首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
One of the most remarkable features of the MHC class I loci of most outbred mammalian populations is their exceptional diversity, yet the functional importance of this diversity remains to be fully understood. The cotton-top tamarin (Saguinus oedipus) is unusual in having MHC class I loci that exhibit both limited polymorphism and sequence variation. To investigate the functional implications of limited MHC class I diversity in this outbred primate species, we infected five tamarins with influenza virus and defined the CTL epitopes recognized by each individual. In addition to an immunodominant epitope of the viral nucleoprotein (NP) that was recognized by all individuals, two tamarins also made a response to the same epitope of the matrix (M1) protein. Surprisingly, these two tamarins used different MHC class I molecules, Saoe-G*02 and -G*04, to present the M1 epitope. In addition, CTLs from one of the tamarins recognized target cells that expressed neither Saoe-G*02 nor -G*04, but, rather, a third MHC class I molecule, Saoe-G*12. Sequence analysis revealed that Saoe-G*12 differs from both Saoe-G*02 and -G*04 by only two nucleotides and was probably generated by recombination between these two alleles. These results demonstrate that at least three of the tamarin's MHC class I molecules can present the same epitope to virus-specific CTLs. Thus, four of the tamarin's 12 MHC class I molecules bound only two influenza virus CTL epitopes. Therefore, the functional diversity of cotton-top tamarin's MHC class I loci may be even more limited than their genetic diversity suggests.  相似文献   

2.
Major histocompatibility complex (MHC) class I molecules assemble with peptides in the ER lumen and are transported via Golgi to the plasma membrane for recognition by T cells. Inhibiting MHC assembly, transport, and surface expression are common viral strategies of evading immune recognition. Cowpox virus, a clinically relevant orthopoxvirus, downregulates MHC class I expression on infected cells. However, the viral protein(s) and mechanisms responsible are unknown. We identify CPXV203 as a cowpox virus protein that associates with fully assembled MHC class I molecules and blocks their transport through the Golgi. A C-terminal KTEL motif in CPXV203 closely resembles the canonical ER retention motif KDEL and is required for CPXV203 function, indicating that a physiologic pathway is exploited to retain MHC class I in the ER. This viral mechanism for MHC class I downregulation may explain virulence differences between clinical isolates of orthopoxviruses.  相似文献   

3.
Orthopoxviruses evade host immune responses by using a number of strategies, including decoy chemokine receptors, regulation of apoptosis, and evasion of complement-mediated lysis. Different from other poxviral subfamilies, however, orthopoxviruses are not known to evade recognition by CTL. In fact, vaccinia virus (VV) is used as a vaccine against smallpox and a vector for eliciting strong T cell responses to foreign Ags. and both human and mouse T cells are readily stimulated by VV-infected APC in vitro. Surprisingly, however, CD8(+) T cells of mice infected with cowpox virus (CPV) or VV recognized APC infected with VV but not APC infected with CPV. Likewise, CD8(+) T cells from vaccinated human subjects could not be activated by CPV-infected targets and CPV prevented the recognition of VV-infected APC upon coinfection. Because CD8(+) T cells recognize viral peptides presented by MHC class I (MHC I), we examined surface expression, total levels, and intracellular maturation of MHC I in CPV- and VV-infected human and mouse cells. Although total levels of MHC I were unchanged, CPV reduced surface levels and inhibited the intracellular transport of MHC I early during infection. CPV did not prevent peptide loading of MHC I but completely inhibited MHC I exit from the endoplasmic reticulum. Because this inhibition was independent of viral replication, we conclude that an early gene product of CPV abrogates MHC I trafficking, thus rendering CPV-infected cells "invisible" to T cells. The absence of this immune evasion mechanism in VV likely limits virulence without compromising immunogenicity.  相似文献   

4.
The development of TCR alphabeta(+), CD8alphabeta(+) intestinal intraepithelial lymphocytes (IEL) is dependent on MHC class I molecules expressed in the thymus, while some CD8alphaalpha(+) IEL may arise independently of MHC class I. We examined the influence of MHC I allele dosage on the development CD8(+) T cells in RAG 2(-/-) mice expressing the H-2D(b)-restricted transgenic TCR specific for the male, Smcy-derived H-Y Ag (H-Y TCR). IEL in male mice heterozygous for the restricting (H-2D(b)) and nonrestricting (H-2D(d)) MHC class I alleles (MHC F(1)) were composed of a mixture of CD8alphabeta(+) and CD8alphaalpha(+) T cells, while T cells in the spleen were mostly CD8alphabeta(+). This was unlike IEL in male mice homozygous for H-2D(b), which had predominantly CD8alphaalpha(+) IEL and few mostly CD8(-) T cells in the spleen. Our results demonstrate that deletion of CD8alphabeta(+) cells in H-Y TCR male mice is dependent on two copies of H-2D(b), whereas the generation of CD8alphaalpha(+) IEL requires only one copy. The existence of CD8alphabeta(+) and CD8alphaalpha(+) IEL in MHC F(1) mice suggests that their generation is not mutually exclusive in cells with identical TCR. Furthermore, our data imply that the level of the restricting MHC class I allele determines a threshold for conventional CD8alphabeta(+) T cell selection in the thymus of H-Y TCR-transgenic mice, whereas the development of CD8alphaalpha(+) IEL is dependent on, but less sensitive to, this MHC class I allele.  相似文献   

5.
We have examined the roles of peptide and beta 2-microglobulin (beta 2m) in regulating the conformation and expression level of class I molecules on the cell surface. Using a cell line synthesizing H-2Dd H chain and mouse beta 2m but defective in endogenous peptide loading, we demonstrate the ability of either exogenous peptide or beta 2m alone to increase surface H-2Dd expression at both 25 degrees C and 37 degrees C. Peptide and beta 2m show marked synergy in their abilities to increase surface class I expression, with minimal increases promoted by peptide in the absence of free beta 2m. Low temperature-induced molecules have indistinguishable rates of loss of beta 2m and alpha 1/alpha 2 domain conformational epitopes during culture at 37 degrees C. However, the rate of alpha 3 epitope loss is much slower, indicating a minimum of two steps in class I loss from the cell surface: 1) loss of beta 2m binding to H chain and unfolding of the alpha 1/alpha 2 region; then 2) denaturation, degradation, or internalization of the free H chains possessing alpha 3 epitopes. These data show for the first time that free H chains survive for a finite time on the membrane in a form capable of refolding into alpha 1/alpha 2 epitope positive molecules upon addition of beta 2m and peptide. This refolding in the presence of beta 2m and peptide can explain the reported requirement for both components in sensitizing cells for class I-dependent CTL lysis. It also indicates that such conformational changes in class I molecules are not strictly dependent on either newly synthesized H chains or on intracellular chaperons. The study of H chain-peptide-beta 2m interaction on the cell surface may be relevant to understanding intracellular peptide loading events.  相似文献   

6.
It is unknown whether nutritional deficiencies affect the morphology and function of structural cells, such as epithelial cells, and modify the susceptibility to viral infections. We developed an in vitro system of differentiated human bronchial epithelial cells (BEC) grown either under selenium-adequate (Se+) or selenium-deficient (Se–) conditions, to determine whether selenium deficiency impairs host defense responses at the level of the epithelium. Se– BECs had normal SOD activity, but decreased activity of the selenium-dependent enzyme GPX1. Interestingly, catalase activity was also decreased in Se– BECs. Both Se– and Se+ BECs differentiated into a mucociliary epithelium; however, Se– BEC demonstrated increased mucus production and increased Muc5AC mRNA levels. This effect was also seen in Se+ BEC treated with 3-aminotriazole, an inhibitor of catalase activity, suggesting an association between catalase activity and mucus production. Both Se– and Se+ were infected with influenza A/Bangkok/1/79 and examined 24 h postinfection. Influenza-induced IL-6 production was greater while influenza-induced IP-10 production was lower in Se– BECs. In addition, influenza-induced apoptosis was greater in Se– BEC as compared to the Se+ BECs. These data demonstrate that selenium deficiency has a significant impact on the morphology and influenza-induced host defense responses in human airway epithelial cells.  相似文献   

7.
Specific binding of antigenic peptides to major histocompatibility complex (MHC) class I molecules is a prerequisite for their recognition by cytotoxic T-cells. Prediction of MHC-binding peptides must therefore be incorporated in any predictive algorithm attempting to identify immunodominant T-cell epitopes, based on the amino acid sequence of the protein antigen. Development of predictive algorithms based on experimental binding data requires experimental testing of a very large number of peptides. A complementary approach relies on the structural conservation observed in crystallographically solved peptide-MHC complexes. By this approach, the peptide structure in the MHC groove is used as a template upon which peptide candidates are threaded, and their compatibility to bind is evaluated by statistical pairwise potentials. Our original algorithm based on this approach used the pairwise potential table of Miyazawa and Jernigan (Miyazawa S, Jernigan RL, 1996, J Mol Biol 256:623-644) and succeeded to correctly identify good binders only for MHC molecules with hydrophobic binding pockets, probably because of the high emphasis of hydrophobic interactions in this table. A recently developed pairwise potential table by Betancourt and Thirumalai (Betancourt MR, Thirumalai D, 1999, Protein Sci 8:361-369) that is based on the Miyazawa and Jernigan table describes the hydrophilic interactions more appropriately. In this paper, we demonstrate how the use of this table, together with a new definition of MHC contact residues by which only residues that contribute exclusively to sequence specific binding are included, allows the development of an improved algorithm that can be applied to a wide range of MHC class I alleles.  相似文献   

8.
9.
《Gene》1996,171(2):281-284
A vector is described for the expression of genomic or cDNA copies of bovine major histocompatibility complex (MHC) class I genes in transfected mouse Ltk cells. Class I gene fragments are amplified by the polymerase chain reaction, using primers in conserved parts of exon 2 and the 3′-untranslated region of the gene. Amplified class I gene fragments can then be subcloned into the expression vector, pBoLA-21, which contains the necessary 5′-and 3′-sequences for correct expression. The vector was tested by subcloning and expressing genomic and cDNA clones.  相似文献   

10.
The physical association of HLA class I and class II Ag in the membranes of PGF and JY lymphoblastoid cell lines was studied using flow cytometric energy transfer. This technique measures the proximity of cell surface molecules in the nm range and provides a distribution histogram of the average proximity of molecules on each cell of a population. HLA Ag were labeled with mAb conjugated to fluorescein, serving as donor, or tetramethylrhodamine, serving as acceptor molecules. Significant fluorescence energy transfer was detected between various combinations of class I and class II molecules indicating that these molecules are within 10 nanometers of each other. Specifically, energy transfer was observed between class I molecules and DR, DQ, or DP class II HLA molecules. In addition, energy transfer between all combinations of DR, DQ, and DP molecules was observed. No transfer was observed among class I molecules or among DR or among DP molecules. Among DQ molecules, subpopulations transferred fluorescence energy to each other. The close contact measured between class I and class II Ag correlates with previous reports of cocapping and may reflect an immunologically significant interaction or the reported tendency of class I Ag to associate with other cell surface receptors, including growth factor receptors. The energy transfer between fluorescent antibodies to class II Ag suggests the existence of heterodimers formed from the different locus products, as well as possible quaternary surface interactions between alpha/beta complexes from separate loci.  相似文献   

11.
It has recently been hypothesized that tumor cells with reduced levels of MHC class I antigens are more susceptible to NK-mediated lysis and are rejected by NK cells, whereas tumor cells with normal levels of class I are rejected by tumor-specific CTL. We have tested this hypothesis using a mouse hepatoma system. The Hepa-1 tumor is a spontaneous H-2Kb loss variant that arose from the BW7756 tumor, when BW7756 was adapted to growth in culture. Our studies have shown that despite the loss of H-2Kb antigen, Hepa-1 is not more susceptible to NK lysis than its H-2Kb-transfected variants. These studies also suggested that NK cells were not responsible for rejection of the Hepa-1 tumor. The Hepa-1 tumor, therefore, appears to contradict the hypothesized linkage of MHC levels and NK susceptibility. Because NK cells are not involved in immunity to this tumor, we have sought to identify the effector cell responsible for Hepa-1 rejection. Cytotoxic T lymphocyte assays demonstrate that in vitro, Hepa-1 cells are lysed by Hepa-1-specific H-2Db-restricted CD4-CD8+ T lymphocytes. Footpad assays demonstrate that in vivo, Hepa-1 rejection requires CD4+CD8- and CD4-CD8+ Hepa-1-primed splenocytes. These results indicate that immunity to Hepa-1 is T cell mediated. Hepa-1 is therefore an example of an unusual tumor in that down-regulation of MHC class I antigen expression is associated with increased CTL susceptibility.  相似文献   

12.
The importance of asparagine-linked glycosylation in the cell surface expression of several class I molecules was examined. C57BL/6 (B6) T cell blasts were treated with tunicamycin (TM), an antibiotic that inhibits N-linked glycosylation. The levels of various class I molecules on these cells were examined by flow cytometry and were compared to the levels of the same molecules on untreated cells. A 12-hr TM treatment did not significantly alter the levels of H-2Kb, Db, or Qa-2; however, such treatment decreased the surface expression of the Qa-1b allelic product to undetectable levels. A time-course study indicated that a decrease in the level of Qa-1.2 expression was apparent after only 4 hr of TM treatment. An examination of T cell blasts prepared from mouse strains possessing the Qa-1a, Qa-1c, and Qa-1d alleles indicated that all allelic products of this locus demonstrated a marked decrease in cell surface expression on TM treatment, whereas other class I molecules (H-2Ks, TL) exhibited slight or no decrease. Two-dimensional polyacrylamide gel electrophoresis analysis of immunoprecipitates from detergent lysates of surface-iodinated TM-treated B6 blasts revealed the presence of the unglycosylated form of the H-2Kb molecule on the cell surface. No such form of the Qa-1.2 molecule could be detected by similar analysis. To establish that the above observations were not simply a result of the inability of the Qa-1-specific alloantisera to react with the unglycosylated Qa-1 molecule, lysates of surface-iodinated B6 blasts were digested with endoglycosidase F, which cleaves N-linked carbohydrate moieties. Immunoprecipitation analysis indicated that the antisera could react with the unglycosylated form of the Qa-1 molecule. These results indicate that N-linked glycosylation has differential importance in the cell surface expression of class I molecules.  相似文献   

13.
Sequence-based typing (SBT) was developed for major histocompatibility complex (MHC) class I and class II alleles in humans. We report here the development and application of a SBT method for alleles of the chicken BF2 locus (the more polymorphic of the two MHC class I loci in chickens). Exon 2 of the BF2 gene was selectively amplified from genomic DNA using a BF2 locus-specific PCR primer. Exon 2 sequences were sufficient to identify the 21 distinct BF2 alleles described in standard B haplotypes of Leghorns and in commercial broiler-breeder lines. Sixty-six samples from MHC typed, pedigreed chickens were tested, including 50 different heterozygous combinations. BF2 sequences from all B homozygotes were successfully amplified, and all combinations of BF2 alleles in heterozygotes were co-amplified equally. The two different BF2 alleles in heterozygotes could be identified unambiguously by distinct sequence motif patterns. In tests of samples of unknown B genotype in commercial broiler-breeder flocks, we identified expected BF2 alleles as well as an allele not previously encountered in one of the lines.  相似文献   

14.
In the present study, a systematic attempt has been made to develop an accurate method for predicting MHC class I restricted T cell epitopes for a large number of MHC class I alleles. Initially, a quantitative matrix (QM)-based method was developed for 47 MHC class I alleles having at least 15 binders. A secondary artificial neural network (ANN)-based method was developed for 30 out of 47 MHC alleles having a minimum of 40 binders. Combination of these ANN-and QM-based prediction methods for 30 alleles improved the accuracy of prediction by 6% compared to each individual method. Average accuracy of hybrid method for 30 MHC alleles is 92.8%. This method also allows prediction of binders for 20 additional alleles using QM that has been reported in the literature, thus allowing prediction for 67 MHC class I alleles. The performance of the method was evaluated using jack-knife validation test. The performance of the methods was also evaluated on blind or independent data. Comparison of our method with existing MHC binder prediction methods for alleles studied by both methods shows that our method is superior to other existing methods. This method also identifies proteasomal cleavage sites in antigen sequences by implementing the matrices described earlier. Thus, the method that we discover allows the identification of MHC class I binders (peptides binding with many MHC alleles) having proteasomal cleavage site at C-terminus. The user-friendly result display format (HTML-II) can assist in locating the promiscuous MHC binding regions from antigen sequence. The method is available on the web at www.imtech.res.in/raghava/nhlapred and its mirror site is available at http://bioinformatics.uams.edu/mirror/nhlapred/.  相似文献   

15.
16.
To obtain an insight into the evolutionary origin of the major histocompatibility complex (MHC) class I polymorphism, a cDNA library was prepared from a heterozygous chimpanzee cell line expressing MHC class I molecules crossreacting with allele-specific HLA-A11 antibodies. The library was screened with human class I locus-specific DNA probes, and clones encoding both alleles at the A and B loci have been identified and sequenced. In addition, the sequences of two HLA-A11 subtypes differing by a single nucleotide substitution have been obtained. The comparison of chimpanzee and human sequences revealed a close similarity (up to 98.5%). The chimpanzee A locus alleles showed greatest similarity to the human HLA-A11/A3 family of alleles, one of them being very close to HLA-A11. Similarly, segments of the ChLA-B alleles displayed greatest similarity to certain HLA-B alleles. The calculated evolutionary branch point for the A11-like alleles is 7 x 10(6) to 9 x 10(6) years, whereas the other A locus alleles diverged between 12 x 10(6) and 17 x 10(6) years ago. Since the human and chimpanzee lineages separated 5 x 10(6) to 7 x 10(6) years ago, our data support the notion that during evolution, MHC alleles are transmitted from one species to the next.  相似文献   

17.
Mouse cytomegalovirus (MCMV) early gene expression interferes with the major histocompatibility complex class I (MHC class I) pathway of antigen presentation. Here we identify a 48 kDa type I transmembrane glycoprotein encoded by the MCMV early gene m06, which tightly binds to properly folded beta2-microglobulin (beta2m)-associated MHC class I molecules in the endoplasmic reticulum (ER). This association is mediated by the lumenal/transmembrane part of the protein. gp48-MHC class I complexes are transported out of the ER, pass the Golgi, but instead of being expressed on the cell surface, they are redirected to the endocytic route and rapidly degraded in a Lamp-1(+) compartment. As a result, m06-expressing cells are impaired in presenting antigenic peptides to CD8(+) T cells. The cytoplasmic tail of gp48 contains two di-leucine motifs. Mutation of the membrane-proximal di-leucine motif of gp48 restored surface expression of MHC class I, while mutation of the distal one had no effect. The results establish a novel viral mechanism for downregulation of MHC class I molecules by directly binding surface-destined MHC complexes and exploiting the cellular di-leucine sorting machinery for lysosomal degradation.  相似文献   

18.
Solution studies have demonstrated the existence of two functionally distinct isomers of empty class II MHC: an active isomer that binds peptide and an inactive isomer that does not. Empty MHC molecules on the surface of APCs can load antigenic peptides directly from the extracellular medium, facilitating the generation of a diverse peptide repertoire for T cell presentation. In this report, we examine I-Ek on the surface of Chinese hamster ovary cells with respect to the active and inactive isomers. As in the case of purified soluble active I-Ek, active I-Ek on the cell surface is unstable, decaying to the inactive form in approximately 14 min. Evidence is presented suggesting that at steady state <1% of the total cell surface I-Ek is active and that a significant fraction of these active molecules originates from intracellular pools as well as reactivation of inactive cell surface I-EK.  相似文献   

19.
The down-regulation of surface expression of MHC class I molecules has recently been reported in the CD99-deficient lymphoblastoid B cell line displaying the characteristics of Hodgkin's and Reed-Sternberg phenotype. Here, we demonstrate that the reduction of MHC class I molecules on the cell surface is primarily due to a defect in the transport from the Golgi complex to the plasma membrane. Loss of CD99 did not affect the steady-state expression levels of mRNA and protein of MHC class I molecules. In addition, the assembly of MHC class I molecules and the transport from the endoplasmic reticulum to the cis-Golgi occurred normally in the CD99-deficient cells, and no difference was detected between the CD99-deficient and the control cells in the pattern and degree of endocytosis. Instead, the CD99-deficient cells displayed the delayed transport of newly synthesized MHC class I molecules to the plasma membrane, thus causing accumulation of the molecules within the cells. The accumulated MHC class I molecules in the CD99-deficient cells were colocalized with alpha-mannosidase II and gamma-adaptin in the Golgi compartment. These results suggest that CD99 may be associated with the post-Golgi trafficking machinery by regulating the transport to the plasma membrane rather than the endocytosis of surface MHC class I molecules, providing a novel mechanism of MHC class I down-regulation for immune escape.  相似文献   

20.
Autophagy is a survival mechanism that can take place in cells under metabolic stress and through which cells can recycle waste material. Disturbances in autophagic processes appear to be associated with a number of human pathologies, including viral infections. It has been hypothesized that viruses can subvert autophagy in order to penetrate the host cell and replicate. Because it has been suggested that autophagy is involved in influenza A virus replication, we analyzed the effects of two inhibitors of lysosomal proteases on the cellular control of influenza A virus replication. In particular, we used biochemical and morphological analyses to evaluate the modulation of influenza A/Puerto Rico/8/34 H1N1 virus production in the presence of CA074 and Pepstatin A, inhibitors of cathepsin proteases B and D, respectively. We found that Pepstatin A, but not CA074, significantly hindered influenza virus replication, probably by modulating host cell autophagic/apoptotic responses. These results are of potential interest to provide useful insights into the molecular pathways exploited by the influenza in order to replicate and to identify further cellular factors as targets for the development of innovative antiviral strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号