首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chi-dependent DNA strand cleavage by RecBC enzyme   总被引:45,自引:0,他引:45  
Chi sites enhance in their vicinity homologous recombination by the E. coli RecBC pathway. We report here that RecBC enzyme catalyzes Chi-dependent cleavage of one DNA strand, that containing the Chi sequence 5'G-C-T-G-G-T-G-G3'. Chi-specific cleavage is greatly reduced by single base pair changes within the Chi sequence and by mutations within the E. coli recC gene, coding for a RecBC enzyme subunit. Although cleavage occurs preferentially with double-stranded DNA, the product of the reaction is single-stranded DNA. These results demonstrate the direct interaction of RecBC enzyme with Chi sites that was inferred from the genetic properties of Chi and recBC, and they support models of recombination in which Chi acts before the initiation of strand exchange.  相似文献   

2.
Amundsen SK  Smith GR 《Genetics》2007,175(1):41-54
The major pathway of genetic recombination and DNA break repair in Escherichia coli requires RecBCD enzyme, a complex nuclease and DNA helicase regulated by Chi sites (5'-GCTGGTGG-3'). During its unwinding of DNA containing Chi, purified RecBCD enzyme has two alternative nucleolytic reactions, depending on the reaction conditions: simple nicking of the Chi-containing strand at Chi or switching of nucleolytic degradation from the Chi-containing strand to its complement at Chi. We describe a set of recC mutants with a novel intracellular phenotype: retention of Chi hotspot activity in genetic crosses but loss of detectable nucleolytic degradation as judged by the growth of mutant T4 and lambda phages and by assay of cell-free extracts. We conclude that RecBCD enzyme's nucleolytic degradation of DNA is not necessary for intracellular Chi hotspot activity and that nicking of DNA by RecBCD enzyme at Chi is sufficient. We discuss the bearing of these results on current models of RecBCD pathway recombination.  相似文献   

3.
Homologous pairing in vitro stimulated by the recombination hotspot, Chi.   总被引:24,自引:0,他引:24  
D A Dixon  S C Kowalczykowski 《Cell》1991,66(2):361-371
Genetic recombination in Escherichia coli is stimulated at DNA sequences known as Chi sites, 5'-GCT-GGTGG-3'. We describe the in vitro formation of homologously paired joint molecules that is dependent upon this recombination hotspot. Chi-dependent joint molecule formation requires RecA, RecBCD, and SSB proteins and a Chi site in the donor linear dsDNA. The donor dsDNA is unwound by RecBCD enzyme, and the invasive strand is generated by nicking at Chi. This Chi-dependent invading strand must contain homology to the recipient supercoiled DNA substrate at its newly formed 3' end for efficient joint molecule formation. Action at Chi generates invasive ssDNA from the 5' but not the 3' side of Chi, suggesting that the nuclease activity of RecBCD enzyme is attenuated upon encountering a Chi site. These results support the view that RecBCD enzyme action can precede RecA protein action and reconcile the seemingly opposing degradative and recombination functions of RecBCD enzyme.  相似文献   

4.
S. L. Holbeck  G. R. Smith 《Genetics》1992,132(4):879-891
The major pathway of homologous recombination in Escherichia coli, the RecBCD pathway, is stimulated by Chi sites. To determine whether Chi enhances an early or late step in recombination, we measured formation of heteroduplex DNA (hDNA) in extracts of lambda-infected E. coli. Chi elevated hDNA levels in these extracts, supporting a role for Chi early (before hDNA formation) in recombination. RecA protein and RecBCD enzyme were both necessary for detection of hDNA, indicating that they, too, act early. Analysis of a panel of recBCD mutants indicated that Chi-nicking activity was needed for Chi's stimulation of hDNA formation. These results support a previously proposed model of recombination. Further results suggested that RecBCD enzyme has an additional role late in recombination.  相似文献   

5.
Homologous recombination occurs especially frequently near special chromosomal sites called hotspots. In Escherichia coli, Chi hotspots control RecBCD enzyme, a protein machine essential for the major pathway of DNA break-repair and recombination. RecBCD generates recombinogenic single-stranded DNA ends by unwinding DNA and cutting it a few nucleotides to the 3′ side of 5′ GCTGGTGG 3′, the sequence historically equated with Chi. To test if sequence context affects Chi activity, we deep-sequenced the products of a DNA library containing 10 random base-pairs on each side of the Chi sequence and cut by purified RecBCD. We found strongly enhanced cutting at Chi with certain preferred sequences, such as A or G at nucleotides 4–7, on the 3′ flank of the Chi octamer. These sequences also strongly increased Chi hotspot activity in E. coli cells. Our combined enzymatic and genetic results redefine the Chi hotspot sequence, implicate the nuclease domain in Chi recognition, indicate that nicking of one strand at Chi is RecBCD''s biologically important reaction in living cells, and enable more precise analysis of Chi''s role in recombination and genome evolution.  相似文献   

6.
Chi sites, 5'G-C-T-G-G-T-G-G-3', enhance homologous recombination in Escherichia coli and are activated by the RecBCD enzyme. To test the ability of Chi to be activated by analogous enzymes from other bacteria, we cloned recBCD-like genes from diverse bacteria into an E. coli recBCD deletion mutant. Clones from seven species of enteric bacteria conferred to this deletion mutant recombination proficiency, Chi hotspot activity in lambda Red- Gam- vegetative crosses, and RecBCD enzyme activities, including Chi-dependent DNA strand cleavage. Three clones from Pseudomonas aeruginosa and Ps. putida conferred recombination proficiency and ATP-dependent nuclease activity, but neither Chi hotspot activity nor Chi-dependent DNA cleavage. These results imply that Chi has been conserved as a recombination-promoting signal for RecBCD-like enzymes in enteric bacteria but not in more distantly related bacteria such as Pseudomonas spp. We discuss the possibility that other, presently unknown, nucleotide sequences serve the same function as Chi in Pseudomonas spp.  相似文献   

7.
8.
In recent years two different styles of model for homologous recombination have been discussed, depending on whether or not the recombination event occurs in the vicinity of a double-strand break in DNA. The models of Holliday and Meselson and Radding exemplify those that do not involve a break whereas the model of Szostak et al is taken as an example of those that do. Recent advances in understanding a prototypic recombination system thought to promote exchange distant from DNA ends, at Chi sites, suggest a mechanism of initiation neither like Holliday/Meselson-Radding nor like Szostak et al. In those models, only one strand of DNA may invade a homologous DNA molecule. We propose a model for Chi in which exonuclease degrades DNA from a double-strand break to the Chi site; the exonuclease is converted into a helicase upon interaction with Chi; unwinding produces a recombinagenic split-end, and both 3'- and 5'-ending strands at the split-end are capable of invading a homologue. Different genetic consequences are proposed to result from invasion by each. We review evidence supporting the split-end model and suggest its application in at least some cases previously considered to proceed via the Meselson/Radding model and by the double-strand-break repair model of Szostak et al.  相似文献   

9.
Accurate repair of DNA double-strand breaks (DSBs) is crucial for cell survival and genome integrity. In Escherichia coli, DSBs are repaired by homologous recombination (HR), using an undamaged sister chromosome as template. The DNA intermediates of this pathway are expected to be branched molecules that may include 4-way structures termed Holliday junctions (HJs), and 3-way structures such as D-loops and repair forks. Using a tool creating a site-specific, repairable DSB on only one of a pair of replicating sister chromosomes, we have determined how these branched DNA intermediates are distributed across a DNA region that is undergoing DSB repair. In cells, where branch migration and cleavage of HJs are limited by inactivation of the RuvABC complex, HJs and repair forks are principally accumulated within a distance of 12 kb from sites of recombination initiation, known as Chi, on each side of the engineered DSB. These branched DNA structures can even be detected in the region of DNA between the Chi sites flanking the DSB, a DNA segment not expected to be engaged in recombination initiation, and potentially degraded by RecBCD nuclease action. This is observed even in the absence of the branch migration and helicase activities of RuvAB, RadA, RecG, RecQ and PriA. The detection of full-length DNA fragments containing HJs in this central region implies that DSB repair can restore the two intact chromosomes, into which HJs can relocate prior to their resolution. The distribution of recombination intermediates across the 12kb region beyond Chi is altered in xonA, recJ and recQ mutants suggesting that, in the RecBCD pathway of DSB repair, exonuclease I stimulates the formation of repair forks and that RecJQ promotes strand-invasion at a distance from the recombination initiation sites.  相似文献   

10.
Homologous recombination in Escherichia coli is enhanced by a cis-acting octamer sequence named Chi (5''-GCTGGTGG-3'') that interacts with RecBCD. To gain insight into the mechanism of Chi-enhanced recombination, we recruited an experimental system that permits physical monitoring of intramolecular recombination by linear substrates released by in vivo restriction from infecting chimera phage. Recombination of the released substrates depended on recA, recBCD and cis-acting Chi octamers. Recombination proficiency was lowered by a xonA mutation and by mutations that inactivated the RuvABC and RecG resolution enzymes. Activity of Chi sites was influenced by their locations and by the number of Chi octamers at each site. A single Chi site stimulated recombination, but a combination of Chi sites on the two homologs was synergistic. These data suggest a role for Chi at both ends of the linear substrate. Chi was lost in all recombinational exchanges stimulated by a single Chi site. Exchanges in substrates with Chi sites on both homologs occurred in the interval between the sites as well as in the flanking interval. These observations suggest that the generation of circular products by intramolecular recombination involves Chi-dependent processing of one end by RecBCD and pairing of the processed end with its duplex homolog.  相似文献   

11.
H. Razavy  S. K. Szigety    S. M. Rosenberg 《Genetics》1996,142(2):333-339
This paper focuses on elucidation of the structures of intermediates in recombination stimulated by Chi recombination hotspots in vivo. We report that null mutations in genes encoding single-strand exonucleases of 3' polarity, Exonuclease I (Exo I), of 5' polarity, RecJ, and of both polarities, Exo VII, alter the ability of Chi sites to promote recombination, and diminish the frequency of recombination. Maximal effects occur when single-strand exonucleases of both polarities are eliminated. These data imply that 3' and 5' single-strand DNA ends, the substrates for these exonucleases, exist in bona fide, product-generating intermediates in Chi-stimulated recombination in vivo. These results also identify three new proteins not known previously to affect RecBCD-mediated recombination.  相似文献   

12.
Homologous recombination in Escherichia coli occurs at increased frequency near Chi sites, 5'G-C-T-G-G-T-G-G3'. Cutting of DNA close to the Chi sequence by the E. coli RecBC enzyme is essential to Chi's stimulation of recombination. We have detected Chi-dependent cutting activity in extracts of several genera of terrestrial enteric bacteria (family Enterobacteriaceae) and of two genera of marine enteric bacteria (family Vibrionaceae). More distantly related bacteria had no detectable Chi-dependent cutting activity. These results support the view that recognition of this specific nucleotide sequence as a signal activating recombination has been maintained during the evolution of certain groups of bacteria. We discuss the possibility that other sequences play a similar role in other groups of bacteria.  相似文献   

13.
P. Dabert  G. R. Smith 《Genetics》1997,145(4):877-889
During conjugation and transduction of Escherichia coli even numbers of recombinational exchanges are required for replacement of a gene on the circular chromosome. We studied gene replacement using a related method of gene transfer (transformation with 6.5-kb linear DNA fragments) as an experimental model for conjugation and transduction. Two properly situated Chi sites, 5' GCTGGTGG 3', stimulated gene replacement ~50-fold, more than the sum of the stimulation by the individual Chi sites. Gene replacement was dependent on RecA and RecB functions. Similar results were obtained with an alternative experimental model in which linear DNA fragments were generated from phage λ by intracellular EcoRI restriction following infection. Dual Chi site-stimulation of these RecA-, RecB-dependent recombination events thus did not depend upon the mode of delivery of the linear DNA into the cells. A single DNA fragment with two Chi sites was sufficient for gene replacement. These results support a one Chi-one exchange hypothesis (``long chunk' gene replacement), stemming from studies with purified RecBCD enzyme, and argue against models in which Chi converts RecBCD enzyme to a state capable of promoting multiple exchanges on one DNA molecule. These results also provide a method for gene targeting in wild-type E. coli and suggest a method for gene targeting in other organisms.  相似文献   

14.
The recombination hotspot Chi, 5' G-C-T-G-G-T-G-G 3', stimulates the RecBCD recombination pathway of Escherichia coli. We have determined, with precision greater than previously reported, the distribution of Chi-stimulated exchanges around a Chi site in phage lambda. Crosses of lambda phages with single base-pair mutations surrounding a Chi site were conducted in and analyzed on mismatch correction-impaired hosts to preserve heteroduplex mismatches for analysis. Among phages recombinant for flanking markers, Chi stimulated exchanges most intensely in the intervals immediately adjacent to the Chi site, both to its right and to its left. Stimulation fell off abruptly to the right but gradually to the left (with respect to the orientation of the Chi sequence written above). We have also determined that Chi stimulated the formation of heteroduplex DNA, which frequently had one endpoint to the right of Chi and the other endpoint to the left. These data support a model of Chi-stimulated recombination in which RecBCD enzyme cuts DNA immediately to the right of Chi and unwinds DNA to the left of Chi; segments of unwound single-stranded DNA are sometimes, but not always, degraded before synapsis with homologous DNA.  相似文献   

15.
We have studied homologous recombination in a derivative of phage lambda containing two 1.4-kb repeats in inverted orientation. Inversion of the intervening 2.5-kb segment occurred efficiently by the Escherichia coli RecBC pathway but markedly less efficiently by the lambda Red pathway or the E. coli RecE or RecF pathways. Inversion by the RecBCD pathway was stimulated by Chi sites located to the right of the invertible segment; this stimulation decreased exponentially by a factor of about 2 for each 2.2 kb between the invertible segment and the Chi site. In addition to RecA protein and RecBCD enzyme, inversion by the RecBC pathway required single-stranded DNA binding protein, DNA gyrase, DNA polymerase I and DNA ligase. Inversion appeared to occur either intra- or intermolecularly. These results are discussed in the framework of a current molecular model for the RecBC pathway of homologous recombination.  相似文献   

16.
In bacteria, the repair of double-stranded DNA breaks is modulated by Chi sequences. These are recognised by helicase-nuclease complexes that process DNA ends for homologous recombination. Chi activates recombination by changing the biochemical properties of the helicase-nuclease, transforming it from a destructive exonuclease into a recombination-promoting repair enzyme. This transition is thought to be controlled by the Chi-dependent opening of a molecular latch, which enables part of the DNA substrate to evade degradation beyond Chi. Here, we show that disruption of the latch improves Chi recognition efficiency and stabilizes the interaction of AddAB with Chi, even in mutants that are impaired for Chi binding. Chi recognition elicits a structural change in AddAB that maps to a region of AddB which resembles a helicase domain, and which harbours both the Chi recognition locus and the latch. Mutation of the latch potentiates the change and moderately reduces the duration of a translocation pause at Chi. However, this mutant displays properties of Chi-modified AddAB even in the complete absence of bona fide hotspot sequences. The results are used to develop a model for AddAB regulation in which allosteric communication between Chi binding and latch opening ensures quality control during recombination hotspot recognition.  相似文献   

17.
S M Rosenberg 《Cell》1987,48(5):855-865
Generalized recombination in Escherichia coli is elevated near Chi sites. In vitro, RecBCD enzyme can nick Chi a few nucleotides 3' of the terminal GG of the Chi sequence (5'-GCTGGTGG). The simplest model in which this nick at Chi participates in Chi function predicts that in phage lambda, Chi-stimulated recombinants not crossed-over for flanking markers (patches) should be heteroduplex, with recombinant information on the lambda I chain. I report here that patches are heteroduplex, but that recombinant information occurs primarily on the lambda r chain. This result rules out the simplest model in which the nick at Chi promotes initiation of recombination, forces reconsideration of Chi's role in recombination, and bears on molecular models for Rec-mediated recombination.  相似文献   

18.
Genetic Dissection of the Biochemical Activities of Recbcd Enzyme   总被引:11,自引:2,他引:9       下载免费PDF全文
RecBCD enzyme of Escherichia coli is required for the major pathway of homologous recombination following conjugation. The enzyme has an ATP-dependent DNA unwinding activity, ATP-dependent single-stranded (ss) and double-stranded (ds) DNA exonuclease activities, and an activity that makes a ss DNA endonucleolytic cut near Chi sites. We have isolated and characterized ten mutations that reduced recombination proficiency and inactivated some, but not all, activities of RecBCD enzyme. One class of mutants had weak ds DNA exonuclease activity and lacked Chi-dependent DNA cleavage activity, a second class lacked only Chi-dependent DNA cleavage activity, and a third class retained all activities tested. The properties of these mutants indicate that the DNA unwinding and ss DNA exonuclease activities of the RecBCD enzyme are not sufficient for recombination. Furthermore, they suggest that the Chi-dependent DNA cleavage activity or another, as yet unidentified activity or both are required for recombination. The roles of the RecBCD enzymatic activities in recombination and exclusion of foreign DNA are discussed in light of the properties of these and other recBCD mutations.  相似文献   

19.
RecBCD is an ATP-dependent helicase and exonuclease which generates 3′ single-stranded DNA (ssDNA) ends used by RecA for homologous recombination. The exonuclease activity is altered when RecBCD encounters a Chi sequence (5′-GCTGGTGG-3′) in double-stranded DNA (ds DNA), an event critical to the generation of the 3′-ssDNA. This study tests the effect of ssDNA oligonucleotides having a Chi sequence (Chi+) or a single base change that abolishes the Chi sequence (Chio), on the enzymatic activities of RecBCD. Our results show that a 14 and a 20mer with Chi+ in the center of the molecule inhibit the exonuclease and helicase activities of RecBCD to a greater extent than the corresponding Chio oligonucleotides. Oligonucleotides with the Chi sequence at one end, or the Chi sequence alone in an 8mer, failed to show Chi-specific inhibition of RecBCD. Thus, Chi recognition requires that Chi be flanked by DNA at either end. Further experiments indicated that the oligonucleotides inhibit RecBCD from binding to its dsDNA substrate. These results suggest that a specific site for Chi recognition exists on RecBCD, which binds Chi with greater affinity than a non-Chi sequence and is probably adjacent to non-specific DNA binding sites.  相似文献   

20.
Structure of chi hotspots of generalized recombination   总被引:1,自引:0,他引:1  
Chi recombinational hotspots are sites around which the rate of Rec-promoted recombination in bacteriophage λ is elevated. Examination of a derivative of λ into which the plasmid pBR322 was inserted reveals that pBR322 lacks Chi sites. Using this λ-pBR322 hybrid, we obtained mutations creating Chi sites at three widely separated loci within pBR322. Nucleotide sequence analysis reveals that the mutations are single base-pair changes creating the octamer 5′ GCTGGTGG 3′. This sequence is present at three previously analyzed Chi sites in λ, and all analyzed mutations creating or inactivating these Chi sites occur within this octamer. We conclude that Chi is 5′ GCTGGTGG 3′, or its complement, or both.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号