首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

The use of exogenous small interfering RNAs (siRNAs) for gene silencing has quickly become a widespread molecular tool providing a powerful means for gene functional study and new drug target identification. Although considerable progress has been made recently in understanding how the RNAi pathway mediates gene silencing, the design of potent siRNAs remains challenging.  相似文献   

2.
Our conceptual models of microbial food webs in aquatic ecosystems provide a unifying hypothesis for the design and conduct of field studies. Our ability to provide a rigorous test of these hypotheses, however, relies to a large extent on the availability of precise and accurate methods. Although considerable progress has been made over the past two decades, unambiguous resolution of in situ microbial rates and processes will probably require improved or novel methodologies.  相似文献   

3.
Genome engineering with zinc-finger nucleases   总被引:2,自引:0,他引:2  
Carroll D 《Genetics》2011,188(4):773-782
Zinc-finger nucleases (ZFNs) are targetable DNA cleavage reagents that have been adopted as gene-targeting tools. ZFN-induced double-strand breaks are subject to cellular DNA repair processes that lead to both targeted mutagenesis and targeted gene replacement at remarkably high frequencies. This article briefly reviews the history of ZFN development and summarizes applications that have been made to genome editing in many different organisms and situations. Considerable progress has been made in methods for deriving zinc-finger sets for new genomic targets, but approaches to design and selection are still being perfected. An issue that needs more attention is the extent to which available mechanisms of double-strand break repair limit the scope and utility of ZFN-initiated events. The bright prospects for future applications of ZFNs, including human gene therapy, are discussed.  相似文献   

4.
'Type III secretion'--the mechanism by which some pathogenic bacteria inject proteins straight into the cytosol of eukaryotic cells to 'anaesthetize' or 'enslave' them--was discovered in 1994. Important progress has been made in this area during the past few years: the bacterial organelles responsible for this secretion--called 'injectisomes'--have been visualized, the structures of some of the bacterial protein 'effectors' have been determined, and considerable progress has been made in understanding the intracellular action of the effectors. Type III secretion is key to the pathogenesis of bacteria from the Yersinia genus.  相似文献   

5.
 Although there has been progress in developing artificial hydrolytic DNA cleaving agents, none of these has been shown to carry out the double-strand hydrolysis of DNA. We demonstrate that La(III) or Ce(IV) combined with the ligand 1,3-diamino-2-hydroxypropane-N,N,N′,N′-tetraacetate (HPTA) in a 2 : 1 ratio can efficiently cleave supercoiled plasmid DNA at 55  °C within a 3-h period. Analysis of end-labeled restriction fragments cleaved by these complexes reveals 3′- and 5′-ends consistent with a hydrolytic mechanism. Unlike for other polydentate carboxylate complexes, plasmid DNA cleavage by La2(HPTA) or Ce2(HPTA) affords a significant amount of linear DNA with a considerable fraction of the supercoiled form still remaining. This result implies that La2(HPTA) and Ce2(HPTA) can carry out double-strand cleavage of plasmid DNA. La2(HPTA) and Ce2(HPTA) represent the first metal complexes demonstrated to be capable of double-strand hydrolytic cleavage of plasmid DNA. Received: 29 March 1999 / Accepted: 9 July 1999  相似文献   

6.
New highly sensitive and selective catalytic DNA biosensors for metal ions   总被引:3,自引:0,他引:3  
While remarkable progress has been made in developing sensors for metal ions such as Ca(II) and Zn(II), designing and synthesizing sensitive and selective metal ion sensors remains a significant challenge. Perhaps the biggest challenge is the design and synthesis of a sensor capable of specific and strong metal binding. Since our knowledge about the construction of metal-binding sites in general is limited, searching for sensors in a combinatorial way is of significant value. Therefore, we have been able to use a combinatorial method called in vitro selection to obtain catalytic DNA that can bind a metal ion of choice strongly and specifically. The metal ion selectivity of the catalytic DNA was further improved using a 'negative selection' strategy where catalytic DNA that are selective for competing metal ions are discarded in the in vitro selection processes. By labeling the resulting catalytic DNA with a fluorophore/quencher pair, we have made a new class of metal ion fluorescent sensors that are the first examples of catalytic DNA biosensors for metal ions. The sensors combine the high selectivity of catalytic DNA with the high sensitivity of fluorescent detection, and can be applied to the quantitative detection of metal ions over a wide concentration range and with high selectivity. The use of DNA sensors in detection and quantification of lead ions in environmental samples such as water from Lake Michigan has been demonstrated. DNA is stable, cost-effective, environmentally benign, and easily adaptable to optical fiber and microarray technology for device manufacture. Thus, the DNA sensors explained here hold great promise for on-site and real-time monitoring of metal ions in the fields of environmental monitoring, developmental biology, clinical toxicology, wastewater treatment, and industrial process monitoring.  相似文献   

7.

Background  

Gene silencing using exogenous small interfering RNAs (siRNAs) is now a widespread molecular tool for gene functional study and new-drug target identification. The key mechanism in this technique is to design efficient siRNAs that incorporated into the RNA-induced silencing complexes (RISC) to bind and interact with the mRNA targets to repress their translations to proteins. Although considerable progress has been made in the computational analysis of siRNA binding efficacy, few joint analysis of different RNAi experiments conducted under different experimental scenarios has been done in research so far, while the joint analysis is an important issue in cross-platform siRNA efficacy prediction. A collective analysis of RNAi mechanisms for different datasets and experimental conditions can often provide new clues on the design of potent siRNAs.  相似文献   

8.
There has been considerable progress made over the past year in linking experimental and theoretical approaches to protein folding. Recent results from several independent lines of investigation suggest that protein folding mechanisms and landscapes are largely determined by the topology of the native state and are relatively insensitive to details of the interatomic interactions. This dependence on low-resolution structural features, rather than high-resolution detail, suggests that it should be possible to describe the fundamental physics of the folding process using relatively low-resolution models. Recent experiments have set benchmarks for testing new models and progress has been made in developing theoretical models for interpreting and predicting experimental results.  相似文献   

9.
Substantial progress has been made in determining the mechanism of mitochondrial RNA editing in trypanosomes. Similarly, considerable progress has been made in identifying the components of the editosome complex that catalyze RNA editing. However, it is still not clear how those proteins work together. Chemical compounds obtained from a high-throughput screen against the editosome may block or affect one or more steps in the editing cycle. Therefore, the identification of new chemical compounds will generate valuable molecular probes for dissecting the editosome function and assembly. In previous studies, in vitro editing assays were carried out using radio-labeled RNA. These assays are time consuming, inefficient and unsuitable for high-throughput purposes. Here, a homogenous fluorescence-based “mix and measure” hammerhead ribozyme in vitro reporter assay to monitor RNA editing, is presented. Only as a consequence of RNA editing of the hammerhead ribozyme a fluorescence resonance energy transfer (FRET) oligoribonucleotide substrate undergoes cleavage. This in turn results in separation of the fluorophore from the quencher thereby producing a signal. In contrast, when the editosome function is inhibited, the fluorescence signal will be quenched. This is a highly sensitive and simple assay that should be generally applicable to monitor in vitro RNA editing or high throughput screening of chemicals that can inhibit the editosome function.  相似文献   

10.
杂交瘤技术建立 2 0多年来 ,单抗走过了漫长而又曲折的历程 ,从最初的完全鼠源单抗 ,经含不同程度鼠源成份的人鼠嵌合单抗、人源化单抗 ,现已发展为完全人源单抗。抗体的人源化技术和噬菌体展示技术等技术的发展 ,使单抗从诊断工具变为有效的治疗药物 ,被人们誉为“生物魔弹”。鉴于单克隆抗体 (单抗 )对相应的抗原决定簇具有高度特异性以及抗体的均一性等特性 ,近2 0多年来单抗作为疾病诊断剂以及生物学研究试剂已得到广泛的应用 ,但作为治疗剂的应用进程则十分缓慢。近两年来 ,单抗作为治疗制品 ,获得了迅速的进展。  相似文献   

11.
Much progress has been made in recent years toward understanding the interactions between various proteins responsible for visual transduction which are initiated by an activated state of visual pigments. However, the changes which take place in the visual pigments themselves to convert them to the activated state are more poorly understood. Many spectroscopic techniques have been applied to this problem in recent years and considerable progress has been made. A major goal of these efforts is to understand at which stages protein change occurs and to characterize its structural features. In the visual system evidence is accumulating, for example, that chromophore independent protein change begins immediately prior to lumirhodopsin formation. Considerable insight has been gained recently into the early intermediates of visual transduction and the stage is set to achieve similar understanding of the later intermediates leading to rhodopsin's activated state.  相似文献   

12.
随着科学的发展和社会的进步,生命科学已经从现象描述发展到了精准定量的阶段,国际上蛋白质计量技术也已经取得了长足的进展。目前已经初步构建了蛋白质计量的框架体系,并建立了相应的量值传递方法,形成了基本固定的研究模式。综述了迄今为止蛋白质活性计量技术的研究进展以及取得的突破,重点介绍了酶催化活性浓度、蛋白质免疫亲和活性浓度计量技术及其应用。最后对蛋白质活性计量技术未来的发展方向进行了总结与展望。  相似文献   

13.
HIV-1 protease has a broad and complex substrate specificity. The discovery of an accurate, robust, and rapid method for predicting the cleavage sites in proteins by HIV protease would greatly expedite the search for inhibitors of HIV protease. During the last two decades, various methods have been developed to explore the specificity of HIV protease cleavage activity. However, because little advancement has been made in the understanding of HIV-1 protease cleavage site specificity, not much progress has been reported in either extracting effective methods or maintaining high prediction accuracy. In this article, a theoretical framework is developed, based on the kernel method for dimensionality reduction and prediction for HIV-1 protease cleavage site specificity. A nonlinear dimensionality reduction kernel method, based on manifold learning, is proposed to reduce the high dimensions of protease specificity. A support vector machine is applied to predict the protease cleavage. Superior performance in comparison to that previously published in literature is obtained using numerical simulations showing that the basic specificities of the HIV-1 protease are maintained in reduction feature space, and by combining the nonlinear dimensionality reduction algorithm with a support vector machine classifier.  相似文献   

14.
The CRISPR-Cas revolution is taking place in virtually all fields of life sciences.Harnessing DNA cleavage with the CRISPR-Cas9 system of Streptococcus pyogenes has proven to be extraordinarily simple and efficient,relying only on the design of a synthetic single guide RNA(sgRNA) and its co-expression with Cas9.Here,we review the progress in the design of sgRNA from the original dual RNA guide for S.pyogenes and Staphylococcus aureus Cas9(SpCas9 and SaCas9).New assays for genome-wide identification of offtargets have provided important insights into the issue of cleavage specificity in vivo.At the same time,the on-target activity of thousands of guides has been determined.These data have led to numerous online tools that facilitate the selection of guide RNAs in target sequences.It appears that for most basic research applications,cleavage activity can be maximized and off-targets minimized by carefully choosing guide RNAs based on computational predictions.Moreover,recent studies of Cas proteins have further improved the flexibility and precision of the CRISPR-Cas toolkit for genome editing.Inspired by the crystal structure of the complex of sgRNA-SpCas9 bound to target DNA,several variants of SpCas9 have recently been engineered,either with novel protospacer adjacent motifs(PAMs) or with drastically reduced off-targets.Novel Cas9 and Cas9-like proteins called Cpf 1 have also been characterized from other bacteria and will benefit from die insights obtained from SpCas9.Genome editing with CRISPR-Cas9 may also progress with better understanding and control of cellular DNA repair pathways activated after Cas9-induced DNA cleavage.  相似文献   

15.
Desmosomes are cell-cell junctions responsible for maintaining the structural integrity of tissues by resisting shear forces. Defects result in diseases of mechanically challenged tissues such as skin and heart. The architectural design represents the key to understanding the strength and durability inherent to desmosomes. A number of different proteins contribute to this architecture, and X-ray crystallography has made considerable progress in defining the atomic structure of various isolated domains. Electron tomography has been used to determine the three-dimensional structure of intact desmosomes in situ. By combining information from X-ray crystallography, cell and molecular biology and electron tomography, it should ultimately be possible to deduce the specific protein interactions that define the mechanical properties of this important adhesive junction.  相似文献   

16.
Fish has been the subject of various research fields, ranging from ecology, evolution, physiology and toxicology to aquaculture. In the past decades fish has attracted considerable attention for functional genomics, cancer biology and developmental genetics, in particular nuclear transfer for understanding of cytoplasmic-nuclear relationship. This special issue reports on recent progress made in fish stem cells and nuclear transfer.  相似文献   

17.
Due to the urgency of our energy and environmental issues, a variety of cost‐effective and pollution‐free technologies have attracted considerable attention, among which thermoelectric technology has made enormous progress. Substantial numbers of new thermoelectric materials are created with high figure of merit (ZT) by using advanced nanoscience and nanotechnology. This is especially true in the case of metal‐chalcogenide‐based materials, which possess both relatively high ZT and low cost among all the different kinds of thermoelectric materials. Here, comprehensive coverage of recent advances in metal chalcogenides and their correlated thermoelectric enhancement mechanisms are provided. Several new strategies are summarized with the hope that they can inspire further enhancement of performance, both in metal chalcogenides and in other materials.  相似文献   

18.
Yu K  Lieber MR 《DNA Repair》2003,2(11):1163-1174
Class switch recombination is the gene rearrangement process by which our B lymphocytes change from IgM production to IgG, IgA, or IgE. Unlike the well-characterized V(D)J recombination, the mechanism of class switch recombination has been largely enigmatic until very recent progress has begun to shed light on this gene rearrangement process. Progress has been made on the enzymes involved in leading to the DNA cleavage events and on identifying the unusual DNA structures that those enzymes recognize.  相似文献   

19.
Cell- and peptide-based immunotherapeutic approaches for glioma   总被引:1,自引:0,他引:1  
Glioblastoma multiforme (GBM) is the most common and lethal primary malignant brain tumor. Although considerable progress has been made in surgical and radiation treatment for glioma patients, the impact of these advances on clinical outcome has been disappointing. Therefore, the development of novel therapeutic approaches is essential. Recent reports demonstrate that systemic immunotherapy using dendritic cells (DCs) or peptide vaccines is capable of inducing an antiglioma response. These approaches successfully induce an antitumor immune response and prolong survival in patients with glioma without major side effects. There are several types of glioma, so to achieve effective therapy, it might be necessary to evaluate the molecular genetic abnormalities in individual patient tumors and design novel immunotherapeutic strategies based on the pharmacogenomic findings. Here, we review recent advances in DC- and peptide-based immunotherapy approaches for patients with gliomas.  相似文献   

20.
In the past few years, considerable progress has been made in the investigation of the function of retinoids and carotenoids in higher animals and human including their role in cytoprotection. This has resulted in a considerable development in the analytical methods in the field of carotenoids and retinoids in biological materials. We have developed a method for the qualitative and quantitative determination of retinol and carotenoids in animal and human blood, using straight-phase liquid chromatography. Details of this work are presented jointly with a brief review of other analytical methods of these compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号