首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The flagellar apparatuses of the quadriflagellate zoo-spores and biflagellate female gametes of the marine chaetophoracean alga Entocladia viridis Reinke are significantly different from those of algae belonging to Chaetophoraceae sensu stricto, but closely resemble those of ulvacean genera. These differences permit the taxonomic reassignment of certain marine chaetophoracean genera and an evaluation of the flagellar apparatus features used to characterize the class Ulvophyceae. Critical features of the zoospore include arrangement of the four basal bodies into an upper and a lower pair with the proximal ends of the upper basal bodies overlapping, terminal caps, proximal sheaths connected to one another by striated bands, and a cruciate microtubular rootlet system having a 3-2–3-2 alternation pattern and striated microtubule-associated components that accompany the two-membered rootlets. An indistinct distal fiber occurs just anterior to the basal bodies, and is closely associated with the insertion into the flagellar apparatus of the three-membered rootlets. The flagellar apparatus demonstrates 180° rotational symmetry, and its components show counterclockwise absolute orientation when viewed from above. Newly described features include the prominently bilobed structure of the terminal caps on the upper basal body pair, and the presence of both a granular zone and an additional single microtubule anterior to each of the four rootlets, an arrangement termed the “stacked rootlet configuration.” Rhizoplasts were not observed and are presumed to be absent. The gamete is identical, except for the absence of the lower basal body pair and the presence of an electron-dense membrane associated structure that resembles the mating structure found in Ulva gametes. These findings, correlated with life history data, sporangial and gametangial structure and developmental patterns, chloroplast pigment arrays, and vegetative cell ultrastructural features, compel the removal of Entocladia viridis and similar members of the marine Chaetophoraceae to a separate family, the Ulvellaceae. The latter is referred to the order Ulvales of the Ulvophyceae. The counterclockwise absolute orientation of components, and terminal caps, may be the most consistent flagellar apparatus features of ulvophycean green algae, while variations in other features previously considered diagnostic for the Ulvophyceae may serve instead to identify discrete lineages within this class.  相似文献   

2.
Wysor  B.  O''Kelly  C. J.  & Bellows  W. K. 《Journal of phycology》2003,39(S1):61-61
The traditional use of thallus morphology to define lineages within the Ulvophyceae proved problematic because parallelism and convergence obscured natural relationships. The advent of transmission electron microscopy led to a re-evaluation of groups on the basis of zoid characters. Within TEM-defined lineages, the Ulotrichales and Ulvales were considered closely related orders, and molecular evidence has substantiated this hypothesis. In our molecular systematic studies of ulvophyceous green algae, we have broadened taxon sampling among these two orders. We show that the Ulvales and Ulotrichales are indeed monophyletic orders. However, the phylogenetic placement of species in the genera Bolbocoleon, Ctenocladus, Phaeophila, Pseudendoclonium and Acroblaste indicates that one or more additional lineages, placed between Ulvales and Ulotrichales in gene sequence trees, must be recognized. These species may constitute a separate order (Ctenocladales) consisting of multiple families. Our findings will be compared with taxonomic concepts based on morphological criteria.  相似文献   

3.
The traditional use of thallus morphology to define lineages within the Ulvophyceae proved problematic because parallelism and convergence obscured natural relationships. The advent of transmission electron microscopy led to a re‐evaluation of groups on the basis of zoid characters. Within TEM‐defined lineages, the Ulotrichales and Ulvales were considered closely related orders, and molecular evidence has substantiated this hypothesis. In our molecular systematic studies of ulvophyceous green algae, we have broadened taxon sampling among these two orders. We show that the Ulvales and Ulotrichales are indeed monophyletic orders. However, the phylogenetic placement of species in the genera Bolbocoleon, Ctenocladus, Phaeophila, Pseudendoclonium and Acroblaste indicates that one or more additional lineages, placed between Ulvales and Ulotrichales in gene sequence trees, must be recognized. These species may constitute a separate order (Ctenocladales) consisting of multiple families. Our findings will be compared with taxonomic concepts based on morphological criteria.  相似文献   

4.
The overall appearance of the flagellar apparatus in the isogametes of Batophora oerstedii. J. Ag. is most like that which occurs in motile cells of the Ulvophyceae. Like other Ulvophyceae, the basal bodies overlap and are arranged in the 11/5 configuration, microtubular roots are arranged in a cruciate pattern and system II striated fibers are present. The basal body connective which generally lacks striation in the Ulvophyceae is clearly different in Batophora, being composed of two large non-striated halves which connect to the anterior surface of each basal body and are then connected to one another by a distinctly fibrous centrally striated region. This variation in the basal body connective and the presence of two posteriorly directed system II striated fibers is clearly different from homologous structures reported in siphonous green algae of the Caulerpales. Based upon these variations and similarities among flagellar apparatus components in siphonous green algae, it is suggested that the Dasycladales and Siphonodadales are more closely related to one another than to the Caulerpales.  相似文献   

5.
Absolute configurational analyses of flagellar apparatus components were performed on the motile cells produced by three species of Cladophora, Cl. dalmatica Kütz., Cl. flexuosa (Dillw.) Harv., and Cl. glomerata (L.) Kütz., and by Chaetomorpha aerea (Dillw.) Kütz. There was little variation among the species. All of the flagellar apparatuses demonstrated the ulvophyceous features of 180° rotational symmetry, counterclockwise absolute orientation, and basal body overlap, as well as the alignment of the basal bodies perpendicular to the long axis of the cell. Diagnostic features included the nearly complete absence of C tubules from the basal bodies and the presence of a coarsely striated component dorsal to the two-membered rootlets in all cells, as well as, in quadriflagellate cells, a tetralobate distal fiber, the coaxial arrangement of the lowermost pair of basal bodies, and the presence of a characteristic array of basal-body-associated striated bands. The distal fiber architecture, the presence of a “wing” in the X-membered rootlets, and the “flattening” of the flagellar apparatus components suggests a close relationship of the Cladophoraceae to the Dasycladales, and indicates that these two groups may have shared a common ancestor, possibly ancient in terms of the geological time scale but relatively recent in the context of ulvophyceous evolution. A sizeable phylogenetic gap exists between the Cladophoraceae and uninucleate-celled, presumably primitive members of the Ulvophyceae.  相似文献   

6.
The zoospores and isogametes ofUlvaria obscura var.blyttii, the isogametes ofMonostroma bullosum, and the anisogametes ofM. grevillei have a flagellar apparatus with counterclockwise absolute orientation and terminal caps, and therefore belong to theUlvophyceae. On the basis of the absence or presence of body scales and the morphologies of certain flagellar apparatus components,Ulvaria obscura var.blyttii is retained in theUlvales, whileM. bullosum, M. grevillei andM. oxyspermum are referred to theUlotrichales. Differences in scale morphology, certain flagellar apparatus components, and early thallus ontogeny support the transfer ofM. oxyspermum to the genusGayralia. Mating structures and their positional relationships within the cell are described from the gametes examined. A plasmalemma-associated plaque that may be a degenerate mating structure occurs in someG. oxysperma motile cells.  相似文献   

7.
Systematic hypotheses for the Ulvaceae were tested using phylogenetic analysis of sequences for the gene encoding the large subunit of RUBISCO, small subunit rDNA and a combined data matrix. Representatives of eight putative ulvaceous genera and twelve additional taxa from the Ulvophyceae and Trebouxiophyceae were included in analyses using maximum parsimony and maximum likelihood criteria. Molecular data supported hypotheses for the Ulvaceae that are based on the early development of vegetative thalli and motile cell ultrastructure. Ulvaceae sensu Floyd and O'Kelly, including Percursaria Bory de Saint‐Vincent, Ulvaria Ruprecht and a complex of closely related species of Chloropelta Tanner, Enteromorpha Link and Ulva L. was supported; however, monophyly of Enteromorpha and Ulva was not supported. The Ulvales and Ulotrichales sensu Floyd and O'Kelly were monophyletic. Blidingia Kylin and Kornmannia Bliding were allied with the former and Capsosiphon Gobi with the latter, although relationships among these and other taxa in these orders remain uncertain. The Ulvales are characterized by an isomorphic life history pattern, gametangia and sporangia that are identical in structure and development, motile cells with bilobed terminal caps and proximal sheaths consisting of two equal subunits. Method of motile cell release and the gross morphology of vegetative thalli are not systematically reliable characters.  相似文献   

8.
The flagellar apparatus of the biflagellate zoospores from Blastophysa rhizopus Reinke has 180° rotational symmetry of the major components and counterclockwise absolute orientation. The basal bodies are connected anteriorly by a prominent striated distal fiber and posteriorly by two proximal striated bands. The C microtubules in the basal bodies terminate proximal to the transition region. Terminal caps and well-defined proximal sheaths are absent. The four microtubular rootlets diverge at a very small angle from the basal bodies. Six to eight (usually seven) microtubules are present in the s rootlets and two microtubules in the d rootlets. Rootlet 1s is associated with the eyespot. Each d rootlet is subtended by a coarsely striated fiber. Rootlet Id also has a finely striated fiber, roughly opposite the coarsely striated fiber, associated with it. Rhizoplasts and mating structures were not observed. Ultrastructural features of B. rhizopus zoospores are essentially identical with those found in examined members of the Siphonocladales sensu lato (= Siphonocladadales/Cladophorales complex) and Dasycladales, and have relatively few features in common with motile cells of caulerpalean algae. Blastophysa rhizopus probably does not represent an intermediate between the Siphonocladadales and the Caulerpales. Its evolutionary history is different from that of other algae placed in the siphonocladalean family Chaetosiphonaceae. Whether or not Blastophysa is representative of the ancestor to the Siphonodadales and Dasycladales is unclear.  相似文献   

9.
In traditional chlorophytan systems the organizational level was the primary character for the distinction of main groups (classes and orders). For instance, in Fott (1971), the flagellate level corresponds with the Volvocales, the coccoid level with the Chlorococcales, the filamentous level with the Ulotrichales, the siphonocladous level with the Siphonocladales, and the siphonous level with the Bryopsidales. The new system presented here is an elaboration and emendation of recently proposed taxonomies and their underlying phylogenetic hypotheses, and it is mainly based on ultrastructural features which have become available over the last 15 years. The following criteria are used for the distinction of classes and orders: (1) architecture of the flagellate cell (flagellate cells are considered as the depositories of primitive characters); (2) type of mitosis-cytokinesis; (3) place of meiosis in the life history and, consequently, the sexual life history type; (4) organizational level and thallus architecture; (5) habitat type (marine versus feshwater and terrestrial); (6) chloroplast type. The following classes are presented: Prasinophyceae, Chlamydophyceae, Ulvophyceae (orders Codiolales, Ulvales, Cladophorales, Bryopsidales, Dasycladales), Pleurastrophyceae (?), Chlorophyceae s.s. (orders Cylindrocapsales, Oedogoniales, Chaetophorales), Zygnematophyceae, Trentepohliophyceae, Charophyceae (orders Klebsormidiales, Coleochaetales, Charales). The new system no longer reflects the traditional hypothesis of a stepwise evolutionary progression of organizational levels in which the flagellate level represents the most primitive lineage, the coccoid and sarcinoid levels lineages of intermediate derivation, and the filamentous, siphonocladous and siphonous levels the most derived lineages. Instead, it is now hypothesized that these levels have arisen over and over again in different chlorophytan lineages which are primarily characterized by their type of flagellate cell. The flagellate green algal classes Prasinophyceae (with organic body scales) and Chlamydophyceae probably represent bundles of highly conservative lineages that diverged very long ago. Consequently, extant genera and species in these classes can be expected to have emerged long ago. Fossil evidence points to a minimum age of 600 Ma of certain extant Prasinophycean genera, and molecular evidence to a minimum age of 400–500 Ma of a fewChlamydomonas species. On the contrary, the most derived “green algal” lineage, the Angiosperms, can be expected to consist of, on average, much younger genera and species. Fossil evidence points to a minimum age of genera of 5–60 Ma. Lineages of intermediate evolutionary derivation (Ulvophyceae, Chlorophyceae, Charophyceae) can be expected to encompass genera and species of intermediate age. Fossil and (limited) molecular evidence point to a minimum age of 230–70 Ma of extant genera in Bryopsidales, Dasycladales and Cladophorales (Ulvophyceae) and of 250–80 Ma of extant genera in Charales (Charophyceae).  相似文献   

10.
Cladistic analysis of nuclear-encoded rRNA sequence data provided us with the basis for some new hypotheses of relationships within the green algal class Ulvophyceae. The orders Ulotrichales and Ulvales are separated from the clade formed by the remaining orders of siphonous and siphonocladous Ulvophyceae (Caulerpales, Siphonocladales /Cladophorales [S/C] complex, and the Dasycladales), by the Chlorophyceae and Pleurastrophyceae. Our results suggest that the Ulvophyceae is not a monophyletic group. Examination of inter- and intra-ordinal relationships within the siphonous and siphonocladous ulvophycean algae revealed that Cladophora, Chaetomorpha, Anadyomene, Microdictyon, Cladophoropsis and Dictyosphaeria form a clade. Thus the hypothesis, based on ultrastructural features, that the Siphonocladales and Cladophorales are closely related is supported. Also, the Caulerpales is a monophyletic group with two lineages; Caulerpa, Halimeda, and Udotea comprise one, and Bryopsis and Codium comprise the other. The Dasycladales (Cymopolia and Batophora) also forms a clade, but this clade is not inferred to be the sister group to the S/C complex as has been proposed. Instead, it is either the sister taxon to the Caulerpales or basal to the Caulerpales and S/C clade The Trentepohliales is also included at the base of the siphonous and siphonocladous ulvophycean clade. The Pleurastrophyceae, which, like the Ulvophyceae, posses a counter-clockwise arrangement of flagellar basal bodies, are more closely related to the Chlorophyceae than to the Ulvophyceae based on rRNA sequences. Thus, the arrangement of basal bodies does not diagnose a monophyletic group. Previously reported hypotheses of phylogenetic relationships of ulvophycean algae were tested. In each case, additional evolutionary steps were required to obtain the proposed relationships. Relationships of ulvophycean algae to other classes of green algae are discussed.  相似文献   

11.
Eight complete nuclear-encoded small-subunit ribosomal RNA (18S rRNA) gene sequences were determined for four genera of the Microthamniales (Pleurastrophyceae) and for Gloeotilopsis planctonica Iyengar & Philipose (Ulvophyceae, Ulotrichales) to investigate evolutionary relationships within the Microthamniales and the taxonomic position of this order within the green algae. Phylogenies inferred from these data revealed specific relationships at the level of genera and species that disagree with those inferred from vegetative cell morphology but agree with those inferred from motile cell characters. The rRNA phylogenies provide even better resolution than that gained from morphology alone. The coccoid lichen alga Trebouxia spp. is specifically related to other coccoid lichen and soil algae (i.e. Myrmecia biatorellae Boye-Petersen and Friedmannia israelensis Chantanachat & Bold), forming the “Lichen Algae Group,” an evolutionarily distinct lineage within the Microthamniales. Trebouxia is a paraphyletic and Pleurastrum a polyphyletic genus in rRNA phylogenies. In contrast to previous hypotheses based on morphology, Pleurastrum terrestre Fritsch & John is not closely related to Trebouxia but occupies an isolated position within the Microthamniales. The filamentous alga Microthamnion kuetzingianum is not ancestral to coccoid members of the Microthamniales but is closely related with the coccoid Fusochloris perforata (Lee & Bold) Floyd, Watanabe & Deason. The Microthamniales are inferred to be an array of independent lineages that radiate nearly simultaneously and may also include some autosporic coccoid taxa previously classified in the Chlorophyceae. Monophyly of the Microthamniales could not be demonstrated unequivocally. In contrast to a hypothesis based on ultrastructure, the Microthamniales are evolutionarily distinct from the Ulotrichales. The latter are ancestral to the radiation of the Microthamniales and the Chlorophyceae in the rRNA phylogenies.  相似文献   

12.
Ultrastructural and molecular sequence data were used to assess the phylogenetic position of the coccoid green alga deposited in the culture collection of the University of Texas at Austin under the name of Neochloris sp. (1445). This alga has uninucleate vegetative cells and a parietal chloroplast with pyrenoids; it reproduces by forming naked biflagellate zoospores. Electron microscopy revealed that zoospores have basal bodies displaced in the counterclockwise absolute orientation and overlapped at their proximal ends. Four microtubular rootlets numbering 2 and 2/1 are alternatively arranged in a cruciate pattern. A system I fiber extends beneath each d rootlet and a system II fiber (rhizoplast) originates from each basal body and extends peripherally along each d rootlet. These features differ substantially from those of the three genera, Ettlia (Komárek) Deason et al., Neochloris (Starr) Deason et al., and Parietochloris Watanabe et Floyd, all of which were previously accommodated in the single genus Neochloris Starr. Sequence data from the nuclear small subunit ribosomal RNA gene were obtained and compared with published green algal sequences. Results from the ultrastructural and sequence data support the placement of Neochloris sp. (The Culture Collection of Algae at the University of Texas at Austin [UTEX] no. 1445) in the Ulvophyceae. This isolate is described as Pseudoneochloris marina , gen. et sp. nov. in the Ulotrichales, Ulvophyceae.  相似文献   

13.
The tiny jumping flagellate originally described as Pedinomonas mikron Throndsen was isolated into pure culture from Australian waters and its ultrastructure critically examined. Pedinomonas mikron differs in behavior and in features of the flagellar apparatus from P. minor, the type species from freshwater, and is referred to the new genus Resultor. The two genera are closely related and form the new class Pedinophyceae, which is characterized by features of the flagellar apparatus, mitosis, and cytokinesis. The flagella show the 11/5 orientation otherwise characteristic of Ulvophyceae and Pleurastrophyceae, but they are arranged end to end as in the Chlorophyceae. The flagellar root system is asymmetric and includes a rhizoplast that emerges from the base of one flagellum but subsequently associates with a microtubular root from the second basal body. Mitosis studied previously by Pickett-Heaps and Ott in Pedinomonas is closed, unlike in other green algae, and the spindle is persistent. No phycoplast or phragmoplast is formed during cytokinesis. The eyespot of the Pedinophyceae is located at the opposite end of the cell from the flagella and adjacent to the pyrenoid, as in the most primitive members of the Prasinophyceae. Members of the Pedinophyceae lack prasinoxanthin and Mg 2,4D, characteristic of certain other primitive green algae. The primitive green algae include the classes Prasinophyceae and Pedinophyceae. Micromonadophyceae Mattox et Stewart is considered a synonym of Prasinophyceae. Two new orders are established, Pedinomonadales, containing all known members of the Pedinophyceae, and Scourfieldiales, with the single family Scourfieldiaceae fam. nov. and the single genus Scourfieldia.  相似文献   

14.
The ultrastructural features of the biflagellate motile cells of six different species of the Chlorophyceae, namely Dunaliella lateralis (Polyblepharidaceae, Chlamydomonadales), Chlorococcum hypnosporum, Spongiochloris spongiosa, Protosiphon botryoides (Chlorococcaceae, Chlorococcales), Tetracystis aeria and Pseudotetracystis terrestris (Tetracystidaceae, Chlorococcales), were examined with an emphasis on the flagellar apparatus (FA). They have different vegetative characteristics, such as, being motile or nonmotile, variations in chloroplast morphology, possession of one or more nuclei, and reproductive features such as formation of tetrahedral tetrads, and naked or walled zoospores. Ultrastructural differences amongst reproductive cells of the six species include variations in cell surface structure, basal body to basal body angle, beamlike extensions of the distal fiber, extensive connections of the proximal sheath between basal bodies, two-membered rootlets, striated microtubule-associated components, two-membered rootlet-nucleus and/or mitochondria connections, X-membered rootlets, connections of rootlets and basal bodies, rhizoplasts and accessory basal bodies. All six species possess pyrenoids penetrated by thylakoid membranes, and the FA typical of the Chlorophyceae (sensu Mattox and Stewart, 1984). These six species should be divided into two groups. The first includes D. lateralis, C. hypnosporum, and T. aeria, in which accessory basal bodies are present, the basal body to basal body angle is relatively fixed, and a cell wall or surface coat is present. The second group includes Ps. terrestris, S. spongiosa, and Pr. botryoides, in which accessory basal bodies are absent, the basal body to basal body angle is variable and the zoospores are naked.  相似文献   

15.
16.
The phylogenetic relationships of two unicellular green algae, Ignatius tetrasporus Bold et MacEntee and Pseudocharacium americanum Lee et Bold were investigated by ultrastructural and molecular methods. The zoospores from both species were covered neither by scales nor cell walls. The flagellar apparatus of the zoospores commonly included these features: the upper basal bodies were displaced counterclockwise in half to two‐thirds of the basal body diameter and did not overlap with each other; the lower basal bodies were directly opposed or slightly displaced clockwise; the distal fiber had gently sigmoid central striations; terminal caps were absent from the ends of the basal bodies; a V‐shaped proximal sheath extended from the upper basal bodies; a posterior fiber lay between the opposite lower basal bodies; and the coarsely striated band linked the sinister rootlet to the lower basal body. The suite of these features was not identical to that of any other quadriflagellate swimming cells, but some features including the lower basal body orientation, the striated distal fiber, and the coarsely striated fiber resemble those of the several organisms of the Siphonocladales sensu Floyd and O’Kelly. Phylogenetic analysis using 18S rDNA sequence data revealed that I. tetrasporus and P. americanum formed a monophyletic clade within the clade of Ulvophyceae sensu López‐Bautista and Chapman, but was not nested within any of the orders of the class that were examined.  相似文献   

17.
Aspects of the reproduction of Bolbocoleon piliferum N. Pringsheim, a common, small, filamentous, endophytic marine green alga, were examined by LM and TEM. These observations were combined with phylogenetic analysis of nuclear‐encoded small subunit rRNA gene sequences to assess the phylogenetic position of B. piliferum. Quadriflagellate zoospores and planozygotes derived from fusion of isogametes yielded plants with identical morphology. Zoosporangia and gametangia divided by sequential cleavages. Plugs at the apices of zoosporangia and gametangia formed during development; tubes were found at zoosporangial and gametangial apices after swarmer release. Flagellar apparatuses of zoospores and gametes were similar to those of algae in the Ulvales (Ulvophyceae), except that terminal caps were entire rather than bilobed and rhizoplasts and “stacked” microtubular root configurations were absent. Structures associated with planozygotes were identical to those observed in other algae currently assigned to Ulotrichales and Ulvales. Molecular phylogenetic analyses placed B. piliferum within the Ulvophyceae, at the base of a clade that contains representatives of the families Ulvaceae, Ulvellaceae, and Kornmanniaceae. The results support an earlier hypothesis that B. piliferum constitutes a distinct lineage. Analyses including Kornmanniaceae recover monophyletic Ulotrichales and Ulvales, whereas analyses omitting the Kornmanniaceae indicate that Ulotrichales is paraphyletic. The structures associated with gamete fusion are conserved within Ulotrichales and Ulvales and perhaps more widely within Chlorophyta.  相似文献   

18.
Cephaleuros parasiticus Karsten, an endophyte of Magnolia grandiflora L. has been examined with light, and scanning and transmission electron microscopy. The discoid thalli are composed of filaments which ramify throughout the leaf tissues beneath the epidermis. Algal filaments do not penetrate host cells, but do produce black leaf spots which have been mistaken for those caused by the fungus Glomerella cingulate (Ston.) Spauld. and Schrenk. Two distinct thallus types occur, often simultaneously on a single leaf. One bears clusters of zoosporangiate branches which seasonally emerge through the ventral (and rarely, dorsal) surface of the leaf. In contrast, the other thallus type bears gametangia which break through the dorsal leaf surface. Zoosporangia and gametangia have never been found on the same thallus. The zoosporangia are smaller than, but almost identical in shape to, those of C. virescens Kunze. Simple plasmodesmata are present in crosswalls and acetolysis indicates that little or no sporopollenin is present in the cell walls. The ultrastructure of biflagellate gametes and quadriflagellate zoospores is virtually indistinguishable from that reported for C. virescens and similar to that reported for Phycopeltis and Trentepohlia. In both gametes and zoospores there are keeled flagella, overlapping and parallel basal bodies, two 3-layered multilayered structures with microtubular splines, and two medial compound microtubular roots. Pyrenoids, eyespots, flagellar and body scales, striated roots (or rhizoplasts), and distal bands are absent. Two presumptive mating structures are present in each biflagellate gamete, and flagellar collars occur in both types of motile cells. The extreme similarity in motile cell ultrastructure revealed in this interspecific comparison parallels that similarity revealed in intergeneric comparisons.  相似文献   

19.
ABSTRACT. The systematics of the green algal class Ulvophyceae have been difficult to resolve with ultrastructural and molecular phylogenetic analyses. Therefore, we investigated relationships among ulvophycean orders by determining the distribution of two discrete genetic characters previously identified only in the order Dasycladales. First, Acetabularia acetabulum uses the core translation GTPase Elongation Factor 1α (EF-1α) while most Chlorophyta instead possess the related GTPase Elongation Factor-Like (EFL). Second, the nuclear genomes of dasycladaleans A. acetabulum and Batophora oerstedii use a rare non-canonical genetic code in which the canonical termination codons TAA and TAG instead encode glutamine. Representatives of Ulvales and Ulotrichales were found to encode EFL, while Caulerpales, Dasycladales, Siphonocladales, and Ignatius tetrasporus were found to encode EF-1α, in congruence with the two major lineages previously proposed for the Ulvophyceae. The EF-1α of I. tetrasporus supports its relationship with Caulerpales/Dasycladales/Siphonocladales, in agreement with ultrastructural evidence, but contrary to certain small subunit rRNA analyses that place it with Ulvales/Ulotrichales. The same non-canonical genetic code previously described in A. acetabulum was observed in EF-1α sequences from Parvocaulis pusillus (Dasycladales), Chaetomorpha coliformis , and Cladophora cf. crinalis (Siphonocladales), whereas Caulerpales use the universal code. This supports a sister relationship between Siphonocladales and Dasycladales and further refines our understanding of ulvophycean phylogeny.  相似文献   

20.
The somatic cell flagellar apparatuses of Volvox carteri f. weismannia (Powers) Iyengar and V. rousseletii G. S. West have parallel or nearly parallel basal bodies which are separated at their proximal ends. The four microtubular rootlets alternate between two and four members, and all are associated with a striated microtubular associated component (SMAC) that runs between the basal bodies. In addition, each half of the flagellar apparatus apparently rotates during development and loses the 180° rotational symmetry characteristic of most unicellular chlorophycean motile cells. All of these features appear necessary for efficient motion of a colony composed of numerous radially arranged cells. However, the structural details of the flagellar apparatuses of these two species differ. The distance between flagella is greater in V. rousseletii than in V. carteri. One distal striated fiber and two proximal striated fibers connect the basal bodies in V. carteri, but both types of fibers are absent from V. rousseletii. In the latter species, a striated fiber wraps around each of the basal bodies and attaches to the rootlets and the SMAC. No such fiber is present in V. carteri. Since the similarities in the flagellar apparatuses can be explained as a result of adaptation for efficient colonial motion in organisms with similar colonial morphology, the differences suggest a wider phylogenetic distance than previously believed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号