首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The work was aimed at studying the inactivating effect of ozone on Escherichia coli K-12 AB1157, Pseudomonas aeruginosa PA01, Erwinia herbicola EH103 and their phages T4, SM and I4. The degree of bacterial and phage inactivation was found to increase with a decrease in their initial concentration during the treatment. The effect depends on differences in the quantity of ozone per cell or per phage particle in the reaction medium. This conclusion is based on the fact that, irrespective of the suspension density, the amount of surviving bacteria and phages plotted versus O3 concentration and recalculated per one bacterial cell or phage particle is described graphically by one and the same curve typical of a strain under study. This technique for assessing the sensitivity of microbiological objects to ozone can be used in order to compare experimental data obtained in different laboratories.  相似文献   

2.
Purified T7 phage, treated with methyl methanesulfonate, was assayed on Escherichia coli K-12 host cells deficient in base excision repair. Phage survival, measured immediately after alkylation or following incubation to induce depurination, was lowest on a mutant defective in the polymerase activity of DNA polymerase I (p3478). Strains defective in endonuclease for apurinic sites (AB3027, BW2001) gave a significantly higher level of phage survival, as did the strain defective in the 5'--3' exonuclease activity of DNA polymerase I (RS5065). Highest survival of alkylated T7 phage was observed on the two wild-type strains (AB1157, W3110). These results show that alkylated T7 phage is subject to repair via the base excision repair pathway.  相似文献   

3.
In gamma-irradiated cells of Escherichia coli K-12 restriction alleviation of an unmodified phage lambda is only observed in AB1157 strain. No restriction alleviation by gamma-rays is registered in AB1157 mutants (rec A and ssb-1).  相似文献   

4.
A series of Escherichia coli K-12 AB1157 strains with normal and defective deoxyribonucleic acid repair capacity were more resistant to treatment with 8-methoxypsoralen (8-MOP) and near-ultraviolet light (NUV) than a comparable series of strains from the B/r WP2 family although sensitivities to 254-nm ultraviolet light were closely similar. The difference was most marked with strains deficient in both excision and postreplication repair (uvrA recA). The hypothesis that the internal level of 8-MOP was lower in K-12 than B/r uvrA recA derivatives was ruled out on the basis of fluorometric determinations of 8-MOP content and the similar inactivation curves for phage T3 treated intracellularly within the two strains. The demonstration of liquid holding recovery with AB2480 but not WP100 (both recA uvrA strains) and the somewhat greater resistance of the former strain to inactivation by captan revealed the presence in the K-12 strain of a deoxyribonucleic acid repair system independent of the recA(+) and uvrA(+) genes. The presence of this repair system did not, however, affect the survival of T3 phage treated with 8-MOP plus NUV and probably has a relatively small effect on survival of AB2480 under normal conditions. Experiments in which 8-MOP monoadducts were converted to cross-links by a second NUV exposure in the absence of 8-MOP indicated that the level of potentially cross-linkable monoadducts immediately after 8-MOP + NUV is about eightfold lower in K-12-than in B/r-derived strains. It is therefore suggested that the photoproduct yield in the former is well below that in the latter. In agreement with this is the observation that, during the first 10 min after treatment, deoxyribonucleic acid synthesis was just over five times more sensitive to inhibition by 8-MOP plus NUV in WP100 than in AB2480. We assume that 8-MOP in K-12 bacteria is hindered in some way from adsorbing to cellular (though not to phage T3) deoxyribonucleic acid. Consistent with this, 8-MOP has been shown to act as an inhibitor of a component of repair of 254-nm ultraviolet light damage in WP2 but not in AB1157.  相似文献   

5.
The capability of a number of plasmids of incN and incI groups to alleviate an action of type I EcoK, EcoB, EcoD, and EcoA restriction endonucleases on the unmodified DNA was revealed. The efficiency of EcoK action on lambda 0 DNA is alleviated about 10 divided by 100 fold in E. coli K12 AB 1157 bacteria containing the plasmid of incN group (pKM101, N3, pJA4733) or incI group (R144, R648; R621a; ColIb-P9). We have cloned ard gene of ColIb-P9 plasmid (SalI-C fragment) in pBR322 multicopying vector. A hybrid clone abolishing the EcoK restriction has been received. Ard gene activity is independent of the recA, recBc, recF, lexA, umuC, lon bacterial genes activity. Ard gene's product does not inhibit the EcoK restriction endonuclease action as well as ocr protein (phage T7) and does not increase the process of methylation of DNA as well as ral protein of phage lambda.  相似文献   

6.
R S Day  rd 《Journal of virology》1977,21(3):1249-1251
A partial release of K-specific restriction of phage lambda grown in Escherichia coli C was observed when E. coli K strains AB1157 (having wild-type repair of UV-produced DNA damage) and AB1886 (uvrA) were irradiated with UV light before infection. The effect occurred in AB1886 at lower UV fluences than it did in AB1157. Little or no release of restriction was observed when AB2463 (recA) or AB2494 (lex-1) was used. Such release of restriction appears to be another of the UV-induced phenomena associated with "SOS" repair.  相似文献   

7.
The temperate bacteriophage SM is not serologically related to the known transducing phages F116, G101, B3 of Pseudomonas aeruginosa. The strains with auxotrophic mutations within the wide ranges of the genetic map of P. aeruginosa strain PAO1 were used for studying the transducing activity of the SM phage. All of the 7 bacterial markers tested are transduced with SM phage grown on a prototrophic donor strain. The frequency of transduction of separate bacterial markers using the wild type SM phage is 2.3 to 4.6 X 10(-8). Linked ilv202+ - met28+ markers are cotransduced with SM phage at a frequency of about 1.5%.  相似文献   

8.
The lethal and mutagenic effects on phage lambdacI857 of 60Co gamma-rays and of decay of 3H incorporated into phage DNA both as 8-3H-deoxyadenosine and 8-3H-deoxyguanosine (using 8-3H-adenine as a labelled DNA precursor) were studied on four isogenic Escherichia coli strains: AB1157 M(+)Y(+) (wild type, mutM(+) mutY(+)), AB1157 M(-)Y(+) (mutM::kan mutY(+) mutant deficient in the formamidopyrimidine-DNA glycosylase MutM), AB1157 M(+)Y(-) (mutM(+) mutY mutant deficient in the A:G mismatch DNA glycosylase MutY), and AB1157 M(-)Y(-) (mutM::kan mutY double mutant deficient in both DNA glycosylases). The main products of transmutation component of 3H decay in position 8 of purine residues are 8-oxo-7, 8-dihydroadenine (8-oxoA) and 8-oxo-7,8-dihydroguanine (8-oxoG), the latter being responsible for the most part of the mutagenic effect. The lethal effects of both gamma-rays and tritium decay virtually did not depend on the repair phenotypes of the host strains used. Therefore, the MutM and MutY glycosylases are not involved in the repair of lethal DNA damages induced by ionizing radiation or by the transmutation component of 3H decay in purine residues of phage DNA. The efficiencies of mutagenic action of 3H-purines E(m) (frequencies of c-mutations per one 3H decay in phage genome) were 2.4-, 3.8- and 55-fold higher in the M(-)Y(+), M(+)Y(-) and M(-)Y(-) mutants, respectively, in comparison to the wild-type host. The mutagenic efficiencies E(m) for gamma-rays were nearly identical in the M(+)Y(+) and M(-)Y(+) hosts, but were increased 1.8- and 8.3-fold, respectively, in the M(+)Y(-) and M(-)Y(-) mutants. These data suggest that: (1) the MutY and MutM DNA glycosylases are important for prevention of mutations caused not only by spontaneous oxidation of guanine residues, but also by ionizing radiation or by decay of 3H incorporated into purine bases of DNA; (2) the MutY and MutM enzymes functionally cooperate in elimination of mutagenic damages induced by these agents.  相似文献   

9.
Factors affecting the efficiency of transfection of Ps. aeruginosa PAO1 cells by the temperate SM bacteriophage DNA have been determined. The efficiency of transfection by DNA preparations isolated from the wild type bacteriophage SMc+ or its thermoinducible mutant SM cts6 is practically the same. The frequency of transfection is (7-9) X 10(4) of infectious centers per mkg of transfecting DNA. Variability in the frequencies of transfection has been registered depending of the infection conditions or on the transfer of the Ps. aeruginosa PAO1 recipient strain population into the competence phase. The efficiency of transfection is increased by the addition of Ca2+ or Mg2+ ions affecting the adsorption and absorbtion of phage DNA by the recipient cells. Optimal concentrations of the bivalent metal ions are 0.15M CaCl2 and 0.2M MgCl2. The results obtained have been used for optimizing the conditions of Ps. aeruginosa PAO1 transfection by SM bacteriophage DNA.  相似文献   

10.
Purified T7 phage, treated with methyl methanesulfonate, was assayed on four Escherichia coli K12 host cells: (1) AB1157, wild-type; (2) PK432-1, lacking 3-methyladenine-DNA glycosylase (tag); (3) NH5016, lacking apurinic endonuclease VI (xthA); (4) p3478, lacking DNA polymerase I (polA), the latter three strains being deficient in enzymes of the base excision repair pathway. For inactivation measured immediately after alkylation, phage survival was lowest on strains PK432-1 and p3478; for delayed inactivation, measured after partial depurination of alkylated phage, survival was much lower on strain p3478 than on PK432-1. These results demonstrate the important role played by 3-methyladenine-DNA glycosylase in the survival of methylated T7 phage. Quantitative analysis of the data, using the results of Verly et al. (Verly, W.G., Crine, P., Bannon, P. and Forget, A. (1974) Biochim. Biophys. Acta 349, 204–213) to correlate the dose with the number of methyl groups introduced into phage DNA, revealed that 5–10 3-methyladenine residues per T7 DNA constituted an inactivation hit for the tag mutant. Thus, 3-methyladenine may be as toxic a lesion as an apurinic site.  相似文献   

11.
The inheritance of plasmids Rms163 and R74 by Pseudomonas aeruginosa strain PAO hs been shown to effect the reproduction of a temperature bacteriophage SM. The decrease in plating efficiency of bacteriophage on Pseudomonas aeruginosa PAO (rms163) lawn is explained by the high degree of cell lysogenization by bacteriophage. Plasmid R74 inhibits bacteriophage SM propagation ultimately, evidently due to interruption of definite stages in vegetative development of bacteriophage by the products of plasmid specific genes.  相似文献   

12.
The molecular mechanism of DNA injury by mild heat was investigated using matched isogenic mutants of E. coli. On heating at 52 degrees C for 1 h, the number of DNA single-strand breaks (SSBs) detected by the alkaline sucrose gradient sedimentation technique was consistently smaller in mutants NH5016 and BW2001, both deficient in the AP (apurinic/apyrimidinic) endonuclease of exonuclease III, as compared with their wild-type parent AB1157. The greater number of SSBs in the wild type was accompanied by more extensive cell death as compared with the AP-deficient mutants. Heating of endonuclease-free DNA systems, viz., T4 phage and T4 DNA, at 52 degrees C for up to 4 h did not result in any detectable SSB. Apparently, cellular injury by mild heat is self-inflicted through an AP-endonuclease-mediated process and hence depends on the cell's genetic complement of AP endonuclease. Mild heat is believed to activate the nucleolytic attack, and the resultant DNA-strand breaks, if not repaired, will eventually lead to cell death.  相似文献   

13.
The survival and repair of single-strand breaks of DNA in gamma-ray-irradiated E. coli adapted to MMS (20 mkg/ml during 3 hours) have been investigated. It is shown that the survival of adapted bacteria of radioresistant strains B/r, H/r30, AB1157 and W3110 pol+ increases with DMF (dose modification factor) ranging within 1.4-1.8 and in radiosensitive strains Bs-1, AB1157 recA13 and AB1157 lexA3 with DMF ranging within 1.3-1.4, and does not change in strains with mutation in polA gene P3478 polA1 and 016 res-3. There is no increase in radioresistance during the adaptation to MMS under the action of the protein synthesis inhibitor chloramphenicol. The increase in radioresistance during the adaptation to MMS correlates with the acceleration of repair of gamma-ray-induced single-strand breaks in the radioresistant strains B/r and W3110 pol+ and with the appearance of the ability to repair some part of DNA single-strand breaks in the mutant Bs-1, which beyond the adaptation to MMS does not repair these damages. The incomplete reparability of DNA single-strand breaks in P3478 polA1 strain cells, both adapted and non-adapted to MMS, is equal.  相似文献   

14.
Adaptive (starvation-associated) mutations occur in non-dividing cells and allow growth under the selective conditions imposed. We developed a new method for the determination of adaptive mutations in Escherichia coli. The system involves reversion to prototrophy of the argE3OC mutation and was tested on AB1157 strains mutated in the mutT and/or mutY genes. The bacteria that mutated adaptively grow into colonies on minimal medium plates devoid of arginine (starvation conditions) when incubated longer than 4 days. Using the replica plating method we solved the problem of discrimination between growth-dependent and adaptive argE3-->Arg+ revertants. Phenotype analysis and susceptibility of the Arg+ revertants to a set of T4 phage mutants create an additional possibility to draw a distinction between these two types of Arg+ revertants.  相似文献   

15.
Cysteamine (MEA) is comutagenic to methylnitrosourea (MNU) in E. coli AB 1157 but not in the nonadaptable mutant derivative ada-6 of that strain. The comutagenic action of MEA was eliminated by cysteine at low concentrations, which also lowered mutation frequencies in AB1157 but not in ada-6. In model experiments it was shown that cysteine counteracted the inhibition by MEA of beta-galactosidase induction in both bacterium strains. The comutagenic action of MEA is interpreted as being due to an inhibition of induction of methyltransferase during treatment with MNU.  相似文献   

16.
The role of peroxide and catalase on NUV radiation sensitivity was examined in two repair competent E. coli strains, AB1157 and B/r. Exponential phase B/r is considerably more sensitive to NUV radiation than exponential phase AB1157. However, resistance to 5 mmol dm-3 H2O2 was induced in both AB1157 and B/r by pretreating growing cells with 30 mumol dm-3 H2O2. Pretreatment also induced resistance to broad-band NUV radiation in these strains. The addition of catalase to the post-irradiation plating medium increased survival to the same extent as that provided by pretreatment with 30 mumol dm-3 H2O2, in both strains. The NUV radiation sensitivity seen in B/r does not appear to be due to a deficiency in enzymes that scavenge H2O2, as a catalase deficient mutant, E. coli UM1, is more resistant to NUV radiation than B/r. Also, assays for H2O2 scavenging ability show little difference between AB1157 and B/r in this respect. Two hypotheses are put forward to account for the sensitivity of exponential phase B/r. Whilst it is apparent that peroxides and catalase do have a role in NUV radiation damage, it is clear that other factors also influence survival under certain conditions.  相似文献   

17.
Exonucleolytic degradation of [3]H-labeled DNA was examined in partially purified fractions of lysates obtained from nonirradiated RecBCD enzyme-containing cells of Escherichia coli and in the radiation-resistant mutant Gamr444. The degradative activity was shown to be lowered in these cells to the same extent as in the recBC mutant. The efficiency of plating of the mutant phage T4 2-, DNA of which can be degraded by exonuclease V, was 400-fold higher on the strain Gamr444 than on the wild-type strain AB1157. This value was shown to be only twice as low as that on the recB mutant or on the strain AB1157 carrying plasmid pGam26 with a radiation-resistance allele gam26 cloned from mutant Gamr444. The data obtained confirmed the hypothesis that the Gamr444 mutant contains a constitutive inhibitor of exonucleolytic activity of the RecBCD enzyme in nonirradiated cells. This inhibitor was shown to be encoded by the gam26 allele that had previously been mapped at 56.8 min of the E. coli chromosome. A possible mechanism of the involvement of this inhibitor in enhanced radiation resistance of the mutant Gamr444 is considered.  相似文献   

18.
Lethal action of gamma-rays on derivatives of the wild-type strain AB1157 and of two radiation-resistant mutants (Gamr444 and Gamr445) containing additional mutations dnaA46, recB21, recF143, recA56, recA430, lexA3, lexA102 or lexA3 recAo98, was studied. When the mean number of genomes per cell was reduced by means of pre-incubation at 43 degrees C, radioresistance of the strains AB1157 dnaA46 and Gamr445 dnaA46 was not changed, and that of the strain Gamr444 dnaA46 was reduced to the level of the Gamr445 dnaA46 strain. Introduction of additional mutations recB21, recA56 or lexA3 (lexA102) into the genome of the strains Gamr444 or Gamr445 made them as radiosensitive as the corresponding variants of AB1157. Additional mutations recF143 or recA430 (lexB30) significantly decreased the radioresistance of Gamr444 and Gamr445 mutants, although did not level them to corresponding derivatives of AB1157. Operator-constitutive mutation recAo98 enhanced radioresistance of all lexA3 derivatives tested but not to the level of the corresponding lexA+ strains. The role of recombinational repair and the inducible SOS system in enhanced radioresistance of Gamr mutants is discussed. The data of post-irradiation DNA degradation in various derivatives of the strains AB1157 and Gamr suggest that Gamr mutants have a constitutive inhibitor of degradation which does coincide with RecA protein.  相似文献   

19.
Escherichia coli cells were killed by visible light irradiation in the presence of the photosensitizing dye, toluidine blue. Two uvrB mutant strains of E. coli K-12 (AB1885 and N3-1) were much more sensitive than the isogenic uvrA and uvrC strains to treatment with toluidine blue plus light, suggesting that the uvrB+ gene product was involved in repair of DNA damage induced by the treatment. The uvrB+ gene cloned in a high- or low-copy-number plasmid was transformed into the uvrB strain (AB1885). Although all the transformants showed the same resistance as its wild-type strain (AB1157) to UV irradiation, they were as sensitive as AB1885 was to treatment with toluidine blue plus light. The two uvrB strains were more sensitive to sodium dodecyl sulfate than the other strains, suggesting that these strains had a defect in the cell surface. A sodium dodecyl sulfate-resistant revertant obtained from AB1885 was more resistant than AB1885 was to treatment with toluidine blue plus light. The two uvrB strains (AB1885 and N3-1) appear to have a defective gene (tentatively called dvl) different from uvrB. Its map position was around 7 min on the E. coli map.  相似文献   

20.
The action of T4 endonuclease V on DNA containing various photoproducts was investigated. (1) The enzyme introduced strand breaks in DNA from ultraviolet-irradiated vegetative cells of Bacillus subtilis but not in DNA from irradiated spores of the same organism. DNA irradiated with long wavelength (360 nm peak) ultraviolet light in the presence of 4,5',8-trimethylpsoralen was not attacked by the enzyme. These results indicate that 5-thyminyl 5,6-dihydrothymine (spore photoproduct) and psoralen mediated cross-links in DNA are not recognized by T4 endonuclease V. (2) DNA of phage PBS1, containing uracil in place of thymine, and DNA of phage SPO1, containing hydroxymethyluracil in place of thymine, were fragmented by the enzyme when the DNA's had been irradiated with ultraviolet light. T4 endonuclease V seems to act on DNA with pyrimidine dimers whether the dimers contain thymine residues or not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号