首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Part of the challenge of macromolecular crystal growth for structure determination is obtaining crystals with a volume suitable for x-ray analysis. In this respect an understanding of the effect of solution conditions on macromolecule nucleation rates is advantageous. This study investigated the effects of supersaturation, temperature, and pH on the nucleation rate of tetragonal lysozyme crystals. Batch crystallization plates were prepared at given solution concentrations and incubated at set temperatures over 1 week. The number of crystals per well with their size and axial ratios were recorded and correlated with solution conditions. Crystal numbers were found to increase with increasing supersaturation and temperature. The most significant variable, however, was pH; crystal numbers changed by two orders of magnitude over the pH range 4.0-5.2. Crystal size also varied with solution conditions, with the largest crystals obtained at pH 5.2. Having optimized the crystallization conditions, we prepared a batch of crystals under the same initial conditions, and 50 of these crystals were analyzed by x-ray diffraction techniques. The results indicate that even under the same crystallization conditions, a marked variation in crystal properties exists.  相似文献   

2.
Solubility of lysozyme chloride was determined in the absence of added salt and in the presence of 0.05-1.2 M NaCl, starting from isoionic lysozyme, which was then brought to pH values from 9 to 3 by addition of HCl. The main observation is the absence of a salting-in region whatever the pH studied. This is explained by a predominant electrostatic screening of the positively charged protein and/or by adsorption of chloride ions by the protein. The solubility increases with the protein net charge at low ionic strength, but the reverse is observed at high ionic strength. The solubility of lysozyme chloride seems to become independent of ionic strength at pH approximately 9.5, which is interpreted as a shift of the isoionic pH (10.8) to an isoelectric pH due to chloride binding. The crystallization at very low ionic strength, where lysozyme crystallizes at supersaturation values as low as 1.1, amplifies the effect of pH on protein solubility. Understanding the effect of the net charge and of ionic strength on protein-protein interactions is valuable not only for protein crystal growth but more generally also for the formation of protein-protein or protein-ligand complexes.  相似文献   

3.
Protein purification by bulk crystallization: the recovery of ovalbumin   总被引:4,自引:0,他引:4  
Crystallization is used industrially for the recovery and purification of many inorganic and organic materials. However, very little is reported on the application of bulk crystallization for proteins. In this work, ovalbumin was selected as a model protein to investigate the feasibility of using bulk crystallization for the recovery and purification of proteins. A stirred 1-L seeded batch crystallizer was used to obtain the crystal growth kinetics of ovalbumin in ammonium sulfate solutions at 30 degrees C. The width of the metastable region, in which crystal growth can occur without any nucleation, is equivalent to a relative supersaturation of about 20. The bulk crystallizations were undertaken within this range (using initial relative supersaturations less than 10) and nucleation was not observed. The ovalbumin concentration in solution was measured by UV absorbance and checked by crystal content measurement. Crystal size distributions were measured both by using a Malvern Mastersizer and by counting crystals through a microscope. The crystal growth rate was found to have a second-order dependence upon the ovalbumin supersaturation. While there is no discernible effect of ammonium sulfate concentration at pH 4.90, there is a slight effect at higher pH values. Overall the effect of ammonium sulfate concentration is small compared to the effect of pH, for which there is a 10-fold increase in the growth rate constant, k(Gsigma) over the range pH 4.6-5.4. To demonstrate the degree of purification which can be achieved by bulk crystallization, ovalbumin was crystallized from a solution containing conalbumin (80,000 Da) and lysozyme (14, 600 Da). After one crystallization and a crystal wash, ovalbumin crystals were produced with a protein purity greater than 99%. No contamination by the other proteins was observed when using overloaded sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) stained with Coomassie blue stain and only trace amounts of lysozyme were observed using a silver stain. The presence of these other proteins in solution did not effect the crystal growth rate constant, k(Gsigma). The study demonstrates the feasibility of using bulk crystallization for the recovery and purification of ovalbumin. It should be readily applicable to other protein systems. (c) 1995 John Wiley & Sons, Inc.  相似文献   

4.
A simple device is described for controlling vapor equilibrium in macromolecular crystallization as applied to the protein crystal growth technique commonly referred to as the "hanging drop" method. Crystal growth experiments with hen egg white lysozyme have demonstrated control of the nucleation rate. Nucleation rate and final crystal size have been found to be highly dependent upon the rate at which critical supersaturation is approached. Slower approaches show a marked decrease in the nucleation rate and an increase in crystal size.  相似文献   

5.
A method for immobilizing protein crystals has been devised for determining face growth rates, and used to investigate the growth kinetics of hen egg white lysozyme crystals. Growth rates were determined at 22 degrees C in 0.1 M sodium acetate, 5% NaCl, pH 4.0, on the visually identified (110) face of tetragonal lysozyme crystals. Protein concentrations ranged from 13 to 57 mg/ml (saturation concentration = 1.7 mg/ml). Growth rate data were fit to the equation R = kappa sigma ri, where R = rate in cm/s; kappa = constant; sigma i = solute growth interface supersaturation; and r = rate dependence upon super-saturation, with the result that kappa = 0.146 X 10(-8) cm/s and r = 2.0. A model of the growth process was developed and the experimental data were used to determine the relative roles of transport and interfacial kinetics in the growth of this crystal. Values for the width of the boundary layer delta, the interfacial concentration Ci, and growth rate R were determined. The model may be used to extrapolate to other growth conditions. The relative role of transport and interfacial kinetics can be expressed by the coefficient gamma = (CB - Ci)/(CB - Cs), when CB is the bulk concentration and Cs the saturation. Values for gamma were found to range from much less than 0.1 for submicron-size crystals to approximately 0.15 for cm sizes. The results indicate that attachment or surface effects are rate-limiting in lysozyme crystal growth in Earth's gravity because solutal convection always provides more transport of solute than can be accommodated by the interface. In order to grow such crystals under transport limiting conditions, it would be necessary to suppress this solutal convection.  相似文献   

6.
While bulk crystallization from impure solutions is used industrially as a purification step for a wide variety of materials, it is a technique that has rarely been used for proteins. Proteins have a reputation for being difficult to crystallize and high purity of the initial crystallization solution is considered paramount for success in the crystallization. Although little is written on the purifying capability of protein crystallization or of the effect of impurities on the various aspects of the crystallization process, recent published reports show that crystallization shows promise and feasibility as a purification technique for proteins. To further examine the issue of purity in macromolecule crystallization, this study investigates the effect of the protein impurities, avidin, ovalbumin, and conalbumin at concentrations up to 50%, on the solubility, crystal face growth rates, and crystal purity of the protein lysozyme. Solubility was measured in batch experiments while a computer controlled video microscope system was used to measure the ?110? and ?101? lysozyme crystal face growth rates. While little effect was observed on solubility and high crystal purity was obtained (>99.99%), the effect of the impurities on the face growth rates varied from no effect to a significant face specific effect leading to growth cessation, a phenomenon that is frequently observed in protein crystal growth. The results shed interesting light on the effect of protein impurities on protein crystal growth and strengthen the feasibility of using crystallization as a unit operation for protein purification.  相似文献   

7.
A microscopic, reversible model to study protein crystal nucleation and growth is presented. The probability of monomer attachment to the growing crystal was assumed to be proportional to the protein volume fraction and the orientational factor representing the anisotropy of protein molecules. The rate of detachment depended on the free energy of association of the given monomer in the lattice, as calculated from the buried surface area. The proposed algorithm allowed the simulation of the process of crystal growth from free monomers to complexes having 10(5) molecules, i.e. microcrystals with already formed faces. These simulations correctly reproduced the crystal morphology of the chosen model system--the tetragonal lysozyme crystal. We predicted the critical size, after which the growth rate rapidly increased to approximately 50 protein monomers. The major factors determining the protein crystallisation kinetics were the geometry of the protein molecules and the resulting number of kinetics traps on the growth pathway.  相似文献   

8.
Average growth rates of the (0 1 0) and (0 1 0) faces (R<0 1 0>) of monoclinic lysozyme crystals were measured in situ under 0.1 and 100 MPa. From the dependence of the growth rates on the lysozyme concentration, we determined the solubility of the crystal as a function of temperature at 0.1 and 100 MPa. The solubility increased with an increase in pressure. From the comparison between the growth rates under 0.1 and 100 MPa at the same supersaturation level, we found that the growth rates of the monoclinic lysozyme crystals kinetically increase with an increase in pressure. Supersaturation dependencies of the growth rates under 0.1 and 100 MPa were well fitted with a two-dimensional (2D) nucleation growth model of a birth-and-spread type. The fitting results suggest that the increase in the growth rates with pressure can be explained by the decrease in the average ledge surface energy of 2D island, the average distance between the kinks on a step and the activation energies in the incorporation processes of solute molecules.  相似文献   

9.
Wang L  Liu XY 《Biophysical journal》2008,95(12):5931-5940
The effect of agarose on nucleation of hen egg white lysozyme crystal was examined quantitatively using a temperature-jumping technique. For the first time, to our knowledge, the inhibition of agarose during the nucleation of lysozyme was quantified in two respects: a), the effect of increasing interfacial nucleation barrier, described by the so-called interfacial correlation parameter f(m); and b), the ratio of diffusion to interfacial kinetics obtained from dynamic surface tension measurements. It follows from a dynamic surface tension analysis that the agarose network inhibits the nucleation of lysozyme by means of an enhancement of the repulsion and interfacial structure mismatch between foreign bodies and lysozyme crystals, slowing down the diffusion process of the protein molecules and clusters toward the crystal-fluid interface and inhibiting the rearrangement of protein molecules at the interface. Our results, based on ultraviolet-visible spectroscopy, also show no evidence of the supersaturation enhancement effect in protein agarose gels. The effects of nucleation suppression and transport limitation in gels result in bigger, fewer, and perhaps better quality protein crystals. The understandings obtained in this study will improve our knowledge in controlling the crystallization of proteins and other biomolecules.  相似文献   

10.
In order to elucidate differences observed in the aggregation kinetics of hen-egg white lysozyme under crystallization conditions we have undertaken a comparative study of the enzyme marketed by Seikagaku and Sigma companies. When the crystallization of the two lysozyme preparations is followed by time-resolved dynamic light scattering, the structural differences are also observed under native conditions in the early nucleation kinetics. The differences are manifested in the formation rates of macroscopic crystals, but do not influence the morphology of the typical tetragonal lysozyme crystal. Using two-dimensional NMR we have followed the differences in the native-like solution structure of the two preparations, while the primary sequence and molecular mass are identical. According to the published structure of tetragonal lysozyme crystal the largest deviations were found for the residues involved in the intermolecular interactions in crystal structure.  相似文献   

11.
W J Ray 《Proteins》1992,14(2):300-308
Although rabbit muscle phosphoglucomutase occasionally deposits tetragonal crystals from solutions of ammonium sulfate at about 47% of saturation, low concentrations of polyethylene glycol-400 (PEG), 1 to 4.5% w/v, must be included to sustain crystal growth. A comparison of long-term growth rates for macroscopic crystals in the presence and absence of added PEG suggests that at high salt concentration this cosolute exerts its primary effect on disordered protein aggregates, either in the external medium or at the surface of the crystal, and thereby allows the growth of much larger crystals. Since the observed effects may arise from a PEG-induced increase in the "solubility" of the aggregate that exceeds the induced increase in solubility of the crystalline phase under these conditions, the physical basis for a cosolute-induced increase in solubility in the presence of a precipitant is considered. The applicability of such a rationale to the present system is supported by an assessment of the relative effects of polyethylene glycol and beta-octylglucoside on amorphous, salt-induced precipitates of phosphoglucomutase. PEG also produces what appears to be a differential effect on nucleation efficiency and crystal growth rate. Thus, seed crystals cannot be enlarged at a significant rate at high salt concentration without producing showers of extraneous nucleation centers when the concentration of added PEG is 3% or less. But PEG concentrations of 4.5% essentially eliminate the showering problem, ostensibly by increasing the supersaturation required for nucleation to a greater extent than that required for crystal growth. The same type of effect is observed during de novo growth. Again a solubility-based mechanism is posed. Hysteretic effects related to properties of amorphous aggregates of the protein also are described.  相似文献   

12.
Bulk crystallization is emerging as a new industrial operation for protein recovery. Characterization of bulk protein crystallization is more complex than protein crystallization for structural study where single crystals are grown in flow cells. This is because both nucleation and crystal growth processes are taking place while the supersaturation falls. An algorithm is presented to characterize crystallization using the rates of the two kinetic processes, nucleation and growth. The values of these rates allow ready comparison of the crystallization process under different operating conditions. The crystallization, via adjustment to the isoelectric pH of a fungal lipase from clarified fermentation broth, is described for a batch stirred reactor. A maximum nucleation rate of five to six crystals formed per microliter of suspension per second and a high power dependency ( approximately 11) on the degree of supersaturation were found. The suspended protein crystals were found to grow at a rate of up to 15-20 nm/s and also to exhibit a high power dependency ( approximately 6) of growth rate on the degree of supersaturation.  相似文献   

13.
The mass transfer process and the growth rate of protein crystals   总被引:1,自引:0,他引:1  
Duan L  Kang Q  Hu WR  Li GP  Wang DC 《Biophysical chemistry》2002,97(2-3):189-201
In this paper, protein crystal growth is studied by a Mach-Zehnder interferometer and an image process system. The interference fringe images are recorded during the crystallization of tetragonal hen egg white lysozyme crystal. Concentration distributions of the protein solution are given from the interference fringe images recorded by the Mach-Zehnder interferometer with a real time servo system of a four-step phase shift. The mass transfer flux and the crystal growth rates are obtained from the concentration distribution. The results show that the observed rates are in accordance with those demonstrated by measurements of the experimental images; therefore the method for determining growth rate by the diffusion process is reasonable.  相似文献   

14.
以亲水性离子液体1-丁基-3-甲基咪唑氯盐(BmimCl)为添加剂,研究离子液体对溶菌酶结晶的影响.分别考察了离子液体对溶菌酶晶体数量与尺寸、晶体形貌及蛋白质纯度的影响,并探讨了离子液体对结晶过程影响的作用机制.离子液体通过增大溶菌酶的溶解度和其自身低蒸气压两种途径,降低了溶菌酶在结晶过程中的过饱和度,更有利于晶体的成核和生长,得到更好的结果.如避免多晶态现象的发生,增大晶体的尺寸,降低溶菌酶样品纯度的要求.X-射线衍射分析表明,离子液体未改变晶体的晶型结构,但可提高晶体的衍射分辨率.  相似文献   

15.
Dialysis kinetics measurements have been made to study the effect of ionic strength on the dimerization of lysozyme in acidic solutions that lead to the growth of tetragonal lysozyme crystals. Using glutaraldehyde cross-linked dimers of lysozyme, we have determined that both monomers and dimers can escape from 25,000 molecular weight cutoff dialysis membranes with velocity constants of 5.1 x 10(-7) and 1.0 x 10(-7) s(-1) for the monomer and dimer species, respectively. The flux from 25K MWCO membranes has been measured for lysozyme in pH 4.0 buffered solutions of 1, 3, 4, 5, and 7% NaCl over a wide range of protein concentrations. Assuming that dimerization is the first step in crystallization, a simple monomer to dimer equilibrium was used to model the flux rates. Dimerization constants calculated at low protein concentrations were 265, 750, 1212, and 7879 M(-1) for 3, 4, 5, and 7% NaCl, respectively. These values indicate that dimerization increases with the ionic strength of the solution suggesting that aggregation is moderated by electrostatic interactions. At high protein concentrations and high supersaturation, the dimerization model does not describe the data well. However, the Li model that uses a pathway of monomer <-> dimer <-> tetramer <-> octamer <-> 16-mer fits the measured flux data remarkably well suggesting the presence of higher order aggregates in crystallizing solutions.  相似文献   

16.
Nucleation of lysozyme crystals in quiescent solutions at a regime of progressive nucleation is investigated under an optical microscope at conditions of constant supersaturation. A method based on the stochastic nature of crystal nucleation and using discrete time sampling of small solution volumes for the presence or absence of detectable crystals is developed. It allows probabilities for crystal detection to be experimentally estimated. One hundred single samplings were used for each probability determination for 18 time intervals and six lysozyme concentrations. Fitting of a particular probability function to experimentally obtained data made possible the direct evaluation of stationary rates for lysozyme crystal nucleation, the time for growth of supernuclei to a detectable size and probability distribution of nucleation times. Obtained stationary nucleation rates were then used for the calculation of other nucleation parameters, such as the kinetic nucleation factor, nucleus size, work for nucleus formation and effective specific surface energy of the nucleus. The experimental method itself is simple and adaptable and can be used for crystal nucleation studies of arbitrary soluble substances with known solubility at particular solution conditions.  相似文献   

17.
Ethanol is used to precipitate proteins during various processes, including purification and crystallization. To elucidate the mechanism of protein precipitation by alcohol, we have investigated the solubility and structural changes of protein over a wide range of alcohol concentrations. Conformation of hen egg-white lysozyme was changed from native to α-helical rich structure in the presence of ethanol at concentrations above 60%. The solubility of lysozyme was reduced with increasing ethanol concentration, although gel formation at ethanol concentrations between 60% and 75% prevented accurate solubility measurements. SH-modified lysozyme showed largely unfolded structure in water and α-helical structure in the presence of ethanol. More importantly, solubility of the chemically modified lysozyme molecules decreased with increasing ethanol concentration. There is no indication of increased solubility upon unfolding of the lysozyme molecules by ethanol, indicating that any favorable interaction of ethanol with the hydrophobic side chains, if indeed occuring, is offset by the unfavorable interaction of ethanol with the hydrophilic side chains and peptide bonds.  相似文献   

18.
Studies of crystal growth mechanisms of proteins by electron microscopy   总被引:3,自引:0,他引:3  
We have used electron microscopy to examine the surfaces of lysozyme crystals and deduce mechanisms of crystal growth. We find that growth occurs by a lattice defect mechanism at low supersaturation and by two-dimensional nucleation at high supersaturation. Step velocities and two-dimensional nucleation rates are obtained, and their dependence on supersaturation is compared with theory. Some features of the observed surface structure can be related to the specific topology and strengths of the bonds in the P4(3)2(1)2 lattice. Preliminary results on the early stages of nucleation and the phenomenon of cessation of growth are presented.  相似文献   

19.
Abstract

The bonds between lysozyme molecules and precipitant ions in single crystals grown with chlorides of several metals are analysed on the basis of crystal structure data. Crystals of tetragonal hen egg lysozyme (HEWL) were grown with chlorides of several alkali and transition metals (LiCl, NaCl, KCl, NiCl2 and CuCl2) as precipitants and the three-dimensional structures were determined at 1.35?Å resolution by X-ray diffraction method. The positions of metal and chloride ions attached to the protein were located, divided into three groups and analysed. Some of them, in accordance with the recently proposed and experimentally confirmed crystal growth model, provide connections in protein dimers and octamers that are precursor clusters in the crystallization lysozyme solution. The first group, including Cu+2, Ni+2 and Na+1 cations, binds specifically to the protein molecule. The second group consists of metal and chloride ions bound inside the dimers and octamers. The third group of ions can participate in connections between the octamers that are suggested as building units during the crystal growth. The arrangement of chloride and metal ions associated with lysozyme molecule at all stages of the crystallization solution formation and crystal growth is discussed.

Communicated by Ramaswamy H. Sarma  相似文献   

20.
A combination of small angle X-ray scattering and gel techniques was used to follow the kinetics of protein crystal growth as a function of time. Hen egg white lysozyme, at different protein concentrations, was used as a model system. A new sample holder was designed, in which supersaturation is induced in the presence of salt by decreasing the temperature. It had been shown previously that a decrease in temperature and/or an increase in crystallizing agent induces an increase in the attractive interactions present in the lysozyme solutions, the lysozyme remaining monomeric. In the present paper we show that similar behaviour is observed in NaCl when agarose gels are used. During crystal growth, special attention was paid to determine whether oligomers were formed as the protein in solution was incorporated in the newly formed crystals. From these first series of experiments, we did not find any indication of oligomer formation between monomer in solution and crystal. The results obtained are in agreement with the hypothesis that lysozyme crystals in NaCl grow by addition of monomeric particles. Received: 28 July 1997 / Revised version: 4 December 1997 / Accepted: 5 December 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号