首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Bone marrow cellularity in the femur, mass and cellularity of the spleen and small intestine, and nucleic acid concentration in the leukocyte mass of blood were investigated after the intraperitoneal administration of betamide (500 mg/kg) 15 min before gamma irradiation of mice with doses of 4, 7 and 9 Gy. The number of myelokaryocytes and splenocytes in the protected animals was shown to exceed considerably that in the controls on days 3 and 9 after irradiation with the three doses. With betamide injected on day 9 following irradiation the number of nucleated cells of the small intestine was larger and the nucleic acid concentration in leukocytes higher than the same indices in the irradiated control.  相似文献   

2.
The content of haemopoietic stem cells in mice at the stage of the enhanced radioresistance (day 12 after irradiation with a sublethal dose of 2.75 Gy) was lower than that in the controls. Their repopulation in the repeatedly exposed mice was more intensive than in the intact mice irradiated with the same dose. The authors discuss the significance of the peculiarities observed in understanding the causes of the increase in radioresistance after sublethal irradiation.  相似文献   

3.
Mature female mice of ICR strain were irradiated from the source 60Co with a daily dose rate of 5 Gy till total accumulated dose of 10 Gy for 2 days. Animals were examined in various intervals within 42 days after irradiation. The results obtained that protracted irradiation will induce a massive injury to hemopoiesis. The first repair processes occurred in thymus and were characterized by two phases. The first repair wave peaked about the day 10 and the second about the day 30 after irradiation. The repair processes observed in the red pulp of the spleen reached their highest intensity approximately between the days 14-16 after irradiation.  相似文献   

4.
Intestinal protection in mice against radiation injury by M. piperita (1 g/kg body weight/day) was studied from day 1 to day 20 after whole body gamma irradiation (8 Gy). Villus height, goblet cells/villus section, total cells, mitotic cells and dead cells/crypt section in the jejunum are good parameters for the assessment of radiation damage. There was significant decrease in the villus height, number of total cells and mitotic cells/crypt section, whereas goblet cells and dead cells showed significant increase after irradiation. Mentha pretreatment resulted in a significant increase in villus height, total cells and mitotic cells, whereas goblet cells and dead cells showed a significant decrease from respective irradiated controls at each autopsy day. The results suggest that Mentha pretreatment provides protection against radiation induced alterations in intestinal mucosa of Swiss albino mice.  相似文献   

5.
目的:通过直线加速器全身照射昆明小鼠建立辐射损伤模型,探索不同放射剂量对小鼠健康状况及涎腺功能和结构的影响。方法:选取八种不同剂量对昆明小鼠行体外全身照射,于照射后一个月内观察小鼠生长情况、体重变化;照射后一周、一个月检测各组小鼠血象的变化;测定放射半数致死剂量;照射后两个月,测定各组小鼠的唾液流量及唾液淀粉酶含量,并对下颌下腺组织切片行HE染色。结果:13Gy和15Gy照射组小鼠的体重逐渐下降,一周后死亡,其余组小鼠体重最终呈增加趋势。X-射线全身照射的半数致死量为10Gy。照射后一周,照射组小鼠的白细胞数目明显降低,与对照组比较有明显统计学差异(P0.01);在其他血象方面,除了7Gy组外,其他照射组与对照组比较也均有统计学差异(P0.05)。照射一个月后,各照射组小鼠的血象均恢复正常。照射后两个月,9Gy组和11Gy组小鼠的唾液流量及唾液淀粉酶含量均显著低于0Gy组,且11Gy组较9Gy组亦明显降低,差异均有统计学意义(P0.05)。随照射剂量的增加,小鼠的下颌下腺腺泡细胞数目逐步减少,结构排列紊乱,组织损伤逐渐加重。结论:X-射线全身照射引起小鼠健康状况受损,免疫功能减低,损伤程度与放射线强度呈剂量依赖性,小鼠半数致死量为10Gy,该剂量适合建立全身放射损伤模型。  相似文献   

6.
Protection against whole body gamma-irradiation (WBI) of Swiss mice orally fed with Triphala (TPL), an Ayurvedic formulation, in terms of mortality of irradiated animals as well as DNA damage at cellular level has been investigated. It was found that radiation induced mortality was reduced by 60% in mice fed with TPL (1g/kg body weight/day) orally for 7 days prior to WBI at 7.5 Gy followed by post-irradiation feeding for 7 days. An increase in xanthine oxidoreductase activity and decrease in superoxide dismutase activity was observed in the intestine of mice exposed to WBI, which, however, reverted back to those levels of sham-irradiated controls, when animals were fed with TPL for 7 days prior to irradiation. These data have suggested the prevention of oxidative damage caused by whole body radiation exposure after feeding of animals with TPL. To further understand the mechanisms involved, the magnitude of DNA damage was studied by single cell gel electrophoresis (SCGE) in blood leukocytes and splenocytes obtained from either control animals or those fed with TPL for 7 days followed by irradiation. Compared to irradiated animals without administering TPL, the mean tail length was reduced about three-fold in blood leukocytes of animals fed with TPL prior to irradiation. Although, similar protection was observed in splenocytes of TPL fed animals, the magnitude of prevention of DNA damage was significantly higher than that observed in leukocytes. It has been concluded that TPL protected whole body irradiated mice and TPL induced protection was mediated through inhibition of oxidative damage in cells and organs. TPL seems to have potential to develop into a novel herbal radio-protector for practical applications.  相似文献   

7.
We developed a model of heterogeneous irradiation in a nonhuman primate to test the feasibility of autologous hematopoietic cell therapy for the treatment of radiation accident victims. Animals were irradiated either with 8 Gy to the body with the right arm shielded to obtain 3.4 Gy irradiation or with 10 Gy total body and 4.4 Gy to the arm. Bone marrow mononuclear cells were harvested either before irradiation or after irradiation from an underexposed area of the arm and were expanded in previously defined culture conditions. We showed that hematopoietic cells harvested after irradiation were able to expand and to engraft when reinjected 7 days after irradiation. Recovery was observed in all 8-Gy-irradiated animals, and evidence for a partial recovery was observed in 10-Gy-irradiated animals. However, in 10-Gy-irradiated animals, digestive disease was observed from day 16 and resulted in the death of two animals. Immunohistological examinations showed damage to the intestine, lungs, liver and kidneys and suggested radiation damage to endothelial cells. Overall, our results provide evidence that such an in vivo model of heterogeneous irradiation may be representative of accidental radiation exposures and may help to define the efficacy of therapeutic interventions such as autologous cell therapy in radiation accident victims.  相似文献   

8.
为了了解小剂量重离子辐射诱导小鼠睾丸结构的适应性反应,采用小剂量(0.05Gy)~(16)O~(8 )离子照射B6C3F_1雄性小鼠睾丸。4h后,再给予2Gy~(16)O~(8 )离子照射。照射后第35天取材在光镜下观察睾丸结构。结果显示,大剂量(2Gy)照射明显损伤睾丸组织,主要表现为曲精细管直径几乎减小一半,精管内各发育阶段的生殖细胞减少或消失,特别是精原细胞几乎完全消失。而Leydig细胞和Sertoli细胞仅有轻度核固缩及胞浆减少。提示睾丸生殖细胞的辐射敏感性明显高于其间质组织细胞。预先给予小剂量(0.05Gy)照射可明显减轻随后大剂量(2Gy)辐射对睾丸组织的损伤。提示小剂量重离子辐射可诱导小鼠睾丸结构明显的适应性反应。  相似文献   

9.
The testes of the B6C3F1 hybrid strain mice were irradiated with 0.05 Gy of 16O8+ ion as the pre-exposure dose (D1), and were then irradiated with 2 Gy of 16O8+ ion as challenging radiation dose (D2) at 4 h after per-exposure. Testicular morphology was observed by light microscope at 35th day after radiation. The results showed that irradiation of mouse testes with 2 Gy of 16O8+ ion significantly impaired, mainly reduction of tubule diameter and decrease or loss of germ cells in various developing stages, especially spermatogenic elements. Pre-exposure to a low-dose (0.05 Gy) of 16O8+ ion significantly alleviated above mentioned damage on testicular morphology induced by subsequent a high-dose (2 Gy) radiation.  相似文献   

10.
Medications that can mitigate against radiation injury are limited. In this study, we investigated the ability of recombinant human growth hormone (rhGH) to mitigate against radiation injury in mice and nonhuman primates. BALB/c mice were irradiated with 7.5 Gy and treated post-irradiation with rhGH intravenously at a once daily dose of 20 µg/dose for 35 days. rhGH protected 17 out of 28 mice (60.7%) from lethal irradiation while only 3 out of 28 mice (10.7%) survived in the saline control group. A shorter course of 5 days of rhGH post-irradiation produced similar results. Compared with the saline control group, treatment with rhGH on irradiated BALB/c mice significantly accelerated overall hematopoietic recovery. Specifically, the recovery of total white cells, CD4 and CD8 T cell subsets, B cells, NK cells and especially platelets post radiation exposure were significantly accelerated in the rhGH-treated mice. Moreover, treatment with rhGH increased the frequency of hematopoietic stem/progenitor cells as measured by flow cytometry and colony forming unit assays in bone marrow harvested at day 14 after irradiation, suggesting the effects of rhGH are at the hematopoietic stem/progenitor level. rhGH mediated the hematopoietic effects primarily through their niches. Similar data with rhGH were also observed following 2 Gy sublethal irradiation of nonhuman primates. Our data demonstrate that rhGH promotes hematopoietic engraftment and immune recovery post the exposure of ionizing radiation and mitigates against the mortality from lethal irradiation even when administered after exposure.  相似文献   

11.
Radioprotective effects of ginsan,an immunomodulator   总被引:6,自引:0,他引:6  
Song JY  Han SK  Bae KG  Lim DS  Son SJ  Jung IS  Yi SY  Yun YS 《Radiation research》2003,159(6):768-774
We previously reported that ginsan, a purified polysaccharide isolated from Panax ginseng, had a mitogenic activity, induced LAK cells, and increased levels of several cytokines. In an effort to identify other immunostimulatory effects, we evaluated the protective effects of ginsan injected in vivo against radiation by measuring its effects on the CFU-S bone marrow cells and spleen cells. Ginsan was found to significantly increase the number of bone marrow cells, spleen cells, granulocyte-macrophage colony-forming cells (GM-CFC), and circulating neutrophils, lymphocytes and platelets in irradiated mice. In addition, ginsan induced the endogenous production of cytokines such as Il1, Il6, Ifng and Il12, which are required for hematopoietic recovery, and was able to enhance Th1 function while interfering with the Th2 response in irradiated mice. We demonstrated that pretreatment with ginsan protected mice from the lethal effects of ionizing radiation more effectively than when it was given immediately after or at various times after irradiation. A significant increase in the LD(50/30) from 7.54 Gy for PBS injection to 10.93 Gy for mice pretreated with 100 mg/kg ginsan was observed. These findings indicate that ginsan may be a useful agent to reduce the time necessary for reconstituting hematopoietic cells after irradiation.  相似文献   

12.
Damage to intestine is a serious problem after accidental radiation exposure. To examine substances to ameliorate damage by postirradiation administration, we focused on the regeneration process after irradiation of the intestine. Using experimental systems, the effects of clinically used sex hormones on regeneration were compared. An anabolic steroid, nandrolone (19-nortestosterone), stimulated proliferation in IEC-6 epithelial cells. A single injection of 19-nortestosterone ester with prolonged action into mice 24 h after abdominal irradiation at a lethal dose of 15.7 Gy showed significant life-saving effects. Regeneration indicators such as microcolonies of BrdU-incorporated cells at day 5 and c-myb mRNA expression levels at day 4 were enhanced by 19-nortestosterone administration. In contrast, high concentrations of estradiol inhibited growth of IEC-6 cells. Treatment of abdominally irradiated mice with estradiol ester decreased levels of regeneration indicators and survival. These results suggest the effectiveness of the anabolic steroid as well as the importance of manipulation of steroid receptors in the recovery of mucosa damaged by radiation.  相似文献   

13.
The radioadaptive survival response induced by a conditioning exposure to 0.45 Gy and measured as an increase in 30-day survival after mid-lethal X irradiation was studied in C57BL/6N mice. The acquired radioresistance appeared on day 9 after the conditioning exposure, reached a maximum on days 12-14, and disappeared on day 21. The conditioning exposure 14 days prior to the challenge exposure increased the number of endogenous spleen colonies (CFU-S) on days 12-13 after the exposure to 5 Gy. On day 12 after irradiation, the conditioning exposure also increased the number of endogenous CFU-S to about five times that seen in animals exposed to 4.25-6.75 Gy without preirradiation. The effect of the interval between the preirradiation and the challenge irradiation on the increase in endogenous CFU-S was also examined. A significant increase in endogenous CFU-S was observed when the interval was 14 days, but not 9 days. This result corresponded to the increase in survival observed on day 14 after the challenge irradiation. Radiation-inducted resistance to radiation-induced lethality in mice appears to be closely related to the marked recovery of endogenous CFU-S in the surviving hematopoietic stem cells that acquired radioresistance by preirradiation. Preirradiation enhanced the recovery of the numbers of erythrocytes, leukocytes and thrombocytes very slightly in mice exposed to a sublethal dose of 5 Gy, a dose that does not cause bone marrow death. There appears to be no correlation between the marked increase in endogenous CFU-S and the slight increase or no increase in peripheral blood cells induced by the radioadaptive response. The possible contribution by some factor, such as Il4 or Il11, that has been reported to protect irradiated animals without stimulating hematopoiesis is discussed.  相似文献   

14.
Acute radiation injury caused by high-dose radiation exposure severely impedes the application of radiotherapy in cancer management. To deeply understand the side effects of radiation on intestinal tract, an irradiation murine model was applied and evaluated. C57BL/6 mice were given 4 Gy non-myeloablative irradiation, 8 Gy myeloablative irradiation and non-irradiation (control), respectively. Results demonstrated that the 8 Gy myeloablative irradiations significantly damaged the gut barrier along with decreasing MECA32 and ZO-1. However, a slight increase in MECA32 and ZO-1 was detected in the 4 Gy non-myeloablative irradiations treatment from day 5 to day 10. Further, the irradiations affected the expression of P38 and JNK mitogen-activated protein kinase (MAPK) but not ERK1/2 MAPK signal pathway. Moreover, irradiation had adverse effects on hematopoietic system, altered the numbers and percentages of intestinal inflammatory cells. The IL-17/AhR had big increase in the gut of 4 Gy irradiation mice at day 10 compared with other groups. Both 8 Gy myeloablative and 4 Gy non-myeloablative irradiation disturbed the levels of short-chain fatty acids (SCFAs) in intestine. Meanwhile, high dosage of irradiation decreased the intestinal bacterial diversity and altered the community composition. Importantly, the fatty acids generating bacteria Bacteroidaceae and Ruminococcaceae played key roles in community distribution and SCFAs metabolism after irradiation. Collectively, the irradiation induced gut barrier damage with dosages dependent that led to the decreased p38 MAPK and increased JNK MAPK, unbalanced the mononuclear cells (MNCs) of gut, disturbed intestinal bacterial community and SCFAs level.  相似文献   

15.
Modification of radiation induced damage in mouse intestine by WR-2721   总被引:3,自引:0,他引:3  
Intestinal protection in mice against radiation injury by WR-2721 (300 mg/kg body wt, i.p., 30 min before irradiation) was studied after whole body gamma irradiation (0.5, 1.5, 3.0, 4.5, or 6.0 Gy). Crypt survival and induction of apoptosis, and abnormal mitoses in crypt cells in the jejunum were studied on day 1, 3 and 7 after irradiation. Irradiation produced a significant decrease in crypt survival, whereas apoptosis and abnormal mitoses showed a significant increase from sham-treated control animals. Maximum changes in all the parameters were observed on day 1 after irradiation and the effect increased linearly with radiation dose. There was recovery at later intervals, which was inversely related to radiation dose. WR-2721 pre-treatment resulted in a significant increase in the number of surviving crypts, whereas the number of apoptotic cells in the crypts showed a significant decrease from respective irradiated controls on day 1 after exposure. The recovery was also faster in WR-2721 pre- treated animals. It is concluded that WR-2721 protects against gastrointestinal death by reducing radiation induced cell death, thereby maintaining a higher number of stem cells in the proliferating compartment.  相似文献   

16.
Radiation-induced infections can be associated with changes in colonization potential of the intestine. Since the mucous blanket, which overlays the epithelium, is a major mucosal structure and is heavily colonized by microorganisms, we examined the status of the mucus after radiation and evaluated susceptibility to intestinal challenge with bacteria. A downward shift (2.5 X 10(8) cells/g to 5.3 X 10(5)) of total facultatively anaerobic bacteria of the ileum of C3HeB/FeJ mice was detected by 3 days post exposure to 10 Gy 60Co. Numbers of flora returned to normal by 11 days after radiation. Scanning electron microscopy was used to show that the loss of bacteria could be associated with major disruptions of the continuity of the mucous blanket. The pathogen Pseudomonas aeruginosa adhered to mouse mucous films used in in vitro assays. When irradiated mice were challenged orally with 1 X 10(5) P. aeruginosa on days 1, 2, or 3 after irradiation, a progressive increase in susceptibility was seen, but no animals died before Day 4 postirradiation. Sensitivity to subcutaneous (sc) challenge with Pseudomonas also increased by Day 3 and was probably due largely to the profound neutropenia observed. Immunoglobulin G (Gamimmune), which protected burned mice infected with Pseudomonas, was ineffectual in treatment of 7 or 10 Gy irradiated mice challenged either orally or sc with the organism. The ileal mucosal barrier was compromised after radiation in ways which could facilitate epithelial colonization, an event which combined with other immunological and physiological decrements in this model can compromise the effectiveness of therapeutic modalities.  相似文献   

17.
The presence of aerobic and anaerobic bacteria in the blood, spleen, and liver was investigated in mice that were exposed to 7, 8, 9, or 10 Gy 60Co radiation. Microorganisms were detected more often in animals exposed to higher doses of radiation. The number of mice that were culture positive and the number of isolates in one site increased with increasing dose. Bacteria were recovered in mice killed at various times after radiation, in 3 of 100 mice exposed to 7 Gy, in 13 of 100 irradiated with 8 Gy, in 23 of 90 exposed to 9 Gy, and in 34 of 87 irradiated with 10 Gy. The predominant organisms recovered were Escherichia coli, anaerobic Gram-positive cocci, Proteus mirabilis, Staphylococcus aureus, and Bacteroides spp. Escherichia coli and anaerobes were more often isolated in animals exposed to 10 Gy, while S. aureus was more often recovered in those irradiated with 9 Gy. These data demonstrate a relationship between the dose of radiation and the rate of infection due to enteric aerobic and anaerobic bacteria.  相似文献   

18.
目的:初步探讨旋转恒定磁场治疗急性骨髓型放射病的效果。方法:BALB/C小鼠按体重随机分为磁疗组和对照组,每组再各分为4组.分别接受0Gy、6.0Gy、8.0Gy、10.0Gy ^60COγ射线全身辐射,照后,对照组不作任何处理,磁疗组接受磁场处理30d,每天2次,每次1.5h,旋转磁场强度为0.6T,比较两组小鼠30d的存活率和存活期。结果:单纯磁场处理对正常小鼠生存状态及存活率无明显影响;10.0Gy组和8.0Gy组小鼠生存率磁疗组与对照组之间比较均无统计学差异(P〉0.05);6.0Gy组生存率磁疗组和对照组之间比较有统计学差异(P〈0.05),其磁疗组30d平均存活率为71.43%,平均存活期为(24.93±8.43)d,对照组30d平均存活率21.4l%.平均存活期为(17.07±7.70)d。结论:旋转恒定磁场不能提高10.0Gy及8.0Gy剂量所致极重度急性骨髓型放射病小鼠的生存率,但对6.0Gy所致重度急性骨髓型放射病有明显的保护作用,从而为旋转恒定磁场应用于临床治疗重度急性骨髓型放射损伤提供了实验依据。  相似文献   

19.

Purpose

Radiation-induced gastrointestinal syndrome (RIGS) is due to the clonogenic loss of crypt cells and villi depopulation, resulting in disruption of mucosal barrier, bacterial invasion, inflammation and sepsis. Intestinal macrophages could recognize invading bacterial DNA via TLR9 receptors and transmit regenerative signals to the neighboring crypt. We therefore investigated whether systemic administration of designer TLR9 agonist could ameliorate RIGS by activating TLR9.

Methods and Materials

Male C57Bl6 mice were distributed in four experimental cohorts, whole body irradiation (WBI) (8.4–10.4 Gy), TLR9 agonist (1 mg/kg s.c.), 1 h pre- or post-WBI and TLR9 agonist+WBI+iMyd88 (pretreatment with inhibitory peptide against Myd88). Animals were observed for survival and intestine was harvested for histological analysis. BALB/c mice with CT26 colon tumors in abdominal wall were irradiated with 14 Gy single dose of whole abdominal irradiation (AIR) for tumor growth study.

Results

Mice receiving pre-WBI TLR9 agonist demonstrated improvement of survival after 10.4 Gy (p<0.03), 9.4 Gy (p<0.008) and 8.4 Gy (p<0.002) of WBI, compared to untreated or iMyd88-treated controls. Post-WBI TLR9 agonist mitigates up to 8.4 Gy WBI (p<0.01). Histological analysis and xylose absorption test demonstrated significant structural and functional restitution of the intestine in WBI+TLR9 agonist cohorts. Although, AIR reduced tumor growth, all animals died within 12 days from RIGS. TLR9 agonist improved the survival of mice beyond 28 days post-AIR (p<0.008) with significant reduction of tumor growth (p<0.0001).

Conclusions

TLR9 agonist treatment could serve both as a prophylactic or mitigating agent against acute radiation syndrome and also as an adjuvant therapy to increase the therapeutic ratio of abdominal Radiation Therapy for Gastro Intestinal malignancies.  相似文献   

20.
The genomic instability (GI) in somatic cells of the progeny (F1 generation) of male mice chronically exposed to low-dose gamma-radiation was studied by comparative analysis of chromosome damage. BALB/C male mice exposed to 0.1 Gy (0.01 Gy/day) and 0.5 Gy (0.01 and 0.05 Gy/day) were mated with unirradiated females 15 days after irradiation. For comparison of radiosensitivity, two-month-old males, the descendants of irradiated and unirradiated animals, were subjected to irradiation with a dose of 1.5 Gy (0.47 Gy/min) from a 60Co source. GI was revealed by the standard scheme of adaptive response. The experiments indicated that, by using the test "adaptive response", it is possible to detect the transition of gamma-radiation-induced genomic instability in sex cells of male parent into somatic cells of mice (F1 generation) either from changes in radiosensitivity or by the absence of the adaptive response induced by a standard scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号