首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Electrophoretic variability was examined in six species of Layia (Compositae), native to California, which have previously been studied by Clausen, Keck, and Hiesey, and are regarded as a classic example of geographic speciation in plants. The study was carried out to test the hypothesis that the extent of divergence in structural genes coding enzymes is concordant with divergence in morphological characteristics, ecological traits, and reproductive isolation. Eleven enzymes specified by 17 loci were analyzed. The genetic identity values were consistent with those expected on the model that the species diverged gradually as they adapted to geographically separate habitats. Thus, the values between the three species complexes proposed by Clausen, Keck, and Hiesey (L. chrysanthemoides/L. fremontii; L. jonesii/L. leucopappa/L. munzii; L. platyglossa) were substantially lower than the values between species within the complexes. The results provide an important contrast to the very high genetic identities between species which originated rapidly from their progenitors. The electrophoretic results also provided evidence that the cytosolic isozyme of phosphoglucomutase and the cytosolic NADP-dependent isocitrate dehydrogenase in the six species are coded by duplicate genes.  相似文献   

2.
An electrophoretic study of isozyme number for seven soluble enzymes revealed extensive gene duplications in eight diploid species of American Eupatorium belonging to three morphological groups. The enzymes isocitrate dehydrogenase, phosphoglucomutase, phosphoglucose isomerase, 6-phosphogluconate dehydrogenase, and shikimate dehydrogenase occur as three to six isozymes in all species, whereas the minimal conserved number typical of diploid plants is two isozymes for each. Fructose 1, 6-biphosphate aldolase is expressed as multibanded pattern suggesting fixed heterozygosity in all examined species. It was not possible to document gene duplication for triosephosphate isomerase from the electrophoretic patterns. All species examined have a chromosome number of 2n = 20, which has been regarded as the basic diploid number for Eupatorium. However, the detection of extensive duplications suggests that 2n = 10 may be the original diploid chromosome number in Eupatorium and that plants with 2n = 20 are of polyploid origin. This hypothesis would mean that extensive duplications at isozyme gene loci have been maintained since the origin of the genus, despite chromosomal diploidization having occurred.  相似文献   

3.
In the common bean, Phaseolus vulgaris, two loci encode cytosolic glucosephosphate isomerase (GPI) subunits, whereas in the garden pea, Pisum sativum, only one locus is expressed. As a working model, we proposed that this change in isozyme number was produced by a gene-duplication event in the lineage leading to Phaseolus after divergence from that leading to Pisum. This model was tested by analyzing the GPI phenotypes in 119 legume genera, representing all three subfamilies and 23 of the 30 tribes of the Papilionoideae. The duplication was detected in 13 of the 20 papilionoid tribes surveyed, including several members of the putatively primitive tribe Sophoreae. Thus, the duplication appears to be an ancient event, a finding incompatible with the initial hypothesis. Instead, gene silencing is postulated to account for the absence of the duplicated phenotype in many tribes, including such advanced groups as Vicieae, Trifolieae, and Cicereae. Furthermore, silencing has occurred numerous times at lower taxonomic levels, including the subtribe Phaseolinae (Phaseoleae), a monophyletic group in which ten genera were found to have duplicated phenotypes and only one (Strophostyles) appeared to have an unduplicated phenotype. Analysis of GPI phenotypes also revealed numerous cases of partial silencing of duplicate loci as well as nearly equal expression of both loci in many, taxonomically widely scattered species. If our revised hypothesis is correct, this latter result implies that most of the subtribes had formed before significant divergence between the GPI isozymes occurred and, thus, that the radiation of the Papilionoideae was rapid relative to the rate of gene silencing.  相似文献   

4.
The Oncidiinae has attracted attention because of the variation it exhibits in chromosome number, n = 5–30, which is greater than the range in the rest of the Orchidaceae. The genus Psygmorchis, with n = 5 and 7, has been a particular focus of controversy, and many authors have suggested that 5 and 7 are the base numbers for the subtribe. The other taxa in the subtribe presumably evolved through hybridization and polyploidy. Other workers have found that the lowest counts correlate with derived morphological conditions and have hypothesized that these low numbers result from aneuploid reductions, while higher numbers are associated with ancestral morphologies and are not the result of polyploidy. These two hypotheses were evaluated by determining isozyme numbers for 13 enzymes in species that span the chromosomal range known for the Oncidiinae (n = 5–30). Isozyme number has been shown to be a reliable indicator of polyploidy in angiosperms because polyploids display isozyme multiplicity relative to diploids. This analysis revealed no differences among species in isozyme number for the enzymes examined. Therefore, our data reject the hypothesis that species with higher chromosome numbers are polyploid.  相似文献   

5.
Nuclear genes that appear to encode both cytosolic and plastid isozymes of phosphoglucose isomerase (PGI), an essential glycolytic enzyme, have been isolated from three diploid species of the annual wild flower genus Clarkia (Onagraceae). The genes do not contain introns and are expressed to varying degrees in Escherichia coli when cloned in either Charon 35 phage or pUC plasmid vectors. The PGI proteins synthesized in E. coli form dimers, are catalytically active, and their electrophoretic mobilities are similar to those of appropriate Clarkia PGIs. The nucleotide sequence of a gene encoding a plastid isozyme of C. unguiculata is described.  相似文献   

6.
Pichersky E  Gottlieb LD 《Genetics》1983,105(2):421-436
Formal genetic analyses of the mode of inheritance of the multiple plastid and cytosolic isozymes of triose phosphate isomerase (TPI, EC 5.3.1.1) in annual diploid species of Clarkia (Onagraceae), native to California, suggest that each set of isozymes is specified by duplicate structural genes. In contrast, most diploid plant species possess one plastid and one cytosolic TPI isozyme each coded by a single locus. Linkage tests revealed that the two genes coding the plastid TPIs assort independently. Although the number of individuals sampled per species was small, the plastid isozymes were electrophoretically more variable than the cytosolic isozymes. The two gene duplications are the first reported that characterize an entire plant genus. Initial electrophoretic surveys of TPI in other genera of Onagraceae revealed that the duplication of the gene coding the plastid isozyme is apparently restricted to Clarkia, whereas that of the gene coding the cytosolic isozyme is present in most genera of the family. The separate phylogenetic distributions of the two duplications suggest that the processes that gave rise to them were unrelated.  相似文献   

7.
The genetic control of grain esterases in hexaploid wheat   总被引:1,自引:0,他引:1  
Summary Analysis of grain esterase isozymes in Chinese Spring aneuploid genotypes by IEF confirmed that genes on the long arms of chromosomes 3A, 3B and 3D (Est-5) control the production of 19 isozymes. Allelic variants have been found for the isozyme pattern controlled by each chromosome. Segregational data involving null alleles and complex phenotypic differences indicate that the wheat grain esterases are encoded by three compound and probably homoeoallelic loci, each capable of producing at least six different isozymes. In a sample of 138 hexaploid genotypes, seven alleles were distinguished.  相似文献   

8.
A series of new compounds was obtained by reaction of aromatic/heterocyclic sulfonamides incorporating amino groups with N,N-diphenylcarbamoyl chloride and diphenylacetyl chloride. These sulfonamides were assayed for the inhibition of three carbonic anhydrase (CA, EC 4.2.1.1) isozymes: the cytosolic CA I and CA II, and the transmembrane, cancer-associated isozyme CA IX. Good inhibitors against all these isoforms were detected, and the inhibition profile of the newly investigated isozyme IX was observed to be different from that of the cytosolic isozymes, I and II. This may lead to the development of novel anticancer therapies based on the selective inhibition of CA IX.  相似文献   

9.
We report the first complete purifications of the cytosolic and plastid isozymes of triose phosphate isomerase (TPI; EC 5.3.1.1) from higher plants including spinach (Spinacia oleracea), lettuce (Lactuca sativa), and celery (Apium graveolens). Both isozymes are composed of two isosubunits with approximate molecular weight of 27,000; in spinach and lettuce the plastid isozyme is 200 to 400 larger than the cytosolic isozyme. The two isozymes, purified from lettuce, had closely similar amino acid compositions with the exception of methionine which was four times more prevalent in the cytosolic isozyme. Partial amino acid sequences from the N-terminus were also obtained for both lettuce TPIs. Nine of the 13 positions sequenced in the two proteins had identical amino acid residues. The partial sequences of the plant proteins showed high similarity to previously sequenced animal TPIs. Immunological studies, using antisera prepared independently against the purified plastid and cytosolic isozymes from spinach, revealed that the cytosolic isozymes from a variety of species formed an immunologically distinct group as did the plastid isozymes. However, both plastid and cytosolic TPIs shared some antigenic determinants. The overall similarity of the two isozymes and the high similarity of their partial amino acid sequences to those of several animals indicate that TPI is a very highly conserved protein.  相似文献   

10.
The tissue and developmental specificities of the acid phosphatase (ACPH) isozymes of Triticum aestivum and its progenitor species T. turgidum and T. tauschii have been determined and compared using the zymogram technique. Tissue and/or developmental variation in relative staining intensity, suggestive of variation in the quantity of active enzyme present, was observed for each of the seven major isozymes expressed. Isozymes homologous to each of the major isozymes of the hexaploid were detected in one or the other of the progenitor species. No difference in the pattern of developmental or tissue specificity was observed between the species for any isozyme. However, ACPH-4, encoded by Acph4, a structural gene linked to chromosome 4A, differs in electrophoretic mobility between T. aestivum and T. turgidum, indicating that divergence has occurred between these species at the Acph4 locus since the origin of the hexaploid. The molecular weight of each of five ACPH isozymes of the hexaploid was determined to be approximately 58,000. This finding, plus the results of the developmental study and the earlier demonstration that the structural genes for six isozymes (including four of those whose molecular weight was determined) are linked to homoeologous chromosomes, provides evidence in support of the suggestion that the ACPH structural genes of hexaploid wheat are homoeologously related.Technical article No. 12233 of the Texas Agricultural Experiment Station. Adapted from a dissertation submitted to the Graduate College, Texas A&M University, by M. A. T. in partial fulfillment of the requirements for the Ph.D. in genetics.  相似文献   

11.
We studied electrophoretic variation and inheritance of triosephosphate isomerase (TPI) isozymes in maize (Zea mays L.). In contrast to most diploid plants, in maize, TPI exists as multiple isozymes in both the plastid and cytosolic subcellular compartments. Phenotypes result from the overlay of two independent sets of isozymes and allozymes, representing the plastid (encoded by the nuclear genes Tpi1 and Tpi2) and cytosolic (encoded by Tpi3, Tpi4, and Tpi5) systems. All possible intragenic and intergenic dimeric enzymes are formed between polypeptides within each subcellular compartment. No heterodimers are formed between plastid and cytosolic polypeptides. Extensive surveys of accessions of land races and inbred lines revealed 22 allelic variants for the five loci. Most alleles have been formally validated by segregation analysis. We describe two null alleles at Tpi4, distinguished by their relative abilities to form intergenic heterodimers with polypeptides specified by Tpi3 and Tpi5. Linkage analyses and crosses with B-A translocation stocks were effective in determining the chromosome locations of all five loci. Duplicated genes for both the plastid and cytosolic isozymes were localized to genomic regions that possess numerous other redundant sequences. We placed Tpi1 on the long arm of chromosome 7, approximately 23 centimorgans (cM) distal to g11; we localized its duplicate--Tpi2--17 cM distal to v4 on the long arm of chromosome 2. The triplicate loci encoding cytosolic TPIs reside on chromosomes 3 and 8. Tpi4 is approximately equidistant (11 cM) from d1 and Lg3, near the centromere of chromosome 3. Tpi3 and Tpi5 are located on distal ends of the most poorly marked maize chromosome; Tpi3 is 29 cM distal to Idh 1 on 8L, and Tpi5 is on 8S or near the centromere on 8L. In contrast to most duplicated maize sequences, which often occur in parallel linkages on different chromosomes, Tpi3 and Tpi5 provide an example of intrachromosomal gene duplication. Several of the Tpi loci are located in sparsely mapped regions of the genome, and Tpi1 is the first isozyme marker for chromosome 7.  相似文献   

12.
It has been established that the number of isozymes (different forms of an enzyme encoded by different gene loci) is highly conserved in diploid angiosperms and gymnosperms. In contrast, allopolyploid angiosperms display an increase in isozyme number due to the addition of divergent genomes. Lycopods (Microphyllophyta) are an ancient lineage of vascular plants having very high chromosome numbers. It has been maintained that lycopods acquired these high chromosome numbers through repeated episodes of polyploidy. Despite high chromosome numbers, however, lycopod species having the lowest chromosome numbers within genera possess the number of isozymes typical of diploid seed plants for all enzymes examined except triosephosphate isomerase. There is, therefore, no genetic evidence from enzyme electrophoresis for polyploidy in these plants. These results are comparable to findings for other homosporous pteridophytes including the ferns (Pteridophyta) and horsetails (Arthrophyta). Alternative hypotheses for widespread genetic diploidy in homosporous pteridophytes are 1) repeated cycles of allopolyploidy followed by gene silencing; 2) repeated cycles of autopolyploidy, which would result in duplicated, but not divergent genes for isozymes; 3) initiation of these lineages with relatively high chromosome numbers.  相似文献   

13.
A soybean cDNA clone, pSAT1, which encodes both the cytosolic and glyoxysomal isozymes of aspartate aminotransferase (AAT; EC 2.6.1.1) was isolated. Genomic Southern blots and analysis of genomic clones indicated pSAT1 was encoded by a single copy gene. pSAT1 contained an open reading frame with ca. 90% amino acid identity to alfalfa and lupin cytosolic AAT and two in-frame start codons, designated ATG1 and ATG2. Alignment of this protein with other plant cytosolic AAT isozymes revealed a 37 amino acid N-terminal extension with characteristics of a peroxisomal targeting signal, designated PTS2, including the modified consensus sequence RL-X5-HF. The second start codon ATG2 aligned with previously reported start codons for plant cytosolic AAT cDNAs. Plasmids constructed to express the open reading frame initiated by each of the putative start codons produced proteins with AAT activity in Escherichia coli. Immune serum raised against the pSAT1-encoded protein reacted with three soybean AAT isozymes, AAT1 (glyoxysomal), AAT2 (cytosolic), and AAT3 (subcellular location unknown). We propose the glyoxysomal isozyme AAT1 is produced by translational initiation from ATG1 and the cytosolic isozyme AAT2 is produced by translational initiation from ATG2. N-terminal sequencing of purified AAT1 revealed complete identity with the pSAT1-encoded protein and was consistent with the processing of the PTS2. Analysis of cytosolic AAT genomic sequences from several other plant species revealed conservation of the two in-frame start codons and the PTS2 sequence, suggesting that these other species may utilize a single gene to generate both cytosolic and glyoxysomal or peroxisomal forms of AAT.  相似文献   

14.
Summary Avocado (Persea americana) cultivars were assayed for phosphoglucose isomerase (PGI) isozymes using starch gel electrophoresis. Three PGI genes were identified: one monomorphic locus, Pgi-I, coding for the plastid isozyme and two independently assorting loci, Pgi-2 and Pgi-3, coding for the cytosolic isozymes. The genetic analysis was based on comparisons of PGI zymograms from somatic and pollen tissue and on Mendelian analysis of progeny from selfed trees. The isozymic variability for PGI can be used for cultivar identification and for differentiating between hybrid and selfed progeny in avocado breeding.  相似文献   

15.
Summary Isozyme techniques allow the study of gene redundancy in different ploidy levels of potato (Solanum tuberosum). In tetraploid potatoes all isozyme loci are duplicated. No sign of structural or regulatory divergence was found, as is expected due to their tetrasomic inheritance patterns. In addition to this genetic redundancy, produced by a relatively recent polyploidization event, some additional redundancy was found for at least three enzymes even in diploid groups and species. These older duplicate genes show structural and regulatory divergence, indicating they appeared by a separate polyploidization event far in the past. Their common origin is still recognizable by both their expression in the same subcellular compartment and by the dimerizing ability of the isozymes they encode. To account for the present chromosome number x = 12 of the Solanaceae family, the most frequently found among the species, a hypothetical polyploidization event is proposed.  相似文献   

16.
The origin of the presumed allopolyploid Arabidopsis suecica has been explored through isozyme electrophoresis and mutational analysis of chloroplast (cp) DNA. Nuclear encoded isozymes are inherited biparentally and were used to indicate A. thaliana and Cardaminopsis arenosa as parental species. Analysis of the maternally inherited cpDNA provided strong evidence for A. thaliana as maternal parent. The isozyme data suggest multiple origin of A. suecica, because the alloploid shows polymorphisms at the same loci that are polymorphic in its progenitors. The molecular data are in agreement with the hypothesized recent origin of A. suecica at the Late glacial/Holocene boundary in Fennoscandia, in areas opened up by retreating glaciers.  相似文献   

17.
Many maize inbreds lack an endosperm cytosolic phosphoglucomutase   总被引:1,自引:0,他引:1       下载免费PDF全文
Pan D  Strelow LI  Nelson OE 《Plant physiology》1990,93(4):1650-1653
Starch gel electrophoresis of extracts from developing maize (Zea mays L.) endosperms 22 days postpollination reveals only a single zone of phosphoglucomutase activity in the majority of the inbreds tested. The other inbreds had the expected two zones of activity. The activity that is present in all inbreds is the amyloplast isozyme while the absent form is a cytosolic enzyme. The lack of the cytosolic isozyme has no discernible phenotypic consequences.  相似文献   

18.
Summary The genetic control of hexokinase isozymes (ATP: d-hexose-6-phosphotransferase, E.C. 2.7.7.1, HEX) in maize (Zea mays L.) was studied by starch gel electrophoresis. Genetic analysis of a large number of inbred lines and crosses indicates that the major isozymes observed are encoded by two nuclear loci, designated Hex1 and Hex2. Five active allozymes and one null variant are associated with Hex1, while Hex2 has nine active alleles in addition to a null variant. Alleles at both loci govern the presence of single bands, with no intragenic or intergenic heteromers visible, suggesting that maize HEX's are active as monomers. Organelle preparations demonstrate that the products of both loci are cytosolic. All alleles, including the nulls, segregate normally in crosses. Vigorous and fertile plants were synthesized that were homozygous for null alleles at both loci, suggesting that other hexosephosphorylating enzymes exist in maize that are undetected with our assay conditions. Linkage analyses and crosses with B-A translocation stocks place Hex1 on the short arm of chromosome 3, 27 centimorgans from Pgd2 (phosphogluconate dehydrogenase) and Hex2 on the long arm of chromosome 6, approximately 45 centimorgans from Pgd1. It is suggested that the parallel linkages among these two pairs of duplicated genes reflects an evolutionary history involving chromosome segment duplication or polyploidy.Paper No. 10170 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC  相似文献   

19.
In order to clarify the induction of alcohol dehydrogenase (ADH) by anaerobiosis in oat (Avena sativa L.), the seedlings were exposed to anaerobiosis and activity of ADH and ADH isozyme profiles were determined. The anaerobiosis increased ADH activities in shoots and roots of the seedlings. By day 2, the activity increased 5 and 4 times in the roots and the shoots, respectively, compared with those under aerobic condition. Based on nondenaturing electrophoresis, ADH isozyme composition analysis revealed six bands consisting of a dimmer enzyme with submits encoded by three different Adh genes. Changes in staining intensity of the isozymes indicated that the increase in ADH activity in oat under anaerobiosis resulted from increased enzyme synthesis.  相似文献   

20.
Tissue-specific isozymes of glutamine synthetase are present in elasmobranchs. A larger isozyme occurs in tissues in which the enzyme is localized in mitochondria (liver, kidney) whereas a smaller form occurs in tissues in which it is cytosolic (brain, spleen, etc.). The nucleotide sequence of spiny dogfish shark (Squalus acanthias) liver glutamine synthetase mRNA, derived from its cDNA, shows there are two in-frame initiation codons (AUG) at the N-terminus which will account for the size differences between the two isozymes. Initiation at the up-stream and down-stream sites would yield peptides of 45,406 and 41,869 mol. wts. representing the precursor of the mitochondrial isozyme and the cytosolic isozyme, respectively. The additional N-terminal 29 amino acids present in the mitochondrial isozyme precursor contains two putative cleavage sites based on the Arg-X-(Phe,Ile,Leu) motif. The predicted two-step processing would remove 14 of the 29 N-terminal amino acids. These 14 amino acids can be predicted to form a very strong amphipathic mitochondrial targeting signal. Their removal would yield a mature peptide of 43,680 mol. wt. The calculated mol. wts. based on the derived amino acid sequence are therefore in good agreement with previous estimates of an approximately 1.5–2-kDa difference between the Mrs of the mitochondrial and cytosolic isozymes. A model for the evolution of the mitochondrial targeting of glutamine synthetase in vertebrates is proposed. Correspondence to: J.W. CampbellThe nucleotide sequence reported will appear in GenBank under accession number U04617  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号