modulate locally the assembly of the submembranous actin filament system leading to particle internalization. BioEssays 21:422–431, 1999. © 1999 John Wiley & Sons, Inc.  相似文献   

12.
Lung surfactant protein A (SP-A) is the main protein component of pulmonary surfactant, which lines the alveolar space. We examined the interaction between recombinant human SP-A and human macrophages or monocytes. Binding and uptake of SP-A adsorbed onto colloidal gold particles was followed by electron microscopy and quantitated on micrographs. SP-A particles were internalized via coated pits/vesicles and transported to secondary lysosomes. Uptake was inhibited in the presence of alpha-D-mannosyl-bovine serum albumin (BSA) but not by beta-D-galactosyl-BSA. Two mannose-dependent recognition mechanisms might mediate SP-A uptake by macrophages. First, as SP-A is a glycoprotein with N-glycosylated glycans it could act as a ligand for the mannose-specific receptor on macrophages. Second, as SP-A is a mannose-specific lectin itself it could bind to mannose residues on the macrophage's cell surface. Activity of the Man-receptor on macrophages was demonstrated with alpha-D-mannosyl-BSA coated onto gold particles. Exposed alpha-D-mannosyl residues on macrophages were identified by Concanavalin A adsorbed onto gold particles. Hence, both mechanisms may be involved in principle. As monocytes have no mannose-specific receptor activity on their cell surface but internalize SP-A gold particles in a mannose-dependent manner, we conclude that at least the second mechanism participates in the recognition of SP-A by macrophages.  相似文献   

13.
Phagocytosis of foreign pathogens by cells of the immune system is a vitally important function of innate immunity. The phagocytic response is initiated when ligands on the surface of invading microorganisms come in contact with receptors on the surface of phagocytic cells such as neutrophils, monocytes/macrophages, and dendritic cells. The complement receptor CR3 (CD11b/CD18, Mac-1) mediates the phagocytosis of complement protein (C3bi)-coated particles. Fcγ receptors (FcγRs) bind IgG-opsonized particles and provide a mechanism for immune clearance and phagocytosis of IgG-coated particles. We have observed that stimulation of FcγRs modulates CR3-mediated phagocytosis and that FcγRIIA and FcγRI exert opposite (stimulatory and inhibitory) effects. We have also determined that an intact FcγR immunoreceptor tyrosine-based activation motif is required for these effects, and we have investigated the involvement of downstream effectors. The ability to up-regulate or down-regulate CR3 signaling has important implications for therapeutics in disorders involving the host defense system.  相似文献   

14.
During the sexual cycle of Dictyostelium discoideum, zygote giant cells develop and serve as foci for further development by chemoattracting and cannibalizing hundreds of local amoebae. Previous work has shown that the phagocytic process bears similarities to and differences from asexual endocytosis. In the present study, sexual phagocytosis in D. discoideum was found to be species and developmental stage specific. It was inhibited selectively by glucose and concanavalin A. Although a partial, inhibitory effect of mannose on phagocytosis was not statistically significant, alpha-methylmannosamine, like alpha-methyl-glucose, significantly restored the phagocytic competence of giant cells treated with concanavalin A. Other sugars (N-acetyl-glucosamine, N-acetylgalactosamine, and galactose) and lectins (wheat germ agglutinin, Ulex europus type I, and Ricinis communis agglutinin type I) had no significant effect on sexual phagocytosis. Together these data indicate that a glucose-type receptor is involved in selective uptake of D. discoideum amoebae by giant cells.  相似文献   

15.
For the first time a sugar receptor (lectin) has been localized by electron microscopy in an invertebrate. The peritrophic membrane of the blowfly larva, Calliphora erythrocephala, is shown here to express lectins with high specificity for mannose. The lectin is restricted to the lumen side of the peritrophic membrane. The surface of the midgut epithelium is devoid of mannose-specific lectins. It is suggested that the midgut epithelium has lost these lectins during the course of evolution in favour of the peritrophic membrane which is secreted by specialized cells only at the beginning of the midgut.Peritrophic membranes and the midgut epithelium lack lectins specific for galactose. The lumen side of the peritrophic membrane of the larvae has mannose and/or glucose residues, and it is densely packed with two species of bacteria, Proteus vulgaris and P. morganii. These also have mannose-specific lectins as well as mannose residues on their pili. The existence of mannose-specific receptors and mannose residues on both, peritrophic membranes and bacteria, leads to the assumption of mutual adherence between the two surfaces.  相似文献   

16.
Complement receptor 3 (CR3) is an integrin that recognizes several different ligands. Binding to CR3 in phagocytic cells activates signaling pathways involved in cytoskeleton rearrangement, regulation of cell motility, alteration of gene expression and phagocytosis of complement-opsonized as well as of some non-opsonized particles and pathogenic bacteria. However, CR3-mediated phagocytosis of some Gram-negative bacteria does not induce bacterial clearance. Pseudomonas aeruginosa, Salmonella and Escherichia coli are eliminated after phagocytic cell-bacteria interaction mediated by CR3. However, Bordetella takes advantage of the CR3 function and uses it to enter into macrophages leading to bacterial survival. The final fate of the pathogen is determined by combinations of host and bacterial factors, in which molecular interactions between CR3 and bacterial ligands are involved.  相似文献   

17.
BACKGROUND INFORMATION: The parasitic protozoan Trichomonas vaginalis is the causative agent of trichomoniasis, a sexually transmitted disease. The phagocytic activity of this parasite has not been completely elucidated. In order to better understand the mechanisms of trichomonal phagocytosis, we have studied the in vitro capacity of T. vaginalis to phagocytose and degrade Saccharomyces cerevisiae cells. RESULTS AND CONCLUSIONS: To analyse the phagocytic ability and capacity, two isolates of T. vaginalis presenting different virulence grades were used. Complementary techniques, such as fluorescence microscopy, computer-based fluorescence analysis, scanning and transmission electron microscopy and the use of drugs that interfere with the actin microfilaments, were used in order to follow the behaviour of the actin cytoskeleton during phagocytosis of yeast cells by T. vaginalis. It was concluded that: (1) T. vaginalis changes its shape rapidly and engulfs the yeast cells, which are almost as large as the parasite; (2) long-term and fresh cultures are able to phagocytose, although the low-virulence strain JT demonstrated a lower activity when compared with the highly virulent T016 isolate; (3) the T016 strain exhibited an amoeboid morphology during the internalization of yeast cells in contrast with the JT strain; (4) attachment of yeast cells to the parasite occurs via the whole cell surface, including both anterior and recurrent flagella; (5) two forms of phagocytosis were observed: a 'sinking' process without any apparent participation of plasma membrane extensions and the classical phagocytosis where pseudopodia are extended toward the target cell; (6) the internalized S. cerevisiae are digested in lysosomes; (7) competitor sugars D-mannose or L-fucose inhibit the phagocytosis, and inhibition was 1.67 times higher in long-term cultured JT than that of the parasites from fresh isolate T016; (8) a thick layer of actin microfilaments was present underlying the plasma membrane, and especially in the pseudopodia and around the phagocytosed particles; (9) a dramatic change in the distribution pattern of fibrillar actin occurred during phagocytosis; (10) cytochalasin D depressed the phagocytosis; (11) a non-specific recognition and phagocytosis of yeast cells by T. vaginalis is mediated by a mannose receptor present on the parasite surface; (12) the phagocytic process may occur simultaneously during mitosis of the parasite.  相似文献   

18.
A specific apoptotic glycosylation pattern may play an assistant or even a causative role in phagocytosis of apoptotic bodies. To elucidate the role of macrophages in lectin-mediated phagocytosis, an experimental system was used, where monocyte-derived THP-1 cells engulf the apoptotic bodies from the melanoma cell line MELJUSO. A flow cytometry assay was performed to reveal lectin expression and quantify the phagocytosis of apoptotic bodies. Taking into account that siglecs, a mannose receptor and galectins expressed on macrophages could be involved in engulfment of apoptotic bodies we studied their potential expression on THP-1 cells by means of polyacrylamide glycoconjugates. A strong binding of the cells to siglec ligands (3'SiaLac, 6'SiaLac, [Neu5Acalpha2-8]2) and galectin ligands (LacNAc, GalNAcbeta1 - 4GlcNAc, Galbeta1 - 3GalNAcbeta and asialoGM1) was observed. To reveal the corresponding targets on apoptotic bodies, the carbohydrate pattern of MELJUSO cells was analyzed. The apoptotic membrane was characterized by a high level of glycans terminated by galactose or sialic acid. To study lectin-mediated phagocytosis of apoptotic bodies by THP-1 cells, an inhibitory phagocytosis assay was performed. Binding of Galbeta1 - 3GalNAc- or LacNAc-specific reagents (lectins and antibodies) to apoptotic bodies abolished their engulfment by the THP-1 cells whereas blocking of Neu5Acalpha2 - 6 or Neu5Acalpha2 - 3 sites by the corresponding lectins was not effective. Furthermore, Galbeta1 - 3GalNAcbeta-PAA or asialoGM1-PAA binding to the THP-1 cells decreased phagocytosis, whereas two other potent THP-1-binding probes, LacNAc-PAA and GalNAcbeta1 - 4GlcNAc-PAA did not inhibit phagocytosis. Thus, Galbeta1 - 3GalNAcbeta-terminated chains represented on the apoptotic bodies but not the other tested galectin ligands appear to be a target for THP-1 cells.  相似文献   

19.
Streptavidin substituted with mannose residues increased by 20-fold the intracellular concentration of a biotinylated dodecakis(alpha-deoxythymidylate) in macrophages by comparison with the uptake of free oligodeoxynucleotide. Streptavidin, the bacterial homologue of the very basic avidin, which does not contain any carbohydrate moieties and is a neutral protein, was substituted with 12 mannose residues in order to be recognized and internalized by mannose-specific lectins on the surface of macrophages. A 3'-biotinylated and 5'-fluoresceinylated dodecakis (alpha-deoxythymidylate) was synthesized and bound onto mannosylated streptavidin. The conjugate was isolated, and by using flow cytometry, it was shown that the uptake of fluoresceinylated oligodeoxynucleotides bound to mannosylated streptavidin by macrophages is 20-fold higher than that of free oligodeoxynucleotides and that the uptake was competively inhibited by mannosylated serum albumin. Glycosylated streptavidin conjugates recognizing specific membrane lectins on different cells provide the possibility to target biotinylated antisense oligodeoxynucleotides and to increase the biological effect of these chemotherapeutic agents.  相似文献   

20.
Pulmonary collectins in innate immunity of the lung   总被引:1,自引:0,他引:1  
Pulmonary collectins, hydrophilic surfactant proteins A and D (SP-A and SP-D), have been implicated in the regulation of pulmonary host defence and inflammation. SP-A and SP-D directly interact with a variety of microorganisms including bacteria and viruses, and attenuate the growth of Gram-negative bacteria, Histoplasma capsulatum and Mycoplasma pneumoniae. The collectins are thought to contribute to bacterial clearance. These lectins augment the phagocytosis of the bacteria by macrophages. SP-A serves as an opsonin and stimulates the uptake of bacteria and bacillus Calmette-Guérin through a C1q receptor- and an SP-R210-mediated processes. The collectin also stimulates FcR- and CR1-mediated phagocytosis by activating the macrophages. In addition, SP-A and SP-D directly interact with macrophages and enhance the phagocytosis of Streptococcus pneumoniae and Mycobacterium by increasing cell surface localization of the phagocytic receptors, scavenger receptor A and mannose receptor. The collectins also modulate pulmonary inflammation. SP-A and SP-D bind to cell surface receptors including Toll-like receptors, SIRPalpha and calreticulin/CD91, and attenuate or enhance inflammation in a microbial ligand-specific manner. In this article we review the immunomodulatory functions of SP-A and SP-D and their possible mechanisms in direct actions on microbes, macrophage phagocytosis and modulation of inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号