首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Corm tissue of Isoetes muricata Dur. was fixed in glutaraldehyde and postfixed in osmium tetroxide for electron microscopy. Very young secondary sieve elements can be distinguished from contiguous cambial cells by their distinctive plastids and by the presence of crystalline and/or fibrillar proteinaceous material in dilated cisternae of rough endoplasmic reticulum (ER). At maturity, the sieve elements are lined by the plasmalemma and a parietal, anastomosing network of smooth ER. Degenerate nuclei persist in all mature sieve elements. In addition, mature sieve elments contain plastids and mitochondria. Sieve-area pores are present in all walls. The lateral meristem of I. muricata consists of 2–3 layers of cells year-round. Judging from numerous collections made between October 1972 and July 1975, new sieve-element differentiation precedes cambial activity by about a month. Early in May, 1–2 cells immediately adjacent to already mature sieve elements differentiate directly into sieve elements without prior division. In early June, at about the time sieve-element differentiation is completed, cambial division begins. Division is sporadic, not uniform throughout the meristem. Dormancy callose accumulates in the secondary sieve elements in late October, and is removed in early May, at about the same time new sieve-element differentiation begins. Cells of the dormant cambium are characterized by the presence of numerous small vacuoles and large quantities of storage materials, including lipid droplets, starch grains, and tannin. By contrast, active cambial cells contain few large vacuoles with little or no tannin, and they have little storage material.  相似文献   

2.
A stereological morphometric study of leaf primordia (P1 and P2) of Echinocereus engelmannii indicated that primordia are significantly different ultrastructurally from the shoot apical meristem tissues (tunica and peripheral zone) that produce the primordia. Leaf initiation involves readjustments of rates of synthesis and growth of cytoplasm, vacuoles, mitochondria, chloroplasts, and dictyosomes, such that leaf initiation must be a complex process in which different cell components are affected individually. Furthermore, leaf primordia are ultrastructurally distinct from spine primordia. Leaf and spine primordia as young as these are not yet irrevocably determined, thus different types of primordia, from the time of their inception and before their determination, have distinctly unique metabolisms; primordia are not merely generalized, uncommitted outgrowths whose developmental fate is set at some time later than inception.  相似文献   

3.
The spicate inflorescence of Saururus cernuus L. (Saururaceae) results from the activity of an inflorescence apical meristem which produces 200–300 primordia in acropetal succession. The inflorescence apex arises by conversion of the terminal vegetative apex. During transition the apical meristem increases greatly in height and width and changes its cellular configuration from one of tunica-corpus to one of mantle (with two tunica layers) and core. Primordia are initiated by periclinal divisions in the subsurface layer. These are “common” primordia, each of which subsequently divides to produce a floral apex above and a bract primordium below. The bract later elongates so that the flower appears borne on the bract. All common primordia are formed by the time the inflorescence is about 4.4 mm long; the apical meristem ceases activity at this stage. As cessation approaches, cell divisions become rare in the apical meristem, and height and width of the meristem above the primordia diminish, as primordia continue to be initiated on the flanks. Cell differentiation proceeds acropetally into the apical meristem and reaches the summital tunica layers last of all. Solitary bracts are initiated just before apical cessation, but no imperfect or ebracteate flowers are produced in Saururus. The final event of meristem activity is hair formation by individual cells of the tunica at the summit, a feature not previously reported for apical meristems.  相似文献   

4.
Study of the quiescent root meristem of Allium cepa L. bulbs has revealed that its histological organization does not differ significantly from the growing meristem, except for the fact that the cells are all arrested in interphase. Ultrastructure of the quiescent tissue is, however, different in the organization of the nucleolus and in the absence of prominent endoplasmic reticulum, microtubules and golgi complexes. A variety of lomasome-like structures, plasma membrane modifications and vacuoles have been recorded. Most of the cells except for the ones in the root cap and quiescent center are highly vacuolated; vacuolation is maximum in the cortical zone of the meristem. The pattern of 3H thymidine incorporation during early stages of sprouting indicates that asynchrony of the mitotic cycle, which is the characteristic of the growing meristem, is maintained during quiescence by the arrest of nuclei at different subphases of interphase.  相似文献   

5.
Excised shoot apices of Osmunda claytoniana were grown under controlled sterile conditions. Histological examination of the normal shoot apex shows that it is comprised of: (1) a promeristem, which possesses 1 or more apical initiating cells at its center; (2) a prestelar tissue consisting of an incipient vascular tissue which flanks the pith-mother-cell zone; the pith-mother-cell zone gives rise to the pith rib meristem and subsequently to the fundamental parenchyma of the pith; (3) the fundamental parenchyma of the cortex and the fundamental parenchyma of the dermal system both arising from flank cells of the promeristem. Apical initial cells of meristems irradiated with a 127,000 rad acute exposure of a deuteron beam having a diameter of 25μ, histologically examined at 7-day intervals for a 12-week period, as early as 3 weeks’ postirradiation, showed the apical initiating cell(s) together with certain of the cells of the pith-mother-cell zone to be destroyed. A wound response develops peripherally to the destroyed initials. In addition, an isolated, organized growth center is observed to develop from normal promeristem cells. Incipient vascular tissue and a new pith-mother-cell zone are also observed to develop in association with the new center of growth. Implications of the role of the interrelationships between apical initiating cell(s) and other cells of the meristem and the role they may play in maintenance of meristematic integrity within the shoot meristem are discussed.  相似文献   

6.
Cyamopsis tetragonoloba, guar, produces two leaf forms: a simple leaf and a trifoliate leaf. The steps in the development of each of these forms have been investigated in an attempt to determine the precise point at which the leaf primordium becomes destined to produce one or the other characteristic leaf shapes. Up to 140 μ in length the leaf primordia are morphologically indistinguishable. If a simple leaf is to be formed the marginal meristem remains continuous and initiates only lamina. If a trifoliate leaf is to be formed the continuity of the marginal meristem is interrupted by a group of “pocketal” cells dividing it into an upper lamina meristem and a basal leaflet buttress.  相似文献   

7.
Erickson , Ralph O. (U. Pennsylvania, Philadelphia.) Probability of division of cells in the epidermis of the Phleum root. Amer. Jour. Bot. 48(3): 268–274. Illus. 1961.—Photomicrographic records of the growth of a Phleum root, made at R. H. Goodwin's laboratory, in which individual epidermal cells can be identified, have been analyzed to provide estimates of the probability that cells at various distances from the apex will divide. In the apical part of the meristem, from 0μ to about 100μ from the apex, all cells divide (prob. = 1.0). From about 100μ to 275μ, the probability of division falls progressively to 0.0. The relationship of these estimates to rates of cell division and elongation in the same root is discussed.  相似文献   

8.
Pinnule development was investigated in two fern species, Adiantum raddianum Presl cv. Decorum and Cheilanthes viridis (Forsk.) Swartz, by using clearings to facilitate the recording of mitotic divisions. Both species were found to possess a marginal meristem. This meristem consists of both a marginal row of large initials and a submarginal meristematic zone. The marginal meristem in these ferns is responsible for establishing the layers of the lamina, providing new cells which by enlargement will expand the pinnule, establishing general pinnule form, initiating the procambial stands, and forming the false indusia. The cells of the submarginal meristem were found to divide parallel to the pinnule margin more frequently if they were to become ground tissue, while dividing perpendicular to the margin more frequently if they were to become procambial. Details of vein dichotomies were also studied. Perimeter expansion was found to be associated with dichotomy of the veins, and venation pattern was found to be correlated with leaf form. The marginal meristem is active from the time of pinnule initiation until the pinnule reaches about 50% of its final length or width. Leaf development in leptosporangiate ferns resembles the traditional concept of development in angiosperms somewhat more than it does the more recent concepts. It is clear, though, that there is not a high degree of convergence in the marginal growth of fern and angiosperm leaves.  相似文献   

9.
Twig apices of Sphenophyllum lescurianum, S. constrictum, and two new Sphenophyllum taxa are described in transverse and longitudinal section from middle and upper Pennsylvanian age specimens. In all of the species the single apical cell has the shape of a tetrahedron, with a triangular upper surface and three internal cutting faces. Segment cells are produced from each of the cutting surfaces in a dextrorse or sinistrorse direction, depending upon the species. The central portion of each segment cell contributes to the initiation of the procambium, while the remaining outer portion undergoes a vertical and subsequent horizontal division to form segment cells. Segment cells are aligned in vertical tiers beneath the respective apical cell cutting faces, with the individual leaves positioned directly beneath a tier of segment cells. Leaf primordia are first observed as a series of surface undulations below the apex, with an intercalary meristem located directly beneath each primordium. The vegetative apical organization of Sphenophyllum is demonstrated to be very similar to the type of organization found at the stem tips of Catamites and Equisetum.  相似文献   

10.
The duration of mitosis and the cell cycle were determined for defined cell populations of the shoot apical meristem of Ceratopteris thalictroides Brong. by using the colchicine-induced metaphase accumulation technique. The results indicate that the apical cell is mitotically active and cycles at an apparently greater frequency than the cells of subjacent populations. Duration of mitosis was similar for all cells of the meristem. These results are correlated with mitotic indices of control apices, the geometry of the apex, and the mean number of cells in the meristem. Shoot apices from adult plants were examined to determine mitotic indices within the meristem; mitotic activity was again noted for the apical cell. These results contradict recent proposals that the pteridophyte apical cell serves as a unicellular quiescent center which lacks histogenic potential and offer experimental support for the classical concept of apical cell function in those fern shoot meristems which terminate in a single apical cell.  相似文献   

11.
本文采用解剖学方法研究花椰菜、青花菜、结球甘蓝和大白菜在生长发育过程中顶端分生组织结构的变化及之间存在的差异。结果显示它们的顶端分生组织结构都是由最初幼苗的原套-原体结构逐渐发育到过渡型分区结构、典型化五个分区结构,至开始进入生殖生长时期的四个分区结构(形成层状细胞区消失)。四种植物在进入生殖生长后,顶端分生组织细胞行为不同:大白菜和甘蓝顶端亚外套两侧细胞分裂分化形成顶生叶原基,在顶生叶原基内侧的细胞将进行分裂产生花序侧枝原基。花椰菜和青花菜顶端亚外套两侧细胞分裂形成花序分生组织,花序分生组织增生即为花球体;内部解剖结构表现为分生组织不断分裂增多的过程。这些结果为研究花序表型发生的解剖学本质及分子生物学研究分生组织发育方向奠定了基础。  相似文献   

12.
The inflorescence development of three species of Piper (P. aduncum, P. amalago, and P. marginatum), representing Sections Artanthe and Ottonia, was studied. The spicate inflorescences contain hundreds or even thousands of flowers, depending on the species. Each flower has a tricarpellate syncarpous gynoecium and 4 to 6 free stamens, in the species studied. No sepals or petals are present. In P. marginatum the apical meristem of the inflorescence is zonate in configuration and is unusually elongate: up to 1,170 μm high and up to 480 μm wide during the most active period of organogenesis. Toward the time of apical cessation both height and diameter gradually diminish, leaving an apical residuum which may become an attenuate spine or may be cut off by an abscission zone just below the meristem. The active apex produces bract primordia; when each is 40–55 μm high, a floral apex is initiated in its axil. Both bract and floral apex are initiated by periclinal divisions in cells of the subsurface layer. The bracts undergo differentiation rather early, while the floral apices are still developing. The last-produced bracts near the tip of the inflorescence tend to be sterile.  相似文献   

13.
The removal of the calyptra from the sporophyte of Funaria causes the seta to thicken dramatically. The growth patterns of the seta-thickened and normal sporophytes are similar in that in either case elongation proceeds from the activity of an intercalary meristem in the subapical region. The absence of the calyptra during elongation does not inhibit growth. The first effect of removing the calyptra is to allow for increased lateral expansion of the cells produced from the meristem. Subsequently, there is an increase in the number of cells seen in transverse sections, compared to what is seen in normal sporophytes. Improved procedures for surface sterilization and in vitro culture have allowed the growth of young, excised sporophytes to maturity. Using these culture procedures it is shown for the first time that thickened setae are capable of long term (indeterminate) growth if capsules do not form. The normal seta is shown to be doubly tapered, with the maximum diameter reached after the first ⅓ of the length of the seta is attained. The tapering of the normal seta seems to result from an interaction between the intercalary meristem and the calyptra, which is also tapered.  相似文献   

14.
After the short-lived apical meristem ceases activity, a basal intercalary meristem produces all new tissues in the aerial internode of Scirpus validus Vahl. These include extensions of the original vascular system and of the original partitioning walls as well as new vascular bundles and new walls which are produced in a predictable pattern. Diaphragms begin to differentiate well within the intercalary meristem. At first their cells are indistinguishable from those that will become the aerenchyma, but they undergo segmentation and form packets of daughter cells. Such continued mitotic activity allows the diaphragms to expand with the increasing girth of the stem above the intercalary meristem. Aerenchyma cells between the diaphragms become stellate by being stretched as the cells of the vertical partitions divide and enlarge in and above the intercalary meristem.  相似文献   

15.
The stolons of Nephrolepis biserrata (sw.) Schott are thin axes that grow rapidly (from 2 to 4 mm per day) in the controlled conditions applied. In the cylindro-conical meristem, three histological zones are defined. Cell cycle duration was determined for each zone by autoradiographic methods after incorporation of tritiated thymidine and confirmed by the colchicine-induced metaphase-accumulation technique. The apical cell and its derivatives (Zone 1) are mitotically more active (cell cycle duration: 80 hr) than the cells of the subapical zones (2 and 3), where cell cycle lengths are 142 hr and 95 hr respectively. These data, compared to previous results, give evidence for the main role played by the relative rate of division of the apical cell compared to that of lateral cells in the organization and the shape of the meristem of pteridophytes. Moreover, the apical cell appears to be unique in having a differentiated cytological aspect not usually associated with an intensely proliferating cell.  相似文献   

16.
The guard cells of Anabasis articulata mature and senesce a short distance from the intercalary meristem in which they form. When the guard cells reach final size, their ultrastructure is similar to that of stomata of other plants. At this stage, they contain clearly definable, numerous mitochondrial profiles, chloroplasts with starch grains and plastoglobuli, active Golgi bodies, a large nucleus that stains deeply for chromatin and large vacuoles. During later stages of development the whole protoplasmic content becomes very dense, with myelin-like figures and crystals appearing in the vacuoles. The cell walls thicken considerably. This is especially true of the tangential walls, where the microfibrils of different lamellae vary in their orientation. It is suggested that as a result of these ultrastructural changes the guard cells lose the ability to move.  相似文献   

17.
All epidermal cells in root tips of panicoid grasses have been considered to be capable of hair formation. Observations made in this investigation suggested that cells of two maturation potentials may be present in the root-tip epidermis of Panicum virgatum. Protein bodies which swell and fuse in the region of elongation were revealed in the meristem of this grass by different staining procedures. In many roots not all cells seemed to receive the same amount of these bodies or of the protein-positive material which appeared to arise from them. Only deeply stained cells with large nucleoli were seen to form hairs. Epidermal cells of very hairy roots contained uniform nucleoli and exhibited similar distributions of protein material. The protein positive inclusions were never found in the cortex, a region of cells with one maturation potential. Following chloramphenicol treatment, root tips were found to contain epidermal cells with nucleoli of similar size, a reduced amount of protein bodies, and a reduction in the number of root hairs. RNase treatment did not appear to affect the integrity of the inclusions. The significance of such protein bodies is discussed in relation to differentiation of epidermal cells in P. virgatum.  相似文献   

18.
Lateral roots of Typha glauca arose from the pericycle of the parent adventitious root. Periclinal divisions of the pericycle gave rise to two layers; the outermost initially produced the ground meristem and protoderm, and the innermost produced the procambium. The immature endodermis of the parent root contributed to the early stages of the root tip as an endodermal covering. Prior to emergence, the ground meristem/protoderm produced cells into the endodermal covering. After emergence, the endodermal covering was replaced by a calyptrogen, which was derived from the ground meristem/protoderm and which, in turn, formed the rootcap. A typical monocotyledonous three-tiered meristem was then produced. An outer ground meristem also arose before emergence to form a hypodermis in many lateral roots; in these, crystalliferous cell production began in midcortex cells before emergence, and a small aerenchyma developed in their cortices. The rootcap columella stored small amounts of starch shortly after emergence. Lateral roots of T. glauca were smaller than their parental adventitious roots; they normally had only two to six poles of xylem and phloem, and the cortex was less than six cells across. During 1–3-cm elongation, the lateral root apical meristem and mature regions narrowed, stored starch disappeared, fewer crystals formed, aerenchyma production ceased, and the roots stopped elongation.  相似文献   

19.
Plants of Pinguicula vulgaris L. have either clockwise or counterclockwise spiral phyllotaxy. The inception of floral primordia occurs in leaf sites as a normal sequence of development. Only two leaf primordia initiated late in the season develop into floral primordia in the following year. They do not represent a direct modification of the apical meristem nor of the detached meristem. The apical meristem continues to produce leaves in the vegetative phase and flowers in the reproductive phase, and thus the plants show a monopodial growth. Axillary buds are not developed in this perennial species and instead additional buds of adventitious ontogeny appear. Such buds are produced on the older leaves of larger plants, and they are extremely useful in the vegetative propagation of the species.  相似文献   

20.
A rhizomorph of Paurodendron with an intact apex recently has been discovered in Upper Pennsylvanian sediments of Ohio, and this provides the anatomical evidence necessary to interpret structure, ontogeny and homologies among lycophyte rooting organs. The basal meristem of Paurodendron is radial and lenticular, and produces an apical plug of parenchymatous tissue similar to a root cap. The plug is surrounded by a furrow associated with radially aligned cells that demonstrate a developmental correspondence to the furrow(s) of Isoetes. Based on external structural similarities at the rhizomorph apices of Paurodendron, Stigmaria, and young Nathorstiana, and on the anatomical similarities of Paurodendron to Isoetes, Stigmaria, Chaloneria, and Lepidocarpon embryos, all are interpreted as having a rooting organ that represents a modified shoot system that is fundamentally unlike the primary root system of seed plants. Likewise, the rootlets of rhizomorphic lycophytes are interpreted as leaves modified for rooting, and that have the equivalent of exogenous origin. As such, they are fundamentally unlike the adventitious roots of rhizomatous lycophytes like Lycopodium and Selaginella.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号