首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calypso bulbosa is a terrestrial orchid that grows in north temperate regions. Like many orchids, the Calypso has ovules that are not fully developed at anthesis. After pollination, the ovule primordia divide several times to produce a nucellar filament which consists of five to six cells. The subterminal cell of the nucellar filament enlarges to become the archesporial cell. Through further enlargement and elongation, the archesporial cell becomes the megasporocyte. An unequal dyad results from the first meiotic division. A triad of one active chalazal megaspore and two inactive micropylar megaspores are the end products of meiotic division. Callose is present in the cell wall of the megaspore destined to degenerate. In the mature embryo sac the number of nuclei is reduced to six when the chalazal nuclei fail to divide after the first mitotic division. The chalazal nuclei join the polar nucleus and the male nucleus near the center of the embryo sac subsequent to fertilization.  相似文献   

2.
利用石蜡切片技术,对百合科植物开口箭(Tupistra chinensis Baker)大小孢子发生及雌雄配子体发育进程进行胚胎学观察分析,以明确开口箭胚胎发育的特征,为百合科植物的研究提供生殖生物学依据。结果表明:(1)开口箭花药具有4个药室,花药壁的发育方式为基本型,由表皮、药室内壁、中层及绒毡层组成;绒毡层发育类型为分泌型,到四分体花药阶段绒毡层细胞开始解体退化,花药成熟时完全消失。(2)花粉母细胞减数分裂为连续型,依次形成二分体、四分体,四分体为左右对称形;成熟花粉为2-细胞花粉,具单萌发沟。(3)子房3室,倒生型胚珠6枚,双珠被,薄珠心;在花部的分化早期,由珠心顶端表皮下方分化出雌性孢原细胞,孢原细胞经过一次平周分裂形成周缘细胞和造孢细胞,造孢细胞发育为大孢子母细胞;大孢子母细胞第一次减数分裂后形成二分体,珠孔端的二分体孢子退化,合点端的二分体孢子继续第二次分裂,形成两个子细胞依次发育为二核胚囊、四核胚囊和八核胚囊;开口箭的胚囊发育类型为葱型。  相似文献   

3.
鹤顶兰胚囊发育过程中微管变化的共焦显微镜观察   总被引:3,自引:0,他引:3  
光镜的观察确定了鹤顶兰(Phaius tankervilliae (Aiton) Bl.)胚囊发育属单孢子蓼型。应用免疫荧光标记技术及共焦镜观察了胚囊发育过程中微管分布的变化。当孢原细胞初形成时,细胞内的微管呈网状分布。之后,孢原细胞体积增大发育为大孢子母细胞。大孢子母细胞延长,进入减数分裂Ⅰ。微管由分裂前的网状分布变为辐射状排列。二分体的两个细胞内的微管分布一样,呈辐射状。四分体的近珠孔端的3 个大孢子解体,细胞内的微管消失。靠合点端的功能大孢子内有许多微管呈网状分布。当功能大孢子进入第一次有丝分裂时,细胞内的微管由网状变为辐射状,从核膜伸展至周质。再经两次有丝分裂形成八核胚囊。在核分裂之前微管一般是呈网状分布并紧包围着核。在分裂期间二核和四核胚囊都呈极性现象,微管系统也呈极性分布。微管在八核胚囊内的分布变化情形特别复杂。首先,八核分别作不同程度的移动,其中两个核移向胚囊中央,珠孔端和合点端的3 个核分别互相靠拢,形成3 个区,即中央区、反足区和卵器区。胚囊未形成区时,8 个核都被网状分布的微管包围着。当胚囊明显分成区时,反足区内的微管仍作网状分布。中央区的微管分布则趋疏松,形成篮形结构,包围着液泡和两个极核。在  相似文献   

4.
李平  郑学经 《植物研究》1986,6(1):43-53
本文描述延龄草(Trillium tschonoskii Maxim.)的大孢子发生,雌配子体的形成和雄配子体的形态。胚珠为倒生型,双珠被,厚珠心型。胎座为侧膜胎座向中轴胎座的过渡类型,胶囊发育为葱型的变异型。孢原细胞直接发生于幼胚珠的珠心表皮细胞之下,孢原细胞平周分裂,形成初生周缘细胞及初生造孢细胞。初生周缘细胞分裂先于初生造孢细胞,分裂结果与珠心表皮细胞共同形成了珠心组织。初生造孢细胞进一步发育,形成大孢子母细胞。大孢子母细胞经减数第一次分裂后,即出现壁,形成二分体。一般是珠孔端二分体细胞小于合点端二分体细胞,但偶尔也见到前者大于后者的情况。在二分体形成后珠孔端二分体细胞立即退化、或经减数第二次分裂后再退化(该次分裂多为斜向的)。合点端二分体细胞发育,经二核胚囊,四核胚囊,六核胚囊阶段至成熟胚囊。一般在珠孔端的周围淀粉粒丰富,并先于合点端的核进行分裂。珠孔端由二个助细胞,一个卵细胞构成卵器,助细胞具钩突,并具丝状器,两个极核。合点端常见多核仁的大核,成熟胚囊未见八核。成熟花粉粒为二细胞的,花药壁具变形绒毡层,花粉中充满淀粉粒。沼生目型胚乳。  相似文献   

5.
In nun orchid (Phaius tankervilliae (Alton) B1. ) embryo sac development follows the monosporic pattern. Changes in the pattern of organization of the microtubular cytoskeleton during megasporogenesis and megagametogenesis in this orchid were studied using the immunofluorescence technique and eonfocal microscopy. At the initial stage of development the microtubules in the arehesporium were randomly oriented into a network. Later the archesporial cell elongated to form the megasporocyte. The cytoskeleton in the elongated megasporoeyte was radially organized in which microtubules extending from the nuclear envelope to the peripheral region of the cell. The megasporoeyte then underwent meiosis 1 to form a dyad. The dyad cell at the chalazal end was larger than the cell at the micropylar end. Microtubules in the dyad cell were radially oriented. The dyad underwent meiosis to give rise to a linear array of four megaspores (i. e. tetrad formation). The chalazal-far most megaspore survived and became the functional megaspore, which contained a set of randomly oriented microtubules. The microtubules in the other 3 megaspore disappeared as the cells degenerated. The functional megaspore then underwent mitotic division giveing rise to a 2 nucleate embryo sac. The nuclei of the 2-nucleate embryo sac were separated by a set of longitudinally oriented microtubules which ran parallel to the long axis of the embryo sac. Each nucleus in the embryo sac was surrounded by a set of perinuelear microtubules. The gnucleate embryo sac again underwent mitotic division to form a 4-nucleate embryo sac. The division of the two nuclei was synchronous. But the orientation of the division plan of the two spindles was different (i. e. the spindle microtubules at the chalazal end ran parallel with the long axis of the embryo sac and those at the mieropylar end ran at right angle to the axis of the embryo sac). The 4 nuclei of the 4-nucleate embryo sac were all tightly surrounded by randomly oriented microtubules. Later the paired nuclei at the micropylr end and at the chalazal end as well underwent mitotic division in seguence. At this time when the embryo sac had reached the 8-nucleate embryo sac stage. The pattern of organization of the microtubules was very complex. Initially the nuclei were surrounded by a set of randomly oriented microtubules, but after the two polar nuclei had moved to the central region of the embryo sac, three different organizational zones of microtubules appeared, viz: a randomly oriented set of microtubules surrounding each nucleus in the chalazal zone: a set (in the form of a basket) of cortical microtubules which surrounded the vacuoles and the two polar nuclei in the central zone and a loosely knitted network of microtubules surrounding the nucleus that later became the egg cell nucleus in the micropylar zone. The two nuclei that would become the nuclei of the synergids were surrounded by a set of more densely packed mierotubules. Towards far the most micropylar end some microtubules formed thick bundles. The site of appearance of these thick bundles coincided with the site of development of the filiform apparatus. The pattern of microtubule organization after cellularization (i. e. at the beginning of embryo sac maturation) did not change much. The author's results indicated that various patterns of microtubule organization observed in the developing embryo sac of nun orchid reflected the complexity and dynamism of the embryo sac.  相似文献   

6.
Megasporogenesis, megagametogenesis and seed formation were analyzed cytologically in populations of Arabis holboellii originating from North America (Colorado) and Greenland. The Colorado population contained only triploid plants, while the Greenland population consisted of diploid and triploid plants. The penetrance of the apomictic trait was assessed at the level of embryo sac development. All populations showed facultative apomeiotic embryo sac development; however the penetrance of this trait differed between the populations. Apomeiotic and meiotic embryo sac development were characterized by diplosporous dyad formation (Taraxacum-type) and meiotic tetrad formation (Polygonum-type), respectively. Flow cytometric analyses of single mature seeds from all three populations suggest that only unreduced gametes participate in viable seed development. Pseudogamy was the predominant mode of endosperm formation; however, autonomous endosperm development was also observed. The fertilization of unreduced egg cells with unreduced pollen was observed at a low frequency in the Greenland populations. The mechanisms of apomictic reproduction in A. holboellii are discussed.  相似文献   

7.
This study examines the microtubular cytoskeleton during megasporogenesis in the Nun orchid, Phaius tankervilliae . The subepidermal cell located at the terminal end of the nucellar filament differentiates first into an archesporial cell and then enlarges to become the megasporocyte. The megasporocyte undergoes the first meiotic division, giving rise to two dyad cells of unequal size. Immunostaining reveals that microtubules become more abundant as the megasporocyte increases in size. Microtubules congregate around the nucleus forming a distinct perinuclear array and many microtubules radiate directly from the nuclear envelope. In the megasporocyte, prominent microtubules are readily detected at the chalazal end of the cell cytoplasm. After meiosis I, the chalazal dyad cell expands in size at the expense of the micropylar dyad cell. At this stage, new microtubule organizing centres can be found at the corners of the cells. The appearance of these structures is stage-specific and they are not found at any other stages of megasporogenesis. The functional dyad cell undergoes the second meiotic division, resulting in the formation of two megaspores of unequal size. The chalazal megaspore enlarges and eventually gives rise to the embryo sac. As the functional megaspore expands, the microtubules again form a distinct perinuclear array with many microtubules radiating from the nuclear envelope. A defined cortical array of microtubules has not been found in P. tankervilliae during the course of megasporogenesis.  相似文献   

8.
In higher plants the gametophyte consists of a gamete in association with a small number of haploid cells, specialized for sexual reproduction. The female gametophyte or embryo sac, is contained within the ovule and develops from a single cell, the megaspore which is formed by meiosis of the megaspore mother cell. The dyad mutant of Arabidopsis, described herein, represents a novel class among female sterile mutants in plants. dyad ovules contain two large cells in place of an embryo sac. The two cells represent the products of a single division of the megaspore mother cell followed by an arrest in further development of the megaspore. We addressed the question of whether the division of the megaspore mother cell in the mutant was meiotic or mitotic by examining the expression of two markers that are normally expressed in the megaspore mother cell during meiosis. Our observations indicate that in dyad, the megaspore mother cell enters but fails to complete meiosis, arresting at the end of meiosis 1 in the majority of ovules. This was corroborated by a direct observation of chromosome segregation during division of the megaspore mother cell, showing that the division is a reductional and not an equational one. In a minority of dyad ovules, the megaspore mother cell does not divide. Pollen development and male fertility in the mutant is normal, as is the rest of the ovule that surrounds the female gametophyte. The embryo sac is also shown to have an influence on the nucellus in wild type. The dyad mutation therefore specifically affects a function that is required in the female germ cell precursor for meiosis. The identification and analysis of mutants specifically affecting female meiosis is an initial step in understanding the molecular mechanisms underlying early events in the pathway of female reproductive development.  相似文献   

9.
. In the autonomous apomictic Taraxacum officinale (common dandelion), parthenogenetic egg cells develop into embryos and central cells into endosperm without prior fertilisation. Unreduced (2n) megaspores are formed via meiotic diplospory, a nonreductional type of meiosis. In this paper, we describe the normal developmental pathways of sexual and apomictic reproduction and compare these with the development observed in the apomictic hybrids. In sexual diploids, a standard type of megasporogenesis and embryo sac development is synchronised between florets in individual capitula. In contrast, we observed that megasporogenesis and gametogenesis proceeded asynchronously between florets within a single capitulum of natural triploid apomicts. In addition, autonomous endosperm and embryo development initiated independently within individual florets. Parthenogenetic initiation of embryo development in outdoor apomicts was found to be temperature-dependent. Egg cells produced in natural apomicts were not fertilised after pollination with haploid pollen grains although pollen tubes were observed to grow into their embryo sacs. Both reductional and diplosporous megasporogenesis were observed in individual inflorescences of triploid apomictic hybrids. Embryo and endosperm development initiated independently in natural and hybrid apomicts.  相似文献   

10.
赤苎无融合生殖细胞胚胎学研究   总被引:2,自引:1,他引:1  
对赤苎(Boehmeria silvestrii (Pamp.)W.T.Wang)细胞胚胎学研究表明,其生殖模式属无融合生殖的二倍体孢子生殖(diplospory),但其未减数胚囊的发育途径不同于已报道的类型。大孢子母细胞的减数分裂I在到达终变期时停滞,染色体呈单价体状态并维持较长的时间。在尚未到达以核膜、核仁消失,纺锤体出现为特征的中期I前,大孢子母细胞由终变期直接“跳”入间期,从而始终保持了二倍体水平。减数分裂Ⅱ正常进行并产生二倍体二分孢子。珠孔端孢子退化,合点端孢子经3次分裂形成包括1个卵细胞、2个助细胞、2个极核和3个反足细胞的八核胚囊。胚和胚乳分别起源于卵和次生核未受精的自发分裂。胚乳属核型,其发育早于胚。  相似文献   

11.
New data on the development of polarity in the ovules during megasporogenesis and early stages of embryo sac development inOenothera-hybrids are presented. It is confirmed that allOe. hookeri-hybrids show a strong tendency to form heteropolar tetrads, with the micropylar megaspore developing into an embryo sac. This preference is seen in the delay of the second meiotic division on the chalazal side, the absence of callose in the lateral wall of the micropylar megaspore, and the accumulation of starch in this megaspore. However, homopolar tetrads, chalazal preference, and ovules with two developing embryo sacs are also observed with considerable frequency. Quantitative data on the frequency of the different developmental types are compared with earlier genetic results about competition in the haplophase. There is sufficiently good agreement to support the hypothesis ofRenner that there is a correlation between the developmental processes in the megaspore tetrad and the genetic phenomena of competition in the haplophase.  相似文献   

12.
采用半薄切片技术和组织化学染色法对宁夏枸杞大孢子发生和雌配子体发育过程中的细胞结构变化及营养物质积累特征进行了观察。结果表明,(1)宁夏枸杞为中轴胎座,多室子房,倒生胚珠,单珠被,薄珠心类型。(2)位于珠心表皮下的孢原细胞可直接发育为大孢子母细胞,减数分裂后形成直线型大孢子四分体,合点端第一个大孢子发育为功能大孢子,胚囊发育类型为蓼型,具有珠被绒毡层。(3)初形成的胚囊外周组织中没有营养物质积累,成熟胚囊时期出现了大量的淀粉粒且呈珠孔端明显多于合点端的极性分布特征。(4)助细胞的珠孔端具有明显的丝状器结构,呈PAS正反应表现出多糖性质,成熟胚囊具有承珠盘结构。  相似文献   

13.
Female meiosis in Arabidopsis has been analysed cytogenetically using an adaptation of a technique previously applied to male meiosis. Meiotic progression was closely correlated with stages of floral development, including the length and morphology of the gynoecium. Meiosis in embryo sac mother cells (EMCs) occurs later in development than male meiosis, in gynoecia that range in size between 0.3 and 0.8 mm. The earliest stages in EMCs coincide with the second division to tetrad stages in pollen mother cells. However, the details of meiotic chromosome behaviour in EMCs correspond closely to the observations we have previously made in male meiosis. In addition, BrdU labelling coupled with an immunolocalisation detection system was used to mark the S phase in cells preceding their entry into prophase I. These techniques allow female meiotic stages of Arabidopsis to be analysed in detail, from the S-phase through to the tetrad stage, and are shown to be equally applicable to the analysis of female meiosis in meiotic mutants. Received: 3 April 2000 / Revision accepted: 2 August 2000  相似文献   

14.
濒危植物——长喙毛茛泽泻的雌雄配子体发育   总被引:2,自引:0,他引:2  
长喙毛茛泽泻 Ranalisma rostratum stapf 小孢子母细胞的减数分裂过程为连续型,四分体为左右对称型。成熟花粉为三胞花粉。花药绒毡层为变形绒毡层。雌蕊由多数单室子房构成,每子房中含一具双珠被、薄珠心的倒生胚珠。胚囊发育为葱型。成熟胚囊中三个反足细胞退化;二个极核分别位于中央细胞的两端,其体积相差明显。这种极核分布可能与反足细胞过早退化有关。  相似文献   

15.
Ranalisma rostratum Stapf is a rare and endangered species. This paper deals with the development of its male and female gametophytes and probes the relationship between the process of reproduction and the cause which made this species endangered. The meiosis of microspore mother cells is successive cytokinesis and the microspore tetrads are isobilateral. Pollen grains are 3-celled when shed. The ovule is anatropous,bitegmic and tenuinucellate. The micropylar dyad cell usually desenerates soon after its formation, and the chalazal dyad cell develops into a Allium type embryo sac. During the development of embryo sac both polar nuclei are respectively located at the two ends of central cell,and they maintain this situation until the micropylar polar nucleus takes part in fertilization. Features of the embryo sac of Ranalisma rostratum Stapf are discussed.  相似文献   

16.
Reproductive features including ovule development, megasporogenesis, megagametogenesis, microsporogenesis, microgametogenesis, pollen tube growth, embryogeny, and natural seed germination were studied in a single population each of Dentaria laciniata Muhl. ex. Willd. and D. diphylla Michx. to test for possible agamospermy. The population of D. laciniata studied is sexual. The archesporial cell functions directly as the megasporocyte. It undergoes two meiotic divisions, but the micropylar cell of the dyad fails to undergo meiosis II, and a linear triplet of three cells is formed. The chalazal megaspore divides to form an eight-nucleate, seven-celled megagametophyte of the Polygonum type. Simultaneous cytokinesis follows the second meiotic division of the microsporocyte yielding a tetrahedral tetrad of microspores. A three-celled pollen grain is formed prior to anther dehiscence. Following apparent fertilization, the Capsella-variation of the Onagrad type of embryogeny results in a conduplicate embryo. Endosperm is initially nuclear, but eventually becomes cellular. Seeds readily germinate in nature. Similar events are documented in one population of D. diphylla up to the organization of the embryo-sac, which disintegrates before cellularization. These reproductive events and other data indicate that the eastern North American species of Dentaria may form a sexual polyploid complex with some sexual populations and some sterile ones.  相似文献   

17.
A modified enzyme digestion technique of ovary isolation followed by staining and squash preparation has allowed us to observe female meiosis in normal maize meiotically dividing megaspore mother cells (MMCs). The first meiotic division in megasporogenesis of maize is not distinguishable from that in mi-crosporogenesis. The second female meiotic division is characterized as follows: (1) the two products of the first meiotic division do not simultaneously enter into the second meiotic division; as a rule, the chalazal-most cell enters division earlier than the micropylar one, (2) often the second of the two products does not proceed with meiosis, but degenerates, and (3) only a single haploid meiotic product of the tetrad remains alive, and this cell proceeds with three rounds of mitoses without any intervening cell wall formation to produce the eight-nucleate embryo sac. This technique has allowed us to study the effects of five meiotic mutations (aml, aml-pral, afdl, dsy *-9101, and dvl) on female meiosis in maize. The effects of the two alleles of the aml gene (aml and aml-pral) and of the afdl and dsy *-9101mutations are the same in both male and female meiosis. The aml allele prevents the entrance of MMCs into meiosis and meiosis is replaced by mitosis; the aml-pral permits MMCs to enter into meiosis, but their progress is stopped at early prophase I stages. The afdl gene is responsible for substitution of the first meiotic (reductional) division by an equational division including the segregation of sister chromatid centromeres at anaphase I. The dsy * -9101 gene exhibits abnormal chromosome pairing; paired homologous chromosomes are visible at pachytene, but only univalents are observed at diakinesis and metaphase I stages. These mutation specific patterns of abnormal meiosis are responsible for the bisexual sterility of these meiotic mutants. The abnormal divergent shape of the spindle apparatus and the resulting abnormal segregation of homologous chromosomes observed in micro-sporogenesis in plants homozygous for the dv1 mutation have not been found in meiosis of megasporogenesis. Only male sterility is induced by the dv1 gene in the homozygous condition. © 1993 Wiley-Liss, Inc.  相似文献   

18.
该研究运用常规石蜡切片技术,对大花君子兰(Clivia miniata Regel)大、小孢子发生及雌、雄配子体发育进程进行解剖学观察分析,以探讨君子兰生殖生物学解剖特征,为君子兰种子发育和育种提供理论依据。结果表明:(1)大花君子兰花药4室,具分泌型绒毡层。(2)小孢子母细胞减数分裂的胞质分裂为连续型,小孢子四分体为左右对称型,成熟花粉为二细胞型。(3)倒生胚珠,双珠被,厚珠心和雌配子体发育为蓼型。(4)记录了雌雄配子体发育的对应关系,发现雄配子体发育趋于同步,雌配子体发育不同步。(5)开花散粉时,雌配子体尚有处于四核、八核胚囊的时期;成熟胚囊阶段,中央细胞的2个极核位于反足细胞端,反足细胞呈退化状态。具承珠盘结构。  相似文献   

19.
为探讨多花地宝兰(Geodorum recurvum)胚胎发育的系统分类学意义,采用石蜡制片法对多花地宝兰胚囊和胚的发育进行解剖学观察。结果表明,在开花前,多花地宝兰胚珠原基发育缓慢,开花授粉后胚珠原基快速发育成"树状二杈分枝结构",随后在"分枝结构"末端形成孢原细胞,开始胚囊发育。多花地宝兰的胚囊发育属于单孢蓼型胚囊,胚珠具有双层珠被。孢原细胞形成后,经过细胞膨大延长发育形成胚囊母细胞,胚囊母细胞经过减数分裂形成线性四分体,在珠孔端形成1个功能大孢子,功能大孢子经过3次有丝分裂形成8核胚囊。多花地宝兰的胚发育具有藜型和紫苑型两种方式。双受精完成后,多花地宝兰合子进行一次橫裂后形成基细胞和顶细胞;基细胞经过多次分裂形成细胞团,细胞团中的细胞向不同方向膨大延长形成多个胚柄细胞;顶细胞有两种分裂方式,一种是横裂形成藜型胚,一种是纵裂形成紫苑型胚。因此,推测多花地宝兰在兰科植物系统分类学上属于较为原始种。  相似文献   

20.
The developmental stages of the maize embryo sac were correlated with the corresponding silk lengths of ear florets in the female inflorescence. The development of embryo sacs in the ovules of spikes occurs in a gradient pattern with the initiation of the embryo sac beginning at the base of the ear and progressing to the top. At the beginning of meiosis, the presence of conspicuous cortical microtubules coincides with the extensive elongation of the megasporocyte. The spindles at metaphase I and II align along the long axis of the megasporocyte leading to the linear alignment of the dyad and tetrad of megaspores. During megagametogenesis, micropylar and chalazal nuclei of the embryo sac undergo synchronized divisions and migration at the second and third mitosis. Radiate perinuclear microtubules are present during the interphase of the second and third mitosis, and inter-sister nuclear microtubules occur at the late four-nucleate embryo sac. The configuration and orientation of the spindles, phragmoplasts, and pairs of nuclei result in precise positioning of the nuclei. The fusion of the polar nuclei and the formation of a microtubule organizing center-like structure in the filiform apparatus occur right after the first division of the antipodal cells. The different patterns of organization of microtubules in the cells of the mature embryo sac reflect their structural adaptations for their future function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号