首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Ward, D. A. and Drake, B. G. 1987. Photoinhibition under atmosphericO2, the activation state of RuBP carboxylase and the contentof photosynthetic intermediates in soybean and wheat.—J.exp. Bot. 38: 1937–1948. Associations between photosynthesis, the activation state ofRuBP carboxylase and the contents of photosynthetic intermediateswere compared in soybean and wheat leaves before and after exposureto photoinhibitory treatments in the presence of atmosphericO2. Exposing attached leaves to a supra-saturating irradiance(3 800 µmol quanta m– 2 s–1) for 2 h in CO2-freeair decreased carboxylation efficiency and the light-saturatedphotosynthetic rate in air by approximately 50%. Exposure tothe photoinhibitory treatment for periods in excess of 2 h didnot cause a further decrease of photosynthesis in soybean. Althoughphotosynthesis was reduced, the initial and total (fully-activated)activities of ribulose 1,5-bisphosphate carboxylase (RuBPCase)in leaf extracts were unaltered in each species by the photoinhibitorytreatment. This was true for leaves sampled under both air andat a rate-limiting intercellular CO2 partial pressure (Ci) of75 µPa Pa–1. The contents of ribulose l,5-bisphosphate(RuBP) and 3-phosphoglyceric acid (3-PGA) were reduced by thephotoinhibitory treatment in soybean leaves sampled in air andat a rate-limiting Ci, although the RuBP/3-PGA ratio was unaffected.The relative reduction of RuBP content in soybean leaves atrate-limiting C1 was similar to the corresponding reductionof carboxylation efficiency. For wheat,the relative reductionof RuBP content at rate-limiting Ci (–19%) caused by thephotoinhibitory treatment was considerably less than the correspondingdecrease of carboxylation efficiency (–49%).The RuBP/3-PGAratio of wheat was also increased significantly by the photoinhibitorytreatment The significance of these observations to the regulationof CO2-limited photosynthesis in leaves experiencing photoinhibitionunder atmospheric oxygen is discussed. Consideration is alsogiven to the previous contention that contemporary measurementsof initial activity in crude extracts may provide a spuriousindication of the amount of the enzyme-CO2-Mg2 + form of RuBPcarboxylase present in the leaf. Key words: Carboxylation efficiency, RuBP carboxylase, photoinhibition, RuBP, 3-PGA  相似文献   

2.
Rintamäki, E. and Aro, E.-M. 1985. Photosynthetic and photorespiratoryenzymes in widely divergent plant species with special referenceto the moss Ceratodon purpureus: Properties of ribulose bisphosphatecarboxylase/oxygenase, phosphoenolpyruvate carboxylase and glycolateoxidase.—J. exp. Bot. 36: 1677–1684. Km(CO2) values and maximal velocities of ribulose bisphosphatecarboxylase/oxygenase (E.C. 4.1.1.39 [EC] ) were determined for sixplant species growing in the wild, consisting of a moss, a fernand four angiosperms. The maximum velocities of the RuBP carboxylasesvaried from 0.13 to 0.;62 µmol CO2 fixed min–1 mg–1soluble protein and the Km(CO2) values from 15 to 22 mmol m–3CO2. The highest Km(CO2) values found were for the moss, Ceratodonpurpureus, and the grass, Deschampsia flexuosa. These plantsalso had the highest ratios of the activities of RuBP carboxylaseto RuBP oxygenase. Glycolate oxidase (E.C. 1.1.3.1 [EC] ) activitieswere slightly lower in D.flexuosa, but not in C. purpureus,than for typical C3 species. Phosphoenolpyruvate carboxylase(E.C. 4.1.1.31 [EC] ) was not involved in the photosynthetic carboxylationby these two plants. However, another grass, Phragmites australis,was intermediate in PEP carboxylase activity between C3 andC4 plants The properties of RuBP carboxylase/oxygenase are discussedin relation to the activities of PEP carboxylase and glycolateoxidase and to the internal CO2 concentration. Key words: RuBP carboxylase, oxygenase, Km(CO2), moss  相似文献   

3.
Pascopyrum smithii (C3) andBouteloua gracilis (C4) are importantforage grasses native to the Colorado shortgrass steppe. Thisstudy investigated photosynthetic responses of these grassesto long-term CO2enrichment and temperature in relation to leafnonstructural carbohydrate (TNC) and [N]. Glasshouse-grown seedlingswere transferred to growth chambers and grown for 49 d at twoCO2concentrations (380 and 750 µmol mol-1) at 20 and 35°C, and two additional temperatures (25 and 30 °C) at750 µmol mol-1CO2. Leaf CO2exchange rate (CER) was measuredat a plant's respective growth temperature and at two CO2concentrationsof approx. 380 and 700 µmol mol-1. Long-term CO2enrichmentstimulated CER in both species, although the response was greaterin the C3,P. smithii . Doubling the [CO2] from 380 to 750 µmolmol-1stimulated CER ofP. smithii slightly more in plants grownand measured at 30 °C compared to plants grown at 20, 25or 35 °C. CO2-enriched plants sometimes exhibited lowerCER when compared to ambient-grown controls measured at thesame [CO2], indicating photosynthetic acclimation to CO2growthregime. InP. smithii , such reductions in CER were associatedwith increases in TNC and specific leaf mass, reductions inleaf [N] and, in one instance, a reduction in leaf conductancecompared to controls. InB. gracilis , photosynthetic acclimationwas observed more often, but significant changes in leaf metabolitelevels from growth at different [CO2] were generally less evident.Temperatures considered optimal for growth (C3: 20 °C; C4:35 °C) sometimes led to CO2-induced accumulations of TNCin both species, with starch accumulating in the leaves of bothspecies, and fructans accumulating only inP. smithii. Photosynthesisof both species is likely to be enhanced in future CO2-enrichedand warmer environments, although responses will sometimes beattenuated by acclimation. Acclimation; blue grama (Bouteloua gracilis (H.B.K.) Lag ex Steud.); leaf nitrogen concentration; nonstructural carbohydrates; photosynthesis; western wheatgrass (Pascopyrum smithii (Rydb.) Love)  相似文献   

4.
This study investigated how CO2and temperature affect dry weight(d.wt) accumulation, total nonstructural carbohydrate (TNC)concentration, and partitioning of C and N among organs of twoimportant grasses of the shortgrass steppe,Pascopyrum smithiiRydb. (C3) andBouteloua gracilis(H.B.K.) Lag. ex Steud. (C4).Treatment combinations comprised two temperatures (20 and 35°C)at two concentrations of CO2(380 and 750 µmol mol-1),and two additional temperatures of 25 and 30°C at 750 µmolmol-1CO2. Plants were maintained under favourable nutrient andsoil moisture and harvested following 21, 35, and 49d of treatment.CO2-induced growth enhancements were greatest at temperaturesconsidered favourable for growth of these grasses. Comparedto growth at 380 µmol mol-1CO2, final d.wt of CO2-enrichedP.smithiiincreased 84% at 20°C, but only 4% at 35°C. Finald.wt ofB. graciliswas unaffected by CO2at 20°C, but wasenhanced by 28% at 35°C. Root:shoot ratios remained relativelyconstant across CO2levels, but increased inP. smithiiwith reductionin temperature. These partitioning results were adequately explainedby the theory of balanced root and shoot activity. Favourablegrowth temperatures led to CO2-induced accumulations of TNCin leaves of both species, and in stems ofP. smithii, whichgenerally reflected responses of above-ground d.wt partitioningto CO2. However, CO2-induced decreases in plant tissue N concentrationswere more evident forP. smithii. Roots of CO2-enrichedP. smithiihadgreater total N content at 20°C, an allocation of N below-groundthat may be an especially important adaptation for C3plants.Tissue N contents ofB. graciliswere unaffected by CO2. Resultssuggest CO2enrichment may lead to reduced N requirements forgrowth in C3plants and lower shoot N concentration, especiallyat favourable growth temperatures. Acclimation to CO2; blue grama; Bouteloua gracilis ; carbohydrate; climate change; global change; grass; growth; growth temperature optima; nitrogen; N uptake; Pascopyrum smithii; western wheatgrass  相似文献   

5.
Photosynthetic rates of outdoor-grown soybean (Glycine max L.Merr. cv. Bragg) canopies increased with increasing CO2 concentrationduring growth, before and after canopy closure (complete lightinterception), when measured over a wide range of solar irradiancevalues. Total canopy leaf area was greater as the CO2 concentrationduring growth was increased from 160 to 990 mm3 dm–3.Photosynthetic rates of canopies grown at 330 and 660 mm3 CO2dm–3 were similar when measured at the same CO2 concentrationsand high irradiance. There was no difference in ribulose bisphosphatecarboxylase/oxygenase (rubisco) activity or ribulose 1,5-bisphosphate(RuBP) concentration between plants grown at the two CO2 concentrations.However, photosynthetic rates averaged 87% greater for the canopiesgrown and measured at 660 mm3 CO2 dm–3. A 10°C differencein air temperature during growth resulted in only a 4°Cleaf temperature difference, which was insufficient to changethe photosynthetic rate or rubisco activity in canopies grownand measured at either 330 or 660 mm3 CO2 dm–3. RuBP concentrationsdecreased as air temperature during growth was increased atboth CO2 concentrations. These data indicate that the increasedphotosynthetic rates of soybean canopies at elevated CO2 aredue to several factors, including: more rapid development ofthe leaf area index; a reduction in substrate CO2 limitation;and no downward acclimation in photosynthetic capacity, as occurin some other species. Key words: CO2 concentration, soybean, canopy photosynthesis  相似文献   

6.
Respiratory oxygen consumption by roots was 1·4- and1·6-fold larger in NH+4-fed than in NO-3-fed wheat (Triticumaestivum L.) and maize (Zea mays L.) plants respectively. Higherroot oxygen consumption in NH+4-fed plants than in NO-3-fedplants was associated with higher total nitrogen contents inNH+4-fed plants. Root oxygen consumption was, however, not correlatedwith growth rates or shoot:root ratios. Carbon dioxide releasewas 1·4- and 1·2-fold larger in NO+3-fed thanin NH+4-fed wheat and maize plants respectively. Differencesin oxygen and carbon dioxide gas exchange rates resulted inthe gas exchange quotients of NH-4-fed plants (wheat, 0·5;maize, 0·6) being greatly reduced compared with thoseof NO-3-fed plants (wheat, 1·0; maize, 1·1). Measuredrates of HCO-3 assimilation by PEPc in roots were considerablylarger in 4 mM NH+4-fed than in 4 NO-3 plants (wheat, 2·6-fold;maize, 8·3-fold). These differences were, however, insufficientto account for the observed differences in root carbon dioxideflux and it is probable that HCO-3 uptake is also importantin determining carbon dioxide fluxes. Thus reduced root extension in NH+4-fed compared with NO-3-fedwheat plants could not be ascribed to differences in carbondioxide losses from roots.Copyright 1993, 1999 Academic Press Triticum aestivum, wheat, Zea mays, maize assimilation, ammonium assimilation, root respiration  相似文献   

7.
RuBP carboxylase-oxygenase protein in three C3 species (Nicotianatabacum L., Solanum tuberosum L., Triticum aestivum L.) andthree C4 species (Panicum miliaceum L., Panicum texanum Buckl.,Zea mays L.) was quantitatively determined by sucrose densitygradient centrifugation and by immunochemical assay using antibodyraised to crystallized tobacco leaf RuBP carboxylase-oxygenase.The C3 species had 3- to 6-fold higher concentrations of RuBPcarboxylase-oxygenase than the C4 species when expressed oneither a chlorophyll or a leaf area basis. The C3 species alsoallocated a higher fraction of their total soluble protein tothis enzyme (from 25 to 60% for the C3 species compared to 8to 23% for the C4 species). There was no RuBP carboxylase-oxygenaseprotein or activity in the C4 mesophyll cells, while the enzymeconstituted from 20 to 40% of the total soluble protein in theC4 bundle sheath cells. A close correlation (r = +0·91)was found between catalytic activity and level of the enzymeprotein in the species examined.  相似文献   

8.
Physiology and Growth of Wheat Across a Subambient Carbon Dioxide Gradient   总被引:5,自引:0,他引:5  
Two cultivars of wheat (Triticum aestivum L.), 'Yaqui 54' and'Seri M82', were grown along a gradient of daytime carbon dioxideconcentrations ([CO2]) from near 350-200 µmol CO2 mol-1air in a 38 m long controlled environment chamber. Carbon dioxidefluxes and evapotranspiration were measured for stands (plantsand soil) in five consecutive 7·6-m lengths of the chamberto determined potential effects of the glacial/interglacialincrease in atmospheric [CO2] on C3 plants. Growth rates andleaf areas of individual plants and net assimilation per unitleaf area and daily (24-h) net CO2 accumulation of wheat standsrose with increasing [CO2]. Daytime net assimilation (PD, mmolCO2 m-2 soil surface area) and water use efficiency of wheatstands increased and the daily total of photosynthetic photonflux density required by stands for positive CO2 accumulation(light compensation point) declined at higher [CO2]. Nighttimerespiration (RN, mmol CO2 m-2 soil surface) of wheat, measuredat 369-397 µmol mol-1 CO2, apparently was not alteredby growth at different daytime [CO2], but RN /PD of stands declinedlinearly as daytime [CO2] and PD increased. The responses ofwheat to [CO2], if representative of other C3 species, suggestthat the 75-100% increase in [CO2] since glaciation and the30% increase since 1800 reduced the minimum light and waterrequirements for growth and increased the productivity of C3plants.Copyright 1993, 1999 Academic Press Atmospheric carbon dioxide, carbon accumulation, evapotranspiration, light compensation point, net assimilation, respiration, Triticum aestivum, water use efficiency, wheat  相似文献   

9.
In order to study the effects of inorganic phosphate (P1) starvationon C4plants, 3-week-old maize plants (Zea maysL cv. Brulouis)were grown in a growth chamber on a nutrient solution withoutP1 over 22 d During the first 2 weeks, Pi-starved plants grewas well as control plants The Pi concentration in the planttissue decreased rapidly with time, which suggests that normalbiomass production can be maintained at the expense of internalP1 In addition, photosynthetic CO2 assimilation measured 4-6h after dawn was not affected, but the concentration of glucose,sucrose, and starch in leaves was much higher than in the controls14CO2 pulse-chase experiments earned out on the ninth day oftreatment showed that 14CO2 assimilation was perturbed duringthis initial period, resulting in a larger flow of carbon toboth starch and sucrose At the beginning of the third week ofP1 starvation (15 d after treatment) 14C incorporation intosucrose stayed high relative to controls but this was not thecase for starch At the end of the third week of P1-deficiency,shoot growth was considerably reduced and fresh weight was onlyone-third of that of the control plants. The P1 concentrationof both the leaf and root tissues was less than 1.0 µmolg–1 FW compared to 20-25µmol g1 FW in the controls.Photosynthetic CO2 assimilation was reduced and the leaf concentrationof sucrose and starch, which had begun to decrease after theend of the second week of P1 limitation, became lower than inthe controls. These results obtained on maize plants show thatphotosynthesis and carbon partitioning between sucrose and starchwere strongly affected by P1 deficiency, similar to C3 species. Key words: CO2 assimilation, corn, orthophosphate deficiency, starch, sucrose  相似文献   

10.
The Km(CO2) ancl Vmax of ribulose 1,5-bisphosphate (RuBP) carboxylaseand its protein ratio to total soluble protein from Oryza speciesincluding cultivars (25 varieties) and wild types (11 species,21 strains) were surveyed. Their variabilities among cultivarsof O. sativa were very small. The averages of the Km(CO2) andVmax values and the ratio of carboxylase to soluble protein,and their standard errors were 10.2?1.0µM, 1.72?0.13units.mg–1(pH 8.0 and 25?C) and 52?2%, respectively. However, some differencesseemed to exist based on genome constitution in the Oryza genus.RuBP carboxylases from the species with the AgAg genome, O.graberrima and O. breviligulate, exhibited low Km(CO2) values(8.0?0.8 µM). High Vmax was associated with the CC genome,O. eichingeri and O. officinalis (2.08?0.15 units.mg–1).A higher ratio of RuBP carboxylase protein to soluble proteinwas found for the AA genome, O. sativa and O. perennis. (Received September 24, 1986; Accepted April 15, 1987)  相似文献   

11.
The rates of CO2 assimilation by potted spray carnation plants(cv. Cerise Royalette) were determined over a wide range oflight intensities (45–450 W m–2 PAR), CO2 concentrations(200–3100 vpm), and leaf temperatures (5–35 °C).Assimilation rates varied with these factors in a way similarto the response of single leaves of other temperate crops, althoughthe absolute values were lower. The optimal temperature forCO2 assimilation was between 5 and 10 °C at 45 W m–2PAR but it increased progressively with increasing light intensityand CO2 concentration up to 27 °C at 450 W m–2 PARand 3100 vpm CO2 as expressed by the equation TOpt = –6.47-h 2.336 In G + 0.031951 where C is CO2 concentration in vpmand I is photo-synthetically active radiation in W m–2.CO2 enrichment also increased stomatal resistance, especiallyat high light intensities. The influence of these results on optimalization of temperaturesand CO2 concentrations for carnation crops subjected to dailylight variation, and the discrepancy between optimal temperaturesfor growth and net photosynthesis, are discussed briefly  相似文献   

12.
Dark fixation of 14CO2 was followed in potato disks under varyingsalt treatments at 0° C and 25° C. It is shown thatthe specific activity of the 14CO2 supplied is heavily dilutedby endogenously produced CO2 and that the apparently greaterfixation of 14CO2, at 0° C as compared with that at 25 °C is due to the lower respiration rate at 0° C, with consequentlyless dilution of the 14CO2. supplied. At 25° C organic acidformation in response to different salt treatments fulfils thecommon expectation, 14CO2 fixation increasing in the presenceof K2SO4 and decreasing in CaCl2 relative to that in KCl. Therole of organic acids in maintaining ionic balance within thecell at 25° C is thereby indicated but at 0° C organicacid adjustments did not follow the normal pattern. At 25°C but not at o° C increasing external concentration of KCIresulted in an increased level of 14CO2 fixation.  相似文献   

13.
Besford, R. T., Withers, A. C. and Ludwig, L. J. 1985. Ribulosebisphosphate carboxylase activity and photosynthesis duringleaf development in the tomato.—J. exp Bot. 36: 1530–1541. The carboxylase activity of ribulose-1,5-bisphosphate carboxylase/oxygenaseand of phosphoenolpyruvate carboxylase, and the light saturatedrate of net photosynthesis were measured in the developing 5thleaf of tomato plants. Values for light saturated net photosynthesiswere also calculated from the measured carboxylase activitiesand estimates of internal CO2 and oxygen concentrations. Thecalculated rate using the activity of ribulose bisphosphatecarboxylase alone for net CO2 assimilation in 300 mm3 dm–3CO2 was greater than the measured rate at 80% and full expansionbut less than the measured rate in younger leaves. When theactivities of both the carboxylases were taken into accountbetter agreement was evident for young leaves but the rate wasfurther overestimated for older leaves The calculated rate forphotosynthesis in 1200 mm3 dm–3 CO2, assuming saturationof ribulose bisphosphate carboxylase with RuBP, was an overestimatefor young leaves but was close to the observed values for leavesnear full expansion. The results are discussed in terms of measuredconductances for CO2 and the availability of RuBP in the leaf Key words: Tomato, leaf development, photosynthesis, RuBP carboxylase, oxygenase  相似文献   

14.
Plants of Phaseolus vulgaris L were grown from seed in open-topgrowth chambers at present day (350 µmol mol–1)and double the present day (700 µmol mol–1) atmosphericCO2 concentration with either low (L, without additional nutrientsolution) or relatively high (H, with additional nutrient solution)nutrient supply Measurements of assimilation rate, stomatalconductance and water use efficiency were started 17 d aftersowing on each fully expanded, primary leaf of three plantsper treatment Measurements were made in external CO2 concentrations(C2) of 200, 350, 450, 550 and 700 µmol mol–1 andrelated to both Ca and to C1, the mean intercellular space CO2concentration Fully adjusted, steady state measurements weremade after approx 2 h equilibration at each CO2 concentration The rate of CO2 assimilation by leaves increased and stomatalconductance decreased similarly over the range of Ca or C1 inall four CO2 and nutrient supply treatments but both assimilationrate and stomatal conductance were higher in the high nutrientsupply treatment than in the low nutrient treatment The relationbetween assimilation rate or stomatal conductance and C1 wasnot significantly different amongst plants grown in present-dayor elevated CO2 concentration in either nutrient supply treatment,i e there was no evidence of down regulation of photosynthesisor stomatal response Increase in CO2 concentration from 350to 700 µmol mol–1 doubled water use efficiency ofindividual leaves in the high nutrient supply treatment andtripled water use efficiency in the low nutrient supply treatment The results support the hypothesis that acclimation phenomenaresult from unbalanced growth that occurs after the seed reservesare exhausted, when the supply of resources becomes growth limiting CO2 enrichment, Phaseolus vulgaris L., net CO2 assimilation rate, stomatal conductance, water use efficiency  相似文献   

15.
Panicum hians and Panicum milioides were found to have characteristicsintermediate to those of C3 and C4 species with respect to CO2compensation point, percentage inhibition of photosynthesisby O2 at various O2/CO2 solubility ratios, and water use efficiency.C4 species have a higher carboxylation efficiency than eitherthe intermediate or C3 species. During photosynthesis, evenunder 2.5% O2, C4 species have a higher affinity for intercellularCO2 (Km 1.6 µM) apparently due to the initial carboxylationthrough PEP carboxylase. Under low O2 the intermediate and C3species had a similar affinity for intercellular CO2 duringphotosynthesis (Km 5–7 µM) consistent with carboxylationof atmospheric CO2 through RuDP carboxylase. There were considerablevariation in photosynthesis/unit leaf area at saturating CO2levels in the species examined which in part is due to differencesin RuDP carboxylase /unit leaf area. The highest rates of photosynthesis/unitleaf area under CO2-saturating conditions were with the C3 specieswhich had a correspondingly high level of RuDP carboxylase/unitleaf area. Possibilities for the greater efficiency of P. hiansand P. milioides in comparison to C3 species in utilizing lowlevels of CO2 in the presence of atmospheric O2 are discussed. 1 This research was supported by the College of Agriculturaland Life Sciences, University of Wisconsin, Madison; and theUniversity of Wisconsin Research Committee with funds from theWisconsin Alumni Research Foundation. (Received June 25, 1977; )  相似文献   

16.
Spinach plants (Spinacia oleracea L.) were grown hydroponicallywith different concentrations of nitrate nitrogen, ranging from0.5 to 12 mM, in a glasshouse under full sunlight. Using anopen gas exchange system, the rate of CO2 assimilation, A, wasdetermined as a function of intercellular partial pressure ofCO2, Pi, with a constant amount of absorbed light per unit Chl.When expressed on a leaf area basis, A measured at high irradianceand at pi=500 µbar, was proportional to the in vitro rateof uncoupled whole-chain electron transport as well as to Chlcontent. There was a curvilinear relationship between the mesophyllconductance (the slope of the A : Pi curve near the CO2 compensationpoint) and the in vitro RuBP carboxylase activity. The curvaturedid not appear to be due to enzyme inactivation in vivo in leaveswith high nitrogen contents. The curvature suggested the presenceof a CO2 transfer resistance between the intercellular spacesand the site of carboxylation of 2.2 m2 s bar mol–1 CO2,which is similar to that previously observed in wheat. Thisimplied that, while nitrogen deficiency increased the ratioof in vitro activity of electron transport to that of RuBP carboxylase,the two activities remained balanced in vivo. Irradiance response curves were determined by both net CO2 andO2 exchange. The two methods gave reasonable agreement at lightsaturation. The quantum yield measured by O2 evolution was 0.090?0.003mol O2 mol–1 absorbed quanta, whereas after correctingfor pi = 500µbar, the quantum yield for CO2 assimilationwas only 82% of that measured by oxygen evolution. 2Present address: Plant Environmental Biology Group, ResearchSchool of Biological Sciences, The Australian National University,G.P.O. Box 475, Canberra, A.C.T. 2601, Australia. (Received July 29, 1987; Accepted November 2, 1987)  相似文献   

17.
Changes in the rates of gas exchange and the amount of ribulose1,5-bisphosphate (RuBP) carboxylase protein were determinedin the 12th leaf blades of rice during the reproductive stages.RuBP carboxylase exhibited a large change similar to that inthe assimilation rate at 2% O2 throughout the leaf's life, butits decrease during senescence was barely faster than the decreasein the assimilation rate. Consequently, the overall relationshipwas slightly curvilinear. By contrast, leaf conductance decreasedmore slowly than the assimilation rate which resulted in theintercellular CO2 concentration increasing during senescence. In order to determine the maximum activity of RuBP carboxylaseat the intercellular CO2 concentration, the kinetic parametersand their pH response were determined using purified, and completelyactivated, rice RuBP carboxylase. The maximum carboxylase activityat the intercellular CO2 concentration was linearly correlatedwith the assimilation rate at 2% O2 (r=0.989), and was veryclose to that needed to account for the assimilation rate. We conclude that changes in both the amount of RuBP carboxylaseprotein and leaf conductance reflect the change in photosynthesisduring the life span of the leaf. (Received November 26, 1983; Accepted February 20, 1984)  相似文献   

18.
Species-specific differences in the assimilation of atmosphericCO2 depends upon differences in the capacities for the biochemicalreactions that regulate the gas-exchange process. Quantifyingthese differences for more than a few species, however, hasproven difficult. Therefore, to understand better how speciesdiffer in their capacity for CO2 assimilation, a widely usedmodel, capable of partitioning limitations to the activity ofribulose-1,5-bisphosphate carboxylase-oxygenase, to the rateof ribulose 1,5-bisphosphate regeneration via electron transport,and to the rate of triose phosphate utilization was used toanalyse 164 previously published A/Ci, curves for 109 C3 plantspecies. Based on this analysis, the maximum rate of carboxylation,Vcmax, ranged from 6µmol m–2 s–1 for the coniferousspecies Picea abies to 194µmol m–2 s–1 forthe agricultural species Beta vulgaris, and averaged 64µmolm–2 s–1 across all species. The maximum rate ofelectron transport, Jmax, ranged from 17µmol m–2s–1 again for Picea abies to 372µmol m–2 s–1for the desert annual Malvastrum rotundifolium, and averaged134µmol m–2 s–1 across all species. A strongpositive correlation between Vcmax and Jmax indicated that theassimilation of CO2 was regulated in a co-ordinated manner bythese two component processes. Of the A/Ci curves analysed,23 showed either an insensitivity or reversed-sensitivity toincreasing CO2 concentration, indicating that CO2 assimilationwas limited by the utilization of triose phosphates. The rateof triose phosphate utilization ranged from 4·9 µmolm–2 s–1 for the tropical perennial Tabebuia roseato 20·1 µmol m–2 s–1 for the weedyannual Xanthium strumarium, and averaged 10·1 µmolm–2 s–1 across all species. Despite what at first glance would appear to be a wide rangeof estimates for the biochemical capacities that regulate CO2assimilation, separating these species-specific results intothose of broad plant categories revealed that Vcmax and Jmaxwere in general higher for herbaceous annuals than they werefor woody perennials. For annuals, Vcmax and Jmax averaged 75and 154 µmol m–2 s–1, while for perennialsthese same two parameters averaged only 44 and 97 µmolm2 s–1, respectively. Although these differencesbetween groups may be coincidental, such an observation pointsto differences between annuals and perennials in either theavailability or allocation of resources to the gas-exchangeprocess. Key words: A/Ci curve, CO2 assimilation, internal CO2 partial pressure, photosynthesis  相似文献   

19.
Experiments were carried out to investigate the long-term influenceof humidity on the short-term responses of stomata and CO2 assimilationto vapor pressure difference in Oryza sativa (rice, C3 species)and Panicum maximum (green panic, C4 species). Plants were grownfor four weeks in growth chambers set at 35% and 85% relativehumidity at 25C air temperature, 38+2 Pa CO2 partial pressureand 1,700µmol m-2s-1 photon flux density. Soil was saturatedwith water in both humidity treatments. Low humidity pretreatmentscaused low leaf conductance and low rates of transpiration andCO2 assimilation in O. sativa, but small changes in stomatalresponses to humidity and in CO2 assimilation were found inP. maximum. From the short-term gas exchange experiments, itwas noted that the responsiveness of leaf conductance to vaporpressure difference were affected by humidity pretreatmentsin O. sativa, whereas unaffected in P. maximum. In O. sativameasurements of CO2 assimilation as a function of internal CO2partial pressure (A-Ci curve) indicated that low humidity pretreatmentsreduced the CO2 assimilation at high internal CO2 partial pressure,but the initial slope of the A-Ci curve was unaffected. Furthermore,plant characteristics such as total dry weight and leaf areaof plants subjected to low umidity were lower than plants subjectedto high humidity. The reductions in O. sativa, however, werelarger than in P. maximum. Stomatal frequency from low humiditygrown plant was higher than that from high humidity grown plantsin both species although there is no significant difference.The data indicated that if the short term inhibition of netCO2 assimilation at a high vapor pressure difference was imposedduring vegetative growth, the photosynthetic biochemistry andthe resultant plant growth were largely depressed in O. sativa,a C3 species. (Received May 26, 1992; Accepted November 2, 1992)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号