首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Plant dispersal, neighbourhood size and isolation by distance   总被引:1,自引:0,他引:1  
Epperson BK 《Molecular ecology》2007,16(18):3854-3865
A theoretical relationship between isolation by distance or spatial genetic structure (SGS) and seed and pollen dispersal is tested using extensive spatial-temporal simulations. Although for animals Wright's neighbourhood size N(e) = 4pisigma(2)(t) has been ascertained also, where sigma(2)(t) is the axial variance of distances between parents and offspring, and it was recently confirmed that N(e) = 4pi(sigma(2)(f) + sigma(2)(m))/2 when dispersal of females and males differ, the situation for plants had not been established. This article shows that for a very wide range of conditions, neighbourhood size defined by Crawford's formula N(e) = 4pi(sigma(2)(s) + sigma(2)(p)/2) fully determines SGS, even when dispersal variances of seed (sigma(2)(s)) and pollen sigma(2)(p)) differ strongly. Further, self-fertilization with rate s acts as zero-distance pollen dispersal, and N(e) = 4pi[sigma(2)(s) + sigma(2)(p)(1 - s)/2] fully determines SGS, for most cases where there are both likely parameter values and substantial SGS. Moreover, for most cases, there is a loglinear relationship, I(1) = 0.587 - 0.117 ln(N(e)), between SGS, as measured by I(1), Moran's coefficient for adjacent individuals, and N(e). However, there are several biologically significant exceptions, namely for very low or large N(e), SGS exceeds the loglinear values. There are also important exceptions to Crawford's formula. First, plants with low seed dispersal, high outcross pollen dispersal and high selfing rate show larger SGS than predicted. Second, in plants with very low (near zero) seed dispersal, selfing decreases SGS, opposite expectations. Finally, in some cases seed dispersal is more critical than pollen dispersal, in a manner inconsistent with Crawford's formula.  相似文献   

2.
Aim Negative relationships between body mass and substitution rates have previously been reported. However, most of these studies have involved contrasted taxa that, due to their highly divergent phylogenetic histories, also differ in many additional characteristics other than mass. In particular, there has been little examination of the potentially confounding effects of climate or population size. Here we test for differences in rates of microevolution among bird species that, although differing in mass, are nonetheless very closely related phylogenetic pairs. We additionally tested for latitudinal/elevational and population size effects across these contrasts. Location Global. Methods The tempo of microevolution within the cytochrome b gene of mitochondrial DNA was compared between closely related bird species that differed in body mass, using 130 phylogenetically independent species pairs. In order to minimize climate effects, pairs not having overlapping latitudinal ranges were discarded. In addition, a subset of pairs was identified and analysed that involved comparisons between species that have different latitudinal or elevational midpoints. Results Species with smaller mass had substitution rates marginally faster than those with larger mass (small : large median ratio = 1.05). However, this result was only statistically significant when data were pruned to eliminate comparisons in which population or range size also varied substantially between contrasted species. Latitude and elevation had a much stronger association with substitution rates than body mass within the subset of pairs (n = 30) that also differed in their spatial distributions: lower elevation or latitude species had substantially more substitutions than those at higher latitudes or elevations (low : high ratio = 1.35). Furthermore, when the dataset was pruned of pairs in which body mass was confounded by latitude or elevation, the body mass effect was eliminated. Main conclusions Body mass is known to correlate with latitude, so that the latitudinal/elevational association with microevolution we found might either be additive to, or causal of, the body mass effect. These results are consistent with the evolutionary speed hypothesis, which suggests that latitudinal diversity gradients derive from variation in the rate of microevolution. Our findings also serve to raise concerns about biogeographical studies that use genetic distances between taxa to estimate time since divergence.  相似文献   

3.
Nodule samples were collected from four alder species: Alnus nepalensis, A. si-birica, A. tinctoria and A. mandshurica growing in different environments on Gaoligong Mountains, Yunnan Province of Southwest China and on Changbai Mountains, Jilin Province of Northeast China. PCR-RFLP analysis of the IGS between nifD and nifK genes was directly applied to uncultured Frankia strains in the nodules. A total of 21 restriction patterns were obtained. The Frankia population in the nodules of A. nepalensis had the highest genetic diversity among all four Frankia populations; by contrast, the population in the nodules of A. mandshurica had the lowest degree of divergence; the ones in the nodules of A. sibirica and A. tinctoria were intermediate. A dendrogram, which was constructed based on the genetic distance between the restriction patterns, indicated that Frankia strains from A. sibirica and A. tinctoria had a close genetic relationship. Frankia strains from A. nepalensis might be the ancestor of Frankia strain  相似文献   

4.
Nodule samples were collected from four alder species: Alnus nepalensis, A. sibirica, A. tinctoria and A. mandshurica growing in different environments on Gaoligong Mountains,Yunnan Province of Southwest China and on Changbai Mountains, Jilin Province of Northeast China. PCR-RFLP analysis of the IGS between nifD and nifK genes was directly applied to uncultured Frankia strains in the nodules. A total of 21 restriction patterns were obtained. The Frankia population in the nodules of A. nepalensis had the highest genetic diversity among all four Frankia populations; by contrast, the population in the nodules of A. mandshurica had the lowest degree of divergence; the ones in the nodules of A. sibirica and A. tinctoria were intermediate. A dendrogram, which was constructed based on the genetic distance between the restriction patterns, indicated that Frankia strains from A. sibirica and A. tinctoria had a close genetic relationship. Frankia strains from A. nepalensis might be the ancestor of Frankia strains infecting other Alnus species. From these results and the inference of the ages of Alnus host species, it is deduced that there was a co-evolution between Alnus and its microsymbiont Frankia in China.  相似文献   

5.
The amount of genetic variability at neutral marker loci is expected to decrease, and the degree of genetic differentiation among populations to increase, as a negative function of effective population size. We assessed the patterns of genetic variability and differentiation at seven microsatellite loci in the common frog (Rana temporaria) in a hierarchical sampling scheme involving three regions (208-885 km apart), three subregions within regions and nine populations (5-20 km apart) within subregions, and related the variability and differentiation estimates to variation in local population size estimates. Genetic variability within local populations decreased significantly with increasing latitude, as well as with decreasing population size and regional site occupancy (proportion of censured localities occupied). The positive relationship between population size and genetic variability estimates was evident also when the effect of latitude (cf. colonization history) was accounted for. Significant genetic differentiation was found at all hierarchical levels, and the degree of population differentiation tended to increase with increasing latitude. Isolation by distance was evident especially at the regional sampling level, and its strength increased significantly towards the north in concordance with decreasing census and marker-based neighbourhood size estimates. These results are in line with the conjecture that the influence of current demographic factors can override the influence of historical factors on species population genetic structure. Further, the observed reductions in genetic variability and increased degree of population differentiation towards the north are in line with theoretical and empirical treatments suggesting that effective population sizes decline towards the periphery of a species' range.  相似文献   

6.
白三叶转基因及其生态适应性研究进展   总被引:14,自引:0,他引:14  
牧草基因工程是近年来国内国际研究的热点之一 ,白三叶作为温带地区优良的豆科牧草 ,是人工草地建植的首选草种 ,也是各类观赏性草坪和绿地的主要组分。但白三叶的生态幅较窄 ,适宜在温暖 (适宜生长温度为 19~ 2 4℃ )湿润、年降雨量 70 0~10 0 0 mm的地区生长 ,对土壤酸碱度的要求比较严 ,适宜的土壤 p H为 6~ 7,耐酸性和耐盐碱能力都比较差 ,从而限制了其在许多地区的应用。利用转基因手段提高其抗逆性和生态适应性 ,培育抗性强、适应性广的白三叶新品种 ,对我国尤其是北方畜牧业、草坪业和生态建设都具有重要意义。在提高其对生物胁迫和非生物胁迫的抗性和生态适应性方面 ,白三叶的转基因研究已经取得了较大进展。结合国内外白三叶基因工程及生态适应性研究动态 ,系统介绍了白三叶转基因研究的主要内容和方法 ,在对已有成果进行综合分析的基础上 ,就目前白三叶转基因和生态适应性研究中亟待解决的一些问题进行了探讨。  相似文献   

7.
8.
The pattern of colonization of the Moreton Bay region in southeast Queensland, Australia, by the giant toad, Bufo marinus , is described. Estimates are made of the rates of colonization in this and other regions. The mean values obtained range from 2.5 km/year in the south to 15.1 km/year in the north. The analysis suggests that colonization has been discontinuous in many areas, probably as a result of occasional, long-distance transportation of toads by humans. The variation in colonization rate is related in a predictable way to variation in environmental factors such as temperature and topography. In areas where discontinuities are least likely, colonization rates are used to estimate rates of continuous dispersal. These are combined with estimates of population density, sex ratios and offspring number variance to obtain estimates of genetic neighbourhood size. These are much greater than estimates of the effective size of B. marinus populations determined from gene frequency variances. The reasons for and implications of this discrepancy are discussed.  相似文献   

9.
10.
Parallel evolution is often assumed to result from repeated adaptation to novel, yet ecologically similar, environments. Here, we develop and analyse a mathematical model that predicts the probability of parallel genetic evolution from standing genetic variation as a function of the strength of phenotypic selection and constraints imposed by genetic architecture. Our results show that the probability of parallel genetic evolution increases with the strength of natural selection and effective population size and is particularly likely to occur for genes with large phenotypic effects. Building on these results, we develop a Bayesian framework for estimating the strength of parallel phenotypic selection from genetic data. Using extensive individual‐based simulations, we show that our estimator is robust across a wide range of genetic and evolutionary scenarios and provides a useful tool for rigorously testing the hypothesis that parallel genetic evolution is the result of adaptive evolution. An important result that emerges from our analyses is that existing studies of parallel genetic evolution frequently rely on data that is insufficient for distinguishing between adaptive evolution and neutral evolution driven by random genetic drift. Overcoming this challenge will require sampling more populations and the inclusion of larger numbers of loci.  相似文献   

11.
The mosaic model of brain evolution postulates that different brain regions are relatively free to evolve independently from each other. Such independent evolution is possible only if genetic correlations among the different brain regions are less than unity. We estimated heritabilities, evolvabilities and genetic correlations of relative size of the brain, and its different regions in the three-spined stickleback (Gasterosteus aculeatus). We found that heritabilities were low (average h2 = 0.24), suggesting a large plastic component to brain architecture. However, evolvabilities of different brain parts were moderate, suggesting the presence of additive genetic variance to sustain a response to selection in the long term. Genetic correlations among different brain regions were low (average rG = 0.40) and significantly less than unity. These results, along with those from analyses of phenotypic and genetic integration, indicate a high degree of independence between different brain regions, suggesting that responses to selection are unlikely to be severely constrained by genetic and phenotypic correlations. Hence, the results give strong support for the mosaic model of brain evolution. However, the genetic correlation between brain and body size was high (rG = 0.89), suggesting a constraint for independent evolution of brain and body size in sticklebacks.  相似文献   

12.
Long-term phenotypic evolution can be modeled using the response-to-selection equation of quantitative genetics, which incorporates information about genetic constraints (the G matrix). However, little is known about the evolution of G and about its long-term importance in constraining phenotypic evolution. We first investigated the degree of conservation of the G matrix across three species of crickets and qualitatively compared the pattern of variation of G to the phylogeny of the group. Second, we investigated the effect of G on phenotypic evolution by comparing the direction of greatest quantitative genetic variation within species (g(max)) to the direction of phenotypic divergence between species (Delta(z)). Each species, Gryllus veletis, G. firmus, and G. pennsylvanicus, was reared in the laboratory using a full-sib breeding design to extract quantitative genetic information. Five morphological traits related to size were measured. G matrices were compared using three statistical approaches: the T method, the Flury hierarchy, and the MANOVA method. Results revealed that the differences between matrices were small and mostly caused by differences in the magnitude of the genetic variation, not by differences in principal component structure. This suggested that the G matrix structure of this group of species was preserved, despite significant phenotypic divergence across species. The small observed differences in G matrices across species were qualitatively consistent with genetic distances, whereas ecological information did not provide a good prediction of G matrix variation. The comparison of g(max) and Delta(z) revealed that the angle between these two vectors was small in two of three species comparisons, whereas the larger angle corresponding to the third species comparison was caused in large part by one of the five traits. This suggests that multivariate phenotypic divergence occurred mostly in a direction predicted by the direction of greatest genetic variation, although it was not possible to demonstrate the causal relationship from G to Delta(z). Overall, this study provided some support for the validity of the predictive power of quantitative genetics over evolutionary time scales.  相似文献   

13.
14.
Experimental ponds were used as a model system of habitat patches to study the effect of habitat size on the relative growth performance of tadpoles of Bufo americanus and Pseudacris triseriata, and on colonization by predatory insects. Three pond depths and surface areas were habitat size treatments in a replicated, factorial experiment. Tadpoles of both species were astablished together at a single density and ponds were left open to natural colonization by aquatic insects. Pond area had a significant effect on the multivariate response of P. triseriata larval period, survival, and metamorphic mass. P. triseriata survived better relative to B. americanus in larger ponds. However, increasing pond area led to greater incidence of predacious beetle larvae (Dytiscus, Coleoptera: Dytiscidae). Dytiscus larvae had a significant negative effect on the survival of P. triseriata and led to reduced P. triseriata survival relative to B. americanus in colonized ponds. The results suggest that habitat size can influence community structure by altering the distribution of predation among habitat patches.  相似文献   

15.
1. Molecular approaches have increasingly revealed hidden genetic structure within ecologically important species, leading to the creation of sibling species whose ecological relevance is often unclear. A prime example is Daphnia galeata mendotae, which was split into D. dentifera and D. mendotae based on differences at two allozyme loci. 2. In a set of lake populations in Michigan USA, we test the geographical and temporal consistency of the genetic structure underlying this species split. We also test the morphological relevance of this molecular variation and its ecological significance in lakes. In essence, we ask: does recognition of these new species provide valuable information for plankton ecologists? 3. We found that D. dentifera and D. mendotae represent morphologically and ecologically distinct forms that are distributed among lakes in non‐random fashion, which were remarkably stable over 6 years. Key differences between the species concern their body and head shape, vertical habitat use within lakes and distribution among lakes of different size. We hypothesise that these differences represent specialisation to habitats that differ in risk of invertebrate predation. 4. Reproductive barriers alone are insufficient to explain the pattern of genetic structure; in some lakes complete introgression is apparent. However, parent species and hybrids exhibit a stable co‐existence in many lakes, which suggests that ecological specialisation reinforces divergence within this taxon.  相似文献   

16.
ABSTRACT. 1. Egg sizes and clutch sizes of the grasshoppers Chorthippus brunneus (Thunb.) and Myrmeleotettix maculatus (Thunb.) were compared among three years and among three sites less than 1.3 km apart. Relationships between these reproductive traits and date of egg laying, body size and body condition were sought.
2. M.maculatus , the smaller species, laid fewer but larger eggs; and only the eggs of this species showed significant differences between sites and years.
3. A negative correlation between egg size and number per clutch was evident between species and years, but generally not among sites and among individuals of a population.
4. However, a hidden negative correlation between egg size and number was uncovered within populations when the relationship was examined for females of a given mature weight.
5. Variation in the number of eggs per clutch was explained statistically by a positive relationship between female body weight and egg number. Also, both interpopulation and intrapopulation comparisons revealed that for M.maculatus , but not for C.brunneus , females with long hind femurs laid large eggs.  相似文献   

17.
中国水生态足迹广度、深度评价及空间格局   总被引:4,自引:0,他引:4  
孙才志  张智雄 《生态学报》2017,37(21):7048-7060
运用生态足迹方法对水资源进行流量资本和存量资本区分,测算分析了中国31个省市1997—2014年的水生态足迹广度与深度。结果显示:(1)中国的水生态足迹广度受年际水资源量丰枯影响,总体呈波动趋势;各省市的水生态足迹广度存在着明显差异,南方地区水生态足迹广度普遍大于北方地区;(2)研究期内,中国的水生态足迹深度只有1998年为1,其余年份的水资源流量资本已不能满足人类生产生活的需求,需要消耗水资源存量资本;各省市之间水生态足迹深度相差较大,整体上北方高南方低,其中14个省份18年的平均水生态足迹深度为1,平均水生态足迹深度最高的地区是宁夏的308.12;(3)运用空间自相关方法对31个省市的水生态足迹广度和深度进行分析得出,中国省际水生态足迹广度与深度均存在明显的空间集聚现象。水生态足迹广度H-H集聚地区主要集中在中国南方地区,水生态足迹深度H-H集聚地区主要集中在中国北方地区。通过对全国水生态足迹广度与深度的测度分析为水生态足迹分析提供新的研究方法,同时也为区域水资源可持续利用提供理论依据。  相似文献   

18.
The effects of diseases on competing species.   总被引:1,自引:0,他引:1  
In this paper we study the dynamics of two competing species when one of them is subject to a disease. In order to keep the model simple, we present it under the strong assumption that the disease cannot cross the species barrier. We answer several important questions about the long term behavior of the environment. In this situation, no population is necessarily wiped out. Also, not every individual of the infected species is bound to contract the disease. Finally, disease-induced persistent cycles for the populations are admissible.  相似文献   

19.
Maternal effects and evolution at ecological time-scales   总被引:6,自引:0,他引:6  
  相似文献   

20.
Heavy fishing and other anthropogenic influences can have profound impact on a species' resilience to harvesting. Besides the decrease in the census and effective population size, strong declines in mature adults and recruiting individuals may lead to almost irreversible genetic changes in life-history traits. Here, we investigated the evolution of genetic diversity and effective population size in the heavily exploited sole (Solea solea), through the analysis of historical DNA from a collection of 1379 sole otoliths dating back from 1957. Despite documented shifts in life-history traits, neutral genetic diversity inferred from 11 microsatellite markers showed a remarkable stability over a period of 50 years of heavy fishing. Using simulations and corrections for fisheries induced demographic variation, both single-sample estimates and temporal estimates of effective population size (N(e) ) were always higher than 1000, suggesting that despite the severe census size decrease over a 50-year period of harvesting, genetic drift is probably not strong enough to significantly decrease the neutral diversity of this species in the North Sea. However, the inferred ratio of effective population size to the census size (N(e) /N(c) ) appears very small (10(-5) ), suggesting that overall only a low proportion of adults contribute to the next generation. The high N(e) level together with the low N(e) /N(c) ratio is probably caused by a combination of an equalized reproductive output of younger cohorts, a decrease in generation time and a large variance in reproductive success typical for marine species. Because strong evolutionary changes in age and size at first maturation have been observed for sole, changes in adaptive genetic variation should be further monitored to detect the evolutionary consequences of human-induced selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号