首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of the availability of light (high, medium and low) and soil water (wet and dry) on morphological and physiological traits responsible for whole plant carbon gain and ramet biomass accumulation were examined in a splitter-type clonal herbaceous species Primula sieboldii, a spring plant inhabiting broad range of light environments including open grassland and oak forest understory. Growth experiments were conducted for three genets originated from natural microhabitats differing in light and soil water availability. Ramets of a genet from high light and wet microhabitat, which were grown in low light (relative photon flux density: R-PPFD of 5%) showed 41% less light-saturated photosynthetic rate, 50% less dark respiration rate and earlier defoliation than the ramets in high light (R-PPFD of 61%). The estimation of daily photosynthesis revealed that the light acclimation response in leaf gas exchange contributes to efficient carbon gain of whole plants, irrespective of experimental light conditions. Water stress increased root weight ratio, decreased ramet leaf area, petiole length and photosynthetic capacity. These morphological effects of water stress were larger in high and medium light regimes than in low light regime. The consequence of the above responses was recognized in the relative growth rate of the ramets. The relative growth rate of the ramets in high light with wet regime was four-fold of that in low light plus wet regime, and was 1.5-fold of that in high light plus dry regime. However, even in low light and/or dry regimes, ramets kept positive relative growth rates and produced gemma successfully. We could not detect significant variation in growth responses among genets. The high photosynthetic plasticity revealed in the present study should enable Primula sieboldii to inhabit in a broad range of light and soil water availability.  相似文献   

2.
Intraspecific variations in the reproduction of individual ramets and monospecific patches of the understory herb Arnica cordifolia Hook. were compared with variations in photosynthesis and understory light conditions. Ramets and patches were compared from three microhabitats (open, intermediate, and shaded) that differed in daily integrated irradiance. Individual ramets from open microhabitats (> 12 MJ m−2 d−1) had 23% more total dry wt and produced twice as many seeds, when compared to ramets from shaded locations (< 5 MJ m−2 d−1). In addition, monospecific patches from open locations were 63% more dense, and estimates of seed and vegetative patch reproductive effort were 4 and 2 times greater, respectively, when compared to shaded plant patches. For all measurements, ramets and patches from intermediate understory locations (6–10 MJ m−2 d−1) were intermediate in reproductive capacity between those of open and shaded locations. In addition, A. cordifolia seeds from open microhabitats germinated significantly better (45%) than either intermediate or shaded location seeds under high light and only seeds from shaded microhabitats germinated (14%) in the dark. Compared to shaded location plants, the greater total dry weight and seed production of individual ramets and the greater estimated reproductive effort of patches from open locations corresponded to a greater maximum photosynthetic rate (16.9 μmoles m−2 s−1) and daily carbon gain (12.2 g m−2 d−1). Possibly, a greater photosynthetic capacity may make more photosynthetic resources available for reproduction by A. cordifolia plants in open locations. Thus, intraspecific variation in physiology may contribute to intraspecific variation in reproduction.  相似文献   

3.
Effects of clonal integration on plant plasticity in Fragaria chiloensis   总被引:11,自引:0,他引:11  
Peter Alpert 《Plant Ecology》1999,141(1-2):99-106
The ability of clonal plants to transport substances between ramets located in different microsites also allows them to modify the plastic responses of individual ramets to local environmental conditions. By equalising concentrations of substances between ramets, physiological integration might decrease responses to local conditions. However, integration has also been observed to increase plasticity and induce novel plastic responses in ramets. To ask how integration modifies plant plasticity in the clonal herb, Fragaria chiloensis, ramets were given either low light and high nitrogen or high light and low nitrogen, simulating a pattern of resource patchiness in their native habitat. Ramets in contrasting light/nitrogen treatments were either connected or single. Effects of light/nitrogen and connection were measured at three levels of morphological organisation, the organ, the ramet, and the clonal fragment. Connection between ramets reduced or had no effect on plastic responses in leaf size at the level of the plant organ. This suggested that integration dampened certain plastic responses. Connection induced a new plastic response at the level of the clonal fragment, an increase in allocation to vegetative reproduction in patches of low light and high nitrogen. It is concluded that clonal integration can have different effects on plant plasticity at different levels of plant organisation. It appears that, at least in this species, integration can increase plasticity at the level of the clonal fragment and concentrate vegetative reproduction in particular microsite types.  相似文献   

4.
Competition for light can affect exploitation of spatially heterogeneous soil resources. To evaluate the influence of shoot status on root growth responses in nutrient-rich soil patches, we studied the effects of shading and whole-plant nitrogen status on root growth in N-enriched and nonenriched patches by mature Agropyron desertorum plants growing in the field with below-ground competition. Roots in enriched patches had greater length to weight ratios (specific root length, SRL), indicating increased absorptive surface areas, compared with roots in control patches. Increased SRL was due to increased production and length of higher order laterals rather than morphological changes in roots of the same branching order. Although the pattern of root growth rates in patches was the same for shaded and unshaded plants, the magnitude of this response to enriched patches was damped by shading. Root relative growth rates (RGR) in N-enriched patches were reduced by more than 50% by short-term shading treatments (60% reduction in photosynthetic flux density), while root RGR in unenriched patches was unaffected by shading. Unexpectedly, plants with higher nitrogen status had greater root RGR in enriched patches than plants that had not received nitrogen supplement, again with no detectable effect on root RGR in the unenriched patches. Therefore, while both shading and plant N status affected the ability of roots to exploit enriched patches by proliferation, there was no stimulation or suppression of root growth in the unenriched, control patches. Thus, plants already under competitive pressure above ground for light and below ground for nutrients should be less able to rapidly respond to opportunities presented in nutrient patches and pulses.  相似文献   

5.
Summary Ramets of the understory herb, Aster acuminatus, were transplanted from two source populations into eight understory garden sites that varied in light and soil moisture levels. Ramet growth, clonal growth, flowering and survivorship were monitored for three growing seasons. Large differences among gardens in ramet growth, clonal growth and flowering developed in the first growing season and increased in the next two years. This variation was positively correlated with garden light level but not at all with soil moisture. Mortality rates were low in all gardens and showed that genets from any particular source could survive over a broad range of environmental conditions. There was no conclusive evidence for any source population differences in the capacity to survive or grow in different environments. The rapid, light-induced responses of transplanted ramets resulted in garden populations very similar in appearance to natural populations experiencing similar light regimes. These results combined with those from other studies of A. acuminatus provide strong evidence for the importance of light in explaining population patterns and dynamics in this species.  相似文献   

6.
To test the hypothesis that variation in photosynthesis can cause differences in fitness, we compared wild‐type (WT) Amaranthus hybridus genotypes to those having a single‐gene mutation (R) that affects photosynthetic rate. By using light and water treatments, we generated a range of differences between WT and R genotypes in photosynthetic rate, growth and reproduction at three developmental stages. In two cases photosynthetic differences were in the expected direction (WT > R), they did not differ in others, and in one case the R genotype had a higher rate than the WT. Across light and water treatments, higher rates of photosynthesis were related to increases in specific leaf area, leaf nitrogen content and stomatal conductance relative to the other genotype. Differences between genotypes in growth and allocation paralleled those in photosynthesis; in treatments where photosynthetic rate differed between the genotypes (high light), growth and reproduction did as well. In high light, the effects of genotype on fitness were indirect with high‐water availability, but were direct with low‐water availability. When photosynthetic rate did not differ between genotypes (low light), neither did growth and reproduction. These results demonstrate that variation in photosynthesis can cause differences in growth and reproduction. Furthermore, resource availability can moderate the ways in which selection operates on photosynthetic traits.  相似文献   

7.
? Premise of the study: Fitness of plant hybrids often depends upon the environment, but physiological mechanisms underlying the differential responses to habitat are poorly understood. We examined physiological responses of Ipomopsis species and hybrids, including reciprocal F(1)s and F(2)s, to variation in soil moisture and nitrogen. ? Methods: To examine responses to moisture, we subjected plants to a dry-down experiment. Nitrogen was manipulated in three independent experiments, one in the field and two in common environments. ? Key results: Plants with I. tenuituba cytoplasmic background had lower optimal soil moisture for photosynthesis, appearing better adapted to dry conditions, than plants with I. aggregata cytoplasm. This result supported a prediction from prior studies. The species and hybrids did not differ greatly in physiological responses to nitrogen. An increase in soil nitrogen increased leaf nitrogen, carbon assimilation, integrated water-use efficiency, and growth, but the increases in growth were not mediated primarily by an increase in photosynthesis. In neither the field, nor in common-garden studies, did physiological responses to soil nitrogen differ detectably across plant types, although only I. aggregata and hybrids increased seed production in the field. ? Conclusions: These results demonstrate differences in photosynthetic responses between reciprocal hybrids and suggest that water use is more important than nitrogen in explaining the relative photosynthetic performance of these hybrids compared to their parents.  相似文献   

8.
Summary We evaluated both the photosynthetic plasticity and acclimation to light of seedlings of five co-occurring tropical tree species in the Moraceae,Cecropia obtusifolia, Ficus insipida, Poulsenia armata, Brosimum alicastrum, andPseudolmedia oxyphyllaria. Distinct differences in the species' abilities to respond to increasing irradiance correlated with their known habitat breadths and successional status. The early successinalsCecropia andFicus exhibited the highest photosynthetic rates and conductance values in high light. There was a several-fold difference in assimilation across light regimes, consistent with a high physiological plasticity. When individuals grown at low light were transferred to higher irradiances, seedlings of bothCecropia andFicus produced leaves which photosynthesized at rates as high or higher than those of plants continuously grown in high light, indicating a high photosynthetic acclimation potential. In contrast, the late successionals were characterized by both a more restricted physiological plasticity and acclimation potential. Higher light levels resulted in only moderate increases in assimilation among the late successionals, and onlyBrosimum acclimated fully to increased irradiances. NeitherPoulsenia norPseudolmedia increased appreciably their photosynthetic rates when transferred to high light. This suggests that acclimation potential cannot always be inferred from plasticity responses, and calls for a reevaluation of arguments developed solely from plasticity studies. Finally, differences between the early and late successional species in the allocation of nitrogen into RuBP carboxylase and thylakoid nitrogen pools or non-photosynthetic compounds are suggested by the distinct relationships between maximum photosynthetic capacity and nitrogen content.  相似文献   

9.
Abstract. Factors underlying the process of photosynthetic acclimation to temperature were investigated for the shrub Nerium oleander L. Ramets of a single clone were grown under day/night temperature regimes of 20°C/15°C or 45°C/32°C. Plants grown at the lower temperature regime possessed rates of photosynthesis twice that of the high-temperature grown plants when CO2 fixation was measured at 20°C. In contrast, the plants grown at the high-temperature regime had twice the rate of CO2 fixation of the 20°C/l 5°C-grown plants at a measurement temperature of 45° C. It was determined that the ability to acclimate to changes in temperature regime was present in fully mature leaves. A reciprocal transfer of plants between the two growth regimes resulted in the appearance of the CO2 fixation characteristics appropriate to the new growth temperature after 12–14d. The response of CO2 fixation to light, temperature, and CO2 partial pressure and the temperature responses of soluble and membrane-bound photosynthetic enzyme systems were analysed to determine which components might be responsible for the superior photosynthetic performance of the 20°C/I5°C-grown plants at 20°C, and the enhanced high-temperature stability of the 45°C/32°C plants. The measured photosynthetic capacity of the 20°C/15°C plants could not be attributed to gross morphological, stomatal, or other physical changes, or to a general increase in the concentration of components of the photosynthetic process. Only a single enzyme, Fru-P2 phosphatase, was affected to an extent similar to that of photosynthesis. The enhanced thermal stability of the 45°C/32°C plants may be attributed primarily to an enhanced stability of the chloroplast membrane-bound enzymatic activities and the stability of the photosynthetic carbon metabolism enzymes which require lighl for activation.  相似文献   

10.
Relationships between nitrogen (N) content and growth are routinely measured in plants. This study determined the effects of N on the separate morphological and physiological components of plant growth, to assess how N-limited growth is effected through these components. Lettuce ( Lactuca sativa ) plants were grown hydroponically under contrasting N-supply regimes, with the external N supply either maintained continuously throughout the period of study, or withdrawn for up to 14 d. Richards' growth functions, selected using an objective curve-fitting technique, accounted for 99.0 and 99.1% of the variation in plant dry weight for control and N-limited plants respectively. Sublinear relationships occurred between N and relative growth rates under restricted N-supply conditions, consistent with previous observations. There were effects of treatment on morphological and physiological components of growth. Leaf weight ratio increased over time in control plants and decreased in N- limited plants. Shoot:root ratio followed a similar pattern. On a whole-plant basis, assimilation of carbon decreased in N-limited plants, a response paralleled by differences in stomatal conductance between treatments. Changes in C assimilation, expressed as a function of stomatal conductance to water vapour, suggest that the effects of N limitation on growth did not result directly from a lack of photosynthetic enzymes. Relationships between plant N content and components of growth will depend on the availability of different N pools for remobilization and use within the plant.  相似文献   

11.
We investigated whether the timing of high light availability as sun patches within forest gaps, independent of total or peak photosynthetic photon flux (PPF), influences the physiology and growth of four coexisting birch species (Betula alleghaniensis, B. lenta, B. papyrifera, and B. populifolia). Birch seedlings were grown for two years along either the east or west sides of experimental gap structures and at two moisture levels. Seedlings positioned in the west received sun patches earlier in the day than those in the east, and environmental conditions for carbon gain were generally more favorable during the earlier sunpatches in the west; air and leaf temperatures were lower, and relative humidity higher, relative to conditions during sun patches in the cats, simulating patterns observed in natural forest gaps. Seedlings positioned along the west edges of gaps fixed more carbon earlier in the day than those in the east, and in many cases, peak net photosynthetic rates were greater for west positioned seedlings. In year two, leaf-level integrated daily carbon gain was greater for west- than eastpositioned plants, and for the most pioneer species, B. populifolia, differences between west and east seedlings were greatest at lower soil moisture levels. Despite some small effects on leaf gas exchange, the timing of high light availability, and its temporal congruence with other factors critical to carbon gain, had no significant effects on first or second year seedling biomass. The responses of birch seedlings to controlled variations in the timing of high light availability were generally much smaller than birch seedling responses to variations in other components of daily light regimes such as total integrated and peak PPF.  相似文献   

12.
The effects of fluctuations in the irradiance onScenedesmus quadricauda, Chlorella vulgaris andSynechococcus elongatus were studied in dilute cultures using arrays of red light emitting diodes. The growth rate and the rate of photoinhibition were compared using intermittent and equivalent continuous light regimes in small-size (30 ml) bioreactors. The CO2 dependent photosynthetic oxygen evolution rates in the intermittent and continuous light regimes were compared for different light/dark ratios and different mean irradiances. The kinetics of the electron transfer reactions were investigated using a double-modulation fluorometer. The rates of photosynthetic oxygen evolution normalized to equal mean irradiance were lower or equal in the intermittent light compared to the maximum rate found in the equivalent optimal continuous light regime. In contrast, the growth rates in the intermittent light can be higher than the growth rate in the equivalent continuous light. Photoinhibition is presented as an example of a physiological process affecting the growth rate that occurs at different rates in the intermittent and equivalent continuous lights. The difference in the dynamics of the redox state of the plastoquinone pool is proposed to be responsible for the low photoinhibition rates observed in the intermittent light.  相似文献   

13.
The responses of reproduction and growth to climate warming are important issues to predict the fate of plant populations at high latitudes. Spring ephemerals inhabiting cool-temperate forests grow better under cool conditions, but how reproductive performance is influenced by warm weather is unclear. The phenological and physiological responses of reproduction and vegetative growth to warm temperature and light conditions were evaluated in the spring ephemeral Gagea lutea. Leaf and bract physiological activities, bulb growth, and seed production were compared among reproductive plants grown in forest, open, and greenhouse (GH; warming manipulation in the open site) plots. In vitro pollen germination ability was tested under various temperatures. In the GH, leaf and bract photosynthetic activities decreased rapidly at the fruiting stage, but dark respiration rates remained high, resulting in higher carbon exhaust in warm conditions. Both leaf and bract sizes and their longevities were reduced in the GH. Annual bulb growth was largest in the forest plot and smallest in the GH plot. Pollen germination was strongly inhibited at high temperature (30 °C). Fruit and seed productions were decreased only in the GH plot. Both vegetative and reproductive activities were negatively affected by warm temperature, resulting in less vegetative growth and lower seed-set, whereas an understory habitat was beneficial for vegetative growth and showed similar seed production to an open habitat over the experimental period. Decreasing population dynamics of spring ephemerals was predicted in response to future warming climate not only by growth inhibition but also by restriction of seed production.  相似文献   

14.
We employed an experimental model system to investigate the mechanisms underlying patterns of patch occupancy and population density in a high arctic assemblage of Collembola species inhabiting a sedge tussock landscape on Svalbard. The replicate model systems consisted of 5 cores of the tussocks (habitat patches) imbedded in a barren matrix. Four of the patches were open so that animals could migrate between them, while there was one closed patch per system to test the effect of migration on extinction rate. There were model systems of two types: one with long and one with short inter‐patch distances to test the effect of patch isolation on colonisation and extinction rates. Each of the four most common collembolan species at the field site were introduced to two open patches per system (source patches), with the other two functioning as colonisation patches for the species. The experiment was run in an ecotrone over three identical, simulated arctic summers separated by winters of 3 weeks. Six replicates of systems with short and long inter‐patch distances were sampled at the end of each summer. The species varied markedly in their performance in both open arenas and closed patches, indicating differential responses to patch humidity, consistent with their differential distribution along the moisture gradient in the field site. The extinction – colonisation dynamics differed markedly between species as predicted from our field studies. This could partly be ascribed to differential dispersal and colonisation ability, but also to different tolerance to spatially variable patch quality and/or tendency for aggregative behaviour. Three of the species exhibited dynamics that superficially resemble what could be expected from classical metapopulation dynamics. However, there was a striking discrepancy between what would be expected from the effect of migration on the extinction rate of isolated patches (in particular closed patches) and the observed rates. Thus, metapopulation processes, such as stochastic colonisation and extinction events due to demographic stochasticity, were relatively unimportant compared to other sources of spatial variability among which subtle differences in patch quality are probably most important. We discuss the value of combining field studies with model system experiments, in particular when habitat quality cannot easily be measured in the field. However, our field and laboratory studies also emphasise the need for a thorough knowledge of species‐specific life history traits for making biologically sound interpretations based on both observational and experimental data.  相似文献   

15.
雾凉季研究了西双版纳热带雨林4种植物幼苗对生长光环境的适应,其中两个树种幼苗喜光(团花和滇南插柚紫),两个树种幼苗耐荫(滇南红厚壳和玉蕊)发现弱光环境中生长的4种植物比叶重、光合能力、光饱和点、光补偿点暗呼吸速度、叶绿素a/b比较低,叶绿素含量较高。玉蕊和滇南红厚壳幼苗的光合能力和呼吸速度 于团花树和滇南插柚紫。团花树和滇南插机紫的比叶重和光合作用的可塑性大于玉蕊和滇南红厚壳。高光强下生长的团花树和滇南插机紫增加叶氮分配给羧化酶的比较。减少分配给叶绿素的比例。滇南红厚壳和玉蕊适应弱光环境的能力略强于团花树和滇南插机紫,但适应强光的能力较差。研究结果支持树种的生理生态特性决定了其演替状况和生境选择的假说,单位干重叶的光合能力和呼吸速率并未表现出利于光适应的可塑性,表明4种植物生理适应能力较差,形态学上的适应在4种热带雨林树种幼苗光适应方面起到了重要的作用,叶氮分配也是它们光适应的策略之一。  相似文献   

16.
The red seaweed agarophyte, Gelidiella acerosa (Forssk?l) (Feldmann& Hamel) was collected from tidepools, high intertidal rocks. and shallow subtidal are as along a reef flat in Ilocos Norte, northern Philippines. The three populations were compared during the summer (dry) and rainy (wet) seasons to determine changes in morphology and photoacclimation capacity as possible use in mariculture. During summer months (February toApril) after exposure to environmental extremes (i.e. the highest percent of minus tides during daylight, high light regimes, desiccation, and solar bleaching), the populations differed in their morphologies and responses to increasing irradiance levels (P–I curve). Tidepool plants were the tallest, bushiest, and with increased diameter of cortical cells; while,high intertidal plants were the shortest, with sparse branching pattern and decreased diameter of cortical cells. Although their saturation irradiances indicated shade tolerance (Ik = 52 − 112 μmol photon m -2 s-1). their differential light saturation curves (P-I curves) suggested a capacity to acclimate to ambient light regimes. For example, plants from the high intertidal zone showed higher photosynthetic rates and saturation irradiances, slightly lower initial slopes of the P-I curves and levels of light harvesting accessory pigments, rphycoerhythrin (R-PE) and rphycocyanin (R-PC), after being exposed to higher light regimes. In contrast, plants from tidepools and shallow subtidal areas had lower photosynthetic rates and saturation irradiances, slightly steeper initial slopes of the P-I curves and levels of R-PE and R-PC, having been exposed to lower light regimes. During the rainy months (June to November) no significant responses in these parameters were recorded. Comparison of the P-I responses of vegetative and tetrasporic plants showed these to vary with season. The data suggest that when plants became reproductive their physiological fitness either was unchanged or slightly enhanced. These results indicate that all three populations of G. acerosa could be used as seed stock for mariculture. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
Regional persistence of species requires a positive balance between colonizations and local extinctions. In this study, we examined the amount of colonizations and extinctions and their likelihood as a function of patch size, isolation, and habitat characteristics of a riparian perennial plant, Erigeron acer subsp. decoloratus. We also studied the importance of patch dynamics to the regional population growth. Over five successive years, we counted the number of plant patches along 43 km of riverside. Most patches were small in area and population size. The annual finite growth rate in the number of patches varied between years, but the geometric mean was close to 1.0, indicating a viable patch network in spite of local extinctions. Extinction rate was highest on steep slopes and for small patches with few individual plants and a small patch area. When the patches were classified into different stage classes, the most common fate was stasis, i.e., the patch remained at the same stage. Patch survival and local, within-patch dynamics were most important during this five-year period. Between-patch dynamics (including colonization for example) accounted for 5–10% of annual transitions. The overall dynamics were relatively similar to those of other plant species subjected to riparian disturbance regimes. In the long run, the survival of the species depends on how well it is able to escape from competition from forest and meadow species and track the availability of suitable habitats. This kind of habitat tracking differs from classical metapopulation dynamics. In the former, local extinctions occur as a consequence of adverse changes in the habitat and recolonizations are rare, whereas metapopulation models assume a highly persistent habitat structure with frequent recolonizations. In this respect, the regional dynamics of perennial plants in disturbed riparian habitats may differ from classical metapopulations.  相似文献   

18.
氮素和水分是荒漠生态系统的两个主要限制因子, 研究两者对荒漠植物的效应有助于深入了解荒漠生态系统对全球变化的响应。该文选择准噶尔盆地荒漠地区两种常见的一年生植物涩荠(Malcolmia africana)和钩刺雾冰藜(Bassia hyssopifolia), 设置0、0.18和0.72 g N·m -2·week -13个施氮浓度和湿润与干旱两个土壤水分处理, 研究模拟氮沉降增加和干旱对其生长和光合生理的影响。结果表明: (1)两种植物的根长、根重、叶片数、叶面积、总生物量和冠根比均随着施氮浓度的增加而增加, 干旱能够抑制氮对植物生长的促进作用, 但是, 氮的增加同时也能部分缓解干旱对植物生长的影响。与钩刺雾冰藜相比, 涩荠的根长、生物量和冠根比更易受氮增加和干旱的影响。(2)两种植物的最大净光合速率、叶绿素含量、可溶性蛋白含量随着氮浓度增加而增加, 但涩荠和钩刺雾冰藜对氮增加和干旱的生理响应也有所不同, 涩荠的响应更加敏感。两种植物对氮沉降和干旱胁迫响应的差异可能是其生活型等生物学特性差异所引起。通过对两种一年生植物的生长和光合生理分析表明, 在古尔班通古特沙漠, 春季丰富的降水和氮素增加将有利于涩荠和钩刺雾冰藜的生长和生产力的增加, 相对地下生长, 地上部分增加更显著。当干旱季节来临时, 氮的增加又能够在一定程度上降低干旱对这两种植物的负效应, 说明其对干旱具有一定的生态补偿作用。  相似文献   

19.
Ida TY  Kudo G 《Annals of botany》2008,101(3):435-446
BACKGROUND AND AIMS: The light availability on a temperate, deciduous-forest floor varies greatly, reflecting the seasonal leaf dynamics of the canopy trees. The growth and/or reproductive activity of understorey plants should be influenced by the length of the high-irradiance period from snowmelt to canopy closure. The aim of the present study was to clarify how spring-blooming species regulate the translocation of photosynthetic products to current reproduction and storage organs during a growing season in accordance with the changing light conditions. METHODS: Growth pattern, net photosynthetic rate, seed production, and shoot and flower production in the next year of Trillium apetalon were compared between natural and experimentally shaded conditions. Furthermore, translocation of current photosynthetic products within plants was assessed by a labelled carbon-chase experiment. KEY RESULTS: During the high-irradiance period, plants showed high photosynthetic ability, in which current products were initially used for shoot growth, then reserved in the rhizome. Carbon translocation to developing fruit occurred after canopy closure, but this was very small due to low photosynthetic rates under the darker conditions. The shading treatment in the early season advanced the time of carbon translocation to fruit, but reduced seed production in the current year and flower production of the next year. CONCLUSIONS: Carbon translocation to the storage organ had priority over seed production under high-irradiance conditions. A shortened bright period due to early canopy closure effectively restricts carbon assimilation, which greatly reduces subsequent reproductive output owing to low photosynthetic products for fruit development and small carbon storage for future reproduction. As populations of this species are maintained by seedling recruitment, acceleration of canopy closure timing may influence the maintenance and dynamics of populations.  相似文献   

20.
The effects of soil-water availability on leaf light acclimation and whole-plant carbon gain were examined in Arisaema heterophyllum Blume, a riparian deciduous forest understorey plant. Photosynthesis, above-ground morphology and ramet biomass accumulation (relative growth rate: RGR of a corm for a full leaf life-span) were measured on plants raised under three light treatments combined with two soil water conditions. The two higher light treatments during growth (high: max. 550 μmol photons m–2 s–1; medium: 150 μmol photons m–2 s–1) resulted in a twofold increase in RGRs, 30% higher photosynthetic capacities and 20% less photosynthetic low-light use efficiency than those under a low light condition (50 μmol photons m–2 s–1). Leaf area was the smallest and leaf mass area ratio was the largest under the high light treatment. Water stress decreased both photosynthetic rate and leaf area and, hence, RGR in all the light regimes. However, water stress did not alter the general patterns of physiological and morphological responses to different light regimes. We estimated that higher photosynthetic low-light use efficiency and larger leaf area in the low light leaf would lead to a threefold carbon gain as compared with the high light leaf under simulated low light conditions. Both experimental and simulation results suggest that the physiological and morphological acclimations tend to be beneficial to carbon gain when light availability is low, whereas they favor increased water use efficiency when light availability is sufficiently high. Electronic Publication  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号