首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In batch fermentation Leuconostoc mesenteroides immobilized in calcium alginate beads produced a total dextransucrase activity equal to about 93% of that by free, suspended bacterial cells under comparable conditions in a bubble column reactor. Continuous sucrose feeding (5 g/L h) to the immobilized-cell culture in the airlift bioreactor increased production of enzymatic activity by about 107% compared with ordinary batch operation of this reactor. About 14% of the enzymatic activity produced by the immobilized cells appears as soluble activity in the cell-free broth compared with about 40% in case of free cells. In an airlift bioreactor, both the soluble and the intact (sorbed and entrapped) enzymatic activity produced by the immobilized bacterial cells was about 34% greater under automatic pH control, compared to that produced in a bubble column reactor with only manual pH control. During formation of dextran by intact enzyme within cells and beads, declines are observed in apparent enzymatic activity.  相似文献   

2.
The optimization of alpha-1,2 glucooligosaccharide (GOS) synthesis from maltose and sucrose by Leuconostoc mesenteroides NRRL B-1299 dextransucrase was achieved using experimental design and consecutive analysis of the key parameters. An increase of the pH of the reaction from 5.4 to 6.7 and of the temperature from 25 to 40 degrees C significantly favored alpha-1,2 GOS synthesis, thanks to a significant decrease of the side reactions, i.e., dextran and leucrose synthesis. These positive effects were not sufficient to compensate for the decrease of enzyme stability caused by the use of high pH and temperature. However, the critical parameters were the sucrose to maltose concentration ratio (S/M) and the total sugar concentration (TSC). Alpha1,2 GOS synthesis was favored at high S/M ratios. But using these conditions also led to an increase of side reactions which could be modulated by choosing the appropriate TSC. Finally, with S/M = 4 and TSC = 45% w/v, dextran and leucrose productions were limited and the final alpha-1,2 GOS yield reached 56.7%, the total GOS yield being 88%.  相似文献   

3.
Cells of Leuconostoc mesenteroides immobilized in calcium alginate beads were used to produce dextransucrase (DS) in three sequential cycles of semicontinuous fed-batch fermentations. Each cycle consisted of a fed-batch DS production period of 24 h followed by a batch dextran production period for another 24 h. Free, suspended cells were used in only one cycle of fed-batch DS production followed by a dextran production period. It was impractically tedious to separate and reuse free cells. Increasing sucrose feed rate from 5 to 10 g/L h led to increases of the total enzymatic activity by about 88% with immobilized cells and by about 100% with free cells. In DS fed-batch semicontinuous fermentation, total enzymatic activity produced by immobilized cells was 1.35 and 1.56 times greater than that produced by free cells with respective sucrose feeding rates of 10 and 5 g/L h. These increases in enzyme productivity with immobilized cells, however, required total overall operating times three times longer (three cycles) than with free cells (one cycle). Growing the microorganism at optimum conditions for DS production also increased the dextran yield and shortened the time of conversion of sucrose to dextran, regardless of whether the cells were free or immobilized. Moreover, during three cycles of semicontinuous operation (144 h) immobilized cells produced more than three times as much dextran as free cells during one cycle (24 h).  相似文献   

4.
Immobilization of dextransucrase from Leuconostoc mesenteroides PCSIR-4 on alginate is optimized for application in the production of dextran from sucrose. Dextransucrase was partially purified by ethanol upto 2.5 fold. Properties of dextransucrase were less affected by immobilization on alginate beads from soluble enzyme. Highest activities of both soluble and immobilized dextransucrase found to be at 35 degrees C and optimum pH for activity remain 5.00. Substrate maxima for immobilized enzyme changed from 125 mg/ml to 200 mg/ml. Incubation time for enzyme-substrate reaction for maximum enzyme activity was increased from 15 minutes to 60 minutes in case of immobilized enzyme. Maximum stability of immobilized dextransucrase was achieved at 25 degrees C with respect to time.  相似文献   

5.
In fed-batch fermentation, cells of L. mesenteroides immobilized on three types of Celite were used to produce dextransucrase (DS) followed by production of dextran. A layer of calcium alginate on the porous Celite R630 particles improved their mechanical stability, increased the amount of soluble DS produced and decreased the cell leakage from the highly porous support. Enzyme production with the immobilized cell cultures was significantly affected by both pore and particle size. Immobilized cultures using Celite R648 (average particle radius of 200 mum and pore size of 0.14 mum) produced the highest total enzymatic activity, followed by Celite R633, alginate-coated Celite R630, Celite R630, and then calcium alginate beads. Culture of free cells produced about 18% more total enzymatic activity than immobilized cells in calcium alginate beads, but about 64% less than immobilized cells on Celite R630. It is expected that larger amounts of enzymatic activity than measured are immobilized inside the alginate-coated Celite R630 and calcium alginate beads due to the mass transfer limitation conferred by the dextran product formed therein. The dextran yield from conversion of sucrose to dextran and fructose with all such enzyme-enriched, immobilized-cell cultures was higher than that obtained from free-cell culture under similar conditions.  相似文献   

6.
Streptomyces griseoloalbus was immobilized in calcium alginate gel and the optimal immobilization parameters (concentrations of sodium alginate and calcium chloride, initial biomass and curing time) for the enhanced production of alpha-galactosidase were determined. The immobilization was most effective with 3% sodium alginate and 0.1M calcium chloride. The optimal initial biomass for immobilization was approximately 2.2g (wet wt.). The alginate-entrapped cells were advantageous because there was a twofold increase in the enzyme yield (55 U/ml) compared to the highest yield obtained with free cells (23.6 U/ml). Moreover, with immobilized cells the maximum yield was reached after 72 h of incubation in batch fermentation under optimal conditions, whereas in the case of free cells the maximum enzyme yield was obtained only after 96 h of incubation. The alginate beads had good stability and also retained 75% ability of enzyme production even after eight cycles of repeated batch fermentation. It is significant that this is the first report on whole-cell immobilization for alpha-galactosidase production.  相似文献   

7.
A mathematical model is presented for the kinetically controlled synthesis of cephalexin that describes the heterogeneous reaction-diffusion process involved in a batch reactor with glyoxyl-agarose immobilized penicillin acylase. The model is based on equations considering reaction and diffusion components. Reaction kinetics was considered according to the mechanism proposed by Schro?n, while diffusion of the reacting species was described according to Fick's law. Intrinsic kinetic and diffusion parameters were experimentally determined in independent experiments. It was found that from the four kinetic constants, the one corresponding to the acyl-enzyme complex hydrolysis step had the greatest value, as previously reported by other authors. The effective diffusion coefficients of all substances were about 5×10(-10)m(2)/s, being 10% lower than free diffusion coefficients and therefore agreed with the highly porous structure of glyoxyl-agarose particles. Simulations made from the reaction-diffusion model equations were used to evaluate and analyze the impact of internal diffusional restrictions in function of catalyst enzyme loading and particle size. Increasing internal diffusional restrictions decreases the Cex synthesis/hydrolysis ratio, the conversion yield and the specific productivity. A nonlinear relationship between catalyst enzyme loading and specific productivity of Cex was obtained with the implication that an increase in catalyst enzyme loading will not increase the volumetric productivity by the same magnitude as it occurs with the free enzyme. Optimization of catalyst and reactor design should be done considering catalyst enzyme loading and particle size as the most important variables. The approach presented can be extended to other processes catalyzed by immobilized enzymes.  相似文献   

8.
The production of galacto-oligosaccharides (GOS) from lactose by Aspergillus oryzae beta-galactosidase immobilized on cotton cloth was studied. A novel method of enzyme immobilization involving PEI-enzyme aggregate formation and growth of aggregates on individual fibrils of cotton cloth leading to multilayer immobilization of the enzyme was developed. A large amount of enzyme was immobilized (250 mg/g support) with about 90-95% efficiency. A maximum GOS production of 25-26% (w/w) was achieved at near 50% lactose conversion from 400 g/L of lactose at pH 4.5 and 40 degrees C. Tri- and tetrasaccharides were the major types of GOS formed, accounting for about 70% and 25% of the total GOS produced in the reactions, respectively. Temperature and pH affected not only the reaction rate but also GOS yield to some extend. A reaction pH of 6.0 increased GOS yield by as much as 10% compared with that of pH 4.5 while decreased the reaction rate of immobilized enzyme. The cotton cloth as the support matrix for enzyme immobilization did not affect the GOS formation characteristics of the enzyme under the same reaction conditions, suggesting diffusion limitation was negligible in the packed bed reactor and the enzyme carrier. Increase in the thermal stability of PEI-immobilized enzyme was also observed. The half-life for the immobilized enzyme on cotton cloth was close to 1 year at 40 degrees C and 21 days at 50 degrees C. Stable, continuous operation in a plug-flow reactor was demonstrated for about 3 days without any apparent problem. A maximum GOS production of 26% (w/w) of total sugars was attained at 50% lactose conversion with a feed containing 400 g/L of lactose at pH 4.5 and 40 degrees C. The corresponding reactor productivity was 6 kg/L/h, which is several-hundred-fold higher than those previously reported.  相似文献   

9.
亚栖热菌透性化细胞的耦合固定化研究   总被引:1,自引:0,他引:1  
将海藻酸盐凝胶包埋法与交联法和聚电解质静电自组装覆膜法相耦合,对含有海藻糖合酶活性的亚栖热菌的透性化细胞进行了固定化研究。结果表明,利用重氮树脂和聚苯乙烯磺酸钠对海藻酸凝胶微球交替覆膜,可以显著提高凝胶微球在磷酸盐缓冲液中的稳定性,以碳二亚胺对固定化细胞进行交联处理则可以提高固定化细胞中海藻糖合酶的热稳定性。透性化细胞经包埋-交联-覆膜耦合固定化后,酶活回收率为32%,最适酶反应pH值由6.5左右升至7.0左右,最适反应温度未变,仍为60℃。所得固定化细胞间歇反应时,催化麦芽糖转化为海藻糖的转化率可达60%,重复使用4次(每次50℃、反应24h),酶活损失小于20%,转化率可保持在50%以上。  相似文献   

10.
A crude laccase mixture preparation from Pleurotus ostreatus cultures supplemented with copper and ferulic acid was used to decolorize the anthraquinonic dye Remazol Brilliant Blue R (RBBR). Performance of this enzymatic system was tested, and a maximum of 70% decolorization was achievable under optimal conditions. The crude preparation was immobilized by entrapment in copper alginate beads attaining 65% yield of laccase activity. Stability of the immobilized laccases was remarkably increased in comparison with that of the free enzyme preparation. Efficiency of the immobilized system was evaluated during stepwise dye additions in batch operations. Under the best conditions, 70% RBBR decolorization was achieved even after 20 cycles, although decolorization time exponentially increased after the 10th cycle. Different fixed-bed bioreactors were prepared and analyzed in continuous decolorization processes. The best performance was obtained by decreasing the amount of enzyme loaded and by improving laccase retention using chitosan-coated alginate beads.  相似文献   

11.
Immobilisation of dextransucrase from Leuconostoc mesenteroides NRRL B-512F in alginate is optimised for applications in a fluidised bed reactor with high concentrated sugar solutions, in order to allow a continuous formation of defined oligosaccharides as prebiotic isomalto-oligosaccharides. Efficient design of fluidised bed immobilised biocatalyst in high density solutions requires particles with elevated density, high effectiveness and both thermal and mechanical stability. Inert silica flour/sand (Mikrosil 300) as supplement turned out to be best suited for increasing the density up to 1400 kg m(-3) of the alginate beads and generating a stable expanded bed without diffusional restrictions. Kinetic investigations demonstrate that low effectiveness of immobilised enzyme due to close association to dextranpolymers (dextran content of enzyme preparation >90%) is compensated by reducing the particle size and/or by decreasing the dextran content. A low dextran content (5%) is sufficient to immobilise and stabilise the enzyme, thus diffusional limitation is reduced essentially while operational stability is maintained. Fluidisation behaviour and bed expansion proved to be appropriate for the intended application. Both calculated and measured expansion coefficients showed good agreement for different conditions.  相似文献   

12.
Dextransucrases from Leuconostoc mesenteroides have been used to produce a diversity of controlled structure oligosaccharides with potential industrial applications. This is the case of !(1̄) branched glucooligosaccharides produced by L. mesenteroides NRRL B-1299 dextransucrase. In order to establish an industrial scale process with the immobilized enzyme, a biocatalyst was produced by whole cell entrapment in alginate beads. The main physical and physicochemical properties of the biocatalyst were determined and the hydrodynamic behavior in a packed bed reactor studied. It was possible to produce spherical beads of 0.2 cm diameter containing the insoluble part of L. mesenteroides culture (cells and insoluble polymer) with an activity of 4 IU/g. Immobilization yield reached 93% with an effectiveness factor of 0.995 for particles of dp < 0.2 cm. Due to the complexity of dextransucrase mechanism and kinetics, data obtained from initial rate measurements failed to describe the results obtained from the batch and continuous reactors. Therefore, apparent KM and Vmax data were used for the reactor modeling. It was found that under the conditions studied, the reaction rate was controlled by external mass transfer limitations.  相似文献   

13.
Dextransucrase from Leuconostoc mesenteroides B-512F was immobilized on epoxy-activated acrylic polymers with different textural properties (Eupergit C and Eupergit C 250L). Prior to immobilization, dextransucrase was treated with dextranase to remove the dextran layer covering the enzyme surface, thus increasing the accessibility of its reactive groups to the epoxide centers of the support. Elimination of 99% of the initial carbohydrate content was determined by the anthrone method. To prevent enzyme inactivation, the immobilization was carried out at pH 5.4, at which the coupling to the support took place through the carboxylic groups of the enzyme. The effects of the amount (mg) of dextransucrase added per gram of support (from 0.2:1 to 30:1), temperature and contact time were studied. Maximum activity recovery of 22% was achieved using Eupergit C 250L. Using this macroporous support, the maximum specific activity (710 U/g biocatalyst) was significantly higher than that obtained with the less porous Eupergit C (226 U/g biocatalyst). The dextransucrase immobilized on Eupergit C 250L showed similar optimal temperature (30 degrees C) and pH (5-6) compared with the native enzyme. In contrast, a notable stabilization effect at 30 degrees C was observed as a consequence of immobilization. After a fast partial inactivation, the dextransucrase immobilized on Eupergit C 250L maintained more than 40% of the initial activity over the following 2 days. The features of this immobilized system are very attractive for its application in batch and fixed-bed bioreactors.  相似文献   

14.
The purpose of this investigation was to study the effect ofBacillus subtilis PE-11 cells immobilized in various matrices, such as calcium alginate, k-Carrageenan, ployacrylamide, agar-agar, and gelatin, for the production of alkaline protease. Calcium alginate was found to be an effective and suitable matrix for higher alkaline protease productivity compared to the other matrices studied. All the matrices were selected for repeated batch fermentation. The average specific volumetric productivity with calcium alginate was 15.11 U/mL/hour, which was 79.03% higher production over the conventional free-cell fermentation. Similarly, the specific volumetric productivity by repeated batch fermentation was 13.68 U/mL/hour with k-Carrageenan, 12.44 U/mL/hour with agar-agar, 11.71 U/mL/hour with polyacrylamide, and 10.32 U/mL/hour with gelatin. In the repeated batch fermentations of the shake flasks, an optimum level of enzyme was maintained for 9 days using calcium alginate immobilized cells. From the results, it is concluded that the immobilized cells ofB subtilis PE-11 in calcium alginate are more efficient for the production of alkaline protease with repeated batch fermentation. The alginate immobilized cells ofB subtilis PE-11 can be proposed as an effective biocatalyst for repeated usage for maximum production of alkaline protease. Published: October 21, 2005  相似文献   

15.
Abstract

Purified Acetobacter tropicalis dextransucrase was immobilized in different matrices viz. calcium-alginate, κ-carrageenan, agar, agarose and polyacrylamide. Calcium-alginate was proved to be superior to the other matrices for immobilization of dextransucrase enzyme. Standardization of immobilization conditions in calcium-alginate resulted in 99.5% relative activity of dextransucrase. This is the first report with such a large amount of relative activity as compared to the previous reports. The immobilized enzyme retained activity for 11 batch reactions without a decrease in activity which suggested that enzyme can be used repetitively for 11 cycles. The dextransucrase was also characterized, which revealed that enzyme worked best at pH 5.5 and 37?°C for 30?min in both the free as well as immobilized state. Calcium-alginate immobilized dextransucrase of A. tropicalis showed the Km and Vmax values of 29?mM and 5000?U/mg, respectively. Free and immobilized enzyme produced 5.7?mg/mL and 2.6?mg/mL of dextran in 2?L bench scale fermenter under optimum reaction conditions. This immobilization method is very unconventional for purified large molecular weight dextran-free dextransucrase of A. tropicalis as this method is used usually for cells. Such reports on entrapment of purified enzyme are rarely documented.  相似文献   

16.
Zheng P  Yu H  Sun Z  Ni Y  Zhang W  Fan Y  Xu Y 《Biotechnology journal》2006,1(12):1464-1470
The preparation of galacto-oligosaccharides (GOSs) was studied using the immobilized recombinant beta-galactosidase from Aspergillus candidus CGMCC3.2919. The optimal pH and temperature for the immobilized enzyme were observed at pH 6.5 and 40 degrees C, respectively. Increasing the initial lactose concentration increased the yield of GOSs. The dilution rate was found to be a key factor during the continuous production of GOSs. The maximum productivity, 87 g/L.h was reached when 400 g/L lactose was fed at dilution rate of 0.8/h. The maximum GOS yield reached 37% at dilution rate of 0.5/h. Continuous operation was maintained for 20 days in a packed-bed reactor without apparent decrease in GOS production. The average yield of GOSs was 32%, corresponding to the average productivity of 64 g/L.h, which implied that the immobilized recombinant beta-galactosidase has potential application for GOS production.  相似文献   

17.
To develop a feasible enzymatic process for d-tagatose production, a thermostable l-arabinose isomerase, Gali152, was immobilized in alginate, and the galactose isomerization reaction conditions were optimized. The pH and temperature for the maximal galactose isomerization reaction were pH 8.0 and 65 degrees C in the immobilized enzyme system and pH 7.5 and 60 degrees C in the free enzyme system. The presence of manganese ion enhanced galactose isomerization to tagatose in both the free and immobilized enzyme systems. The immobilized enzyme was more stable than the free enzyme at the same pH and temperature. Under stable conditions of pH 8.0 and 60 degrees C, the immobilized enzyme produced 58 g/L of tagatose from 100 g/L galactose in 90 h by batch reaction, whereas the free enzyme produced 37 g/L tagatose due to its lower stability. A packed-bed bioreactor with immobilized Gali152 in alginate beads produced 50 g/L tagatose from 100 g/L galactose in 168 h, with a productivity of 13.3 (g of tagatose)/(L-reactor.h) in continuous mode. The bioreactor produced 230 g/L tagatose from 500 g/L galactose in continuous recycling mode, with a productivity of 9.6 g/(L.h) and a conversion yield of 46%.  相似文献   

18.
Dextransucrase from Leuconostoc mesenteroides was produced in a semicontinuous culture with slow addition of a concentrated sucrose solution. The resulting high activity of the fermentation broth allowed a one-step purification method, by gel permeation chromatography (GPC) in 96.4% yield. This procedure resulted in 140-fold purification, with specific activity of 122 U/mg. The enzyme was immobilized onto an amino-Spherosil support activated with glutaraldehyde. Preparations with dextransucrase activities as high as 40.5 U/g of support were obtained, when low specific area supports were used and maltose was added during the enzyme coupling. Diffusional limitations were found during enzyme reaction, as shown by a kinetic study. As a consequence of immobilization, the average molecular weight of dextrans seems to increase. Immobilized dextransucrase looks promising for low-molecular-weight dextran production. Clinical dextran was synthesized when the polysaccharides produced in the presence of maltose were used as acceptor of a second synthesis reaction. The molecular weight distribution of the resulting production was less disperse than when clinical dextran was produced by acid hydrolysis of high-molecular-weight dextran.  相似文献   

19.
固定化嗜热脂肪芽孢杆菌合成低聚半乳糖   总被引:7,自引:2,他引:7  
利用海藻酸钙、明胶和壳聚糖为固定化载体包埋嗜热脂肪芽孢杆菌细胞合成低聚半乳糖 (GOS)。通过比较三种方法的酶活力回收、最适反应条件、GOS的得率和和载体机械强度 ,选择明胶作为固定化细胞的载体。反应体系的温度、pH、乳糖浓度、乳糖的转化率和载体的传质阻力对GOS合成有明显影响。在CSTR反应器中水解 60 %乳糖 ,GOS最大得率为31 2 % ,经过 96h( 8批反应 ) ,产物得率为原来的 88%。在空速 0 0 9h- 1条件下 ,利用填充床反应器连续水解乳糖 ,GOS的得率和反应器生产能力分别为 31 5%和 1 7 4g (L·h) ,连续反应1 40h,GOS得率下降 2 0 %。产物经过活性炭柱层柱分离纯化 ,通过13C NMR鉴定四糖的化学结构为 β D Gal ( 1→ 3) D Gal ( 1→ 6) D G ( 1→ 4) D Glu。  相似文献   

20.
《Process Biochemistry》2010,45(10):1645-1651
Dextransucrase from Leuconostoc mesenteroides and dextranase from Penicillium lilacinum were co-immobilized and used to produce isomaltooligosaccharides from sucrose. The enzymes were co-immobilized by encapsulating soluble dextransucrase and dextranase covalently attached to Eupergit C in alginate (beads, fibers, and capsules). The alginate capsule co-immobilization was done in the presence of soluble starch and resulted in a high immobilization yield (71%), and the enzymes retained their activities during 20 repeated batch reactions and for a month in storage at 4 °C. The presence of starch was essential for the stability of dextransucrase in alginate capsules. Furthermore, it is important that the dextranase be pre-immobilized prior to alginate capsule co-immobilization to prevent dextranase leakage and inactivation of dextransucrase. The co-immobilized enzymes formed oligosaccharides from sucrose, which can be used as prebiotics. In addition, the oligosaccharides that were produced after the addition of sucrose reacted with the alginate fiber-encapsulted dextransucrase, thus increasing the amount of prebiotics. Co-immobilization in alginate fiber and beads also resulted in high yields (70 and 64%), but enzymatic activities decreased by 74 and 99%, respectively, after a month in storage at 4 °C. The newly developed alginate capsule method for co-immobilization of dextransucrase and dextranase is simple yet effective and has the potential for industrial-scale production of isomaltooligosaccharides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号