首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The capsid protein (CA) of the mature human immunodeficiency virus (HIV) contains an N-terminal beta-hairpin that is essential for formation of the capsid core particle. CA is generated by proteolytic cleavage of the Gag precursor polyprotein during viral maturation. We have determined the NMR structure of a 283-residue N-terminal fragment of immature HIV-1 Gag (Gag(283)), which includes the intact matrix (MA) and N-terminal capsid (CA(N)) domains. The beta-hairpin is unfolded in Gag(283), consistent with the proposal that hairpin formation occurs subsequent to proteolytic cleavage of Gag, triggering capsid assembly. Comparison of the immature and mature CA(N) structures reveals that beta-hairpin formation induces a approximately 2 A displacement of helix 6 and a concomitant displacement of the cyclophylin-A (CypA)-binding loop, suggesting a possible allosteric mechanism for CypA-mediated destabilization of the capsid particle during infectivity.  相似文献   

2.
The N-terminal domain of the retroviral capsid (CA) protein is one of the least conserved regions encoded in the genome. Surprisingly, the three-dimensional structures of the CA from different genera exhibit alpha-helical structural features that are highly conserved. The N-terminal residues of the human immunodeficiency virus type 1 (HIV-1) and Rous sarcoma virus (RSV) capsid proteins form a beta-hairpin. To determine if this feature is conserved in the retroviral family, we cloned, expressed, purified, and solved the structure of a N-terminal 134 amino acid fragment (CA(134)) from the human T-cell leukemia virus type 1 (HTLV-I) using high resolution nuclear magnetic resonance (NMR) spectroscopy. The CA(134) fragment contains an N-terminal beta-hairpin and a central coiled-coil-like structure composed of six alpha-helices. The N-terminal Pro1 residue contacts Asp54 in the helical cluster through a salt bridge. Thus, the beta-hairpin is conserved and the helical cluster is structurally similar to other retroviral CA domains. However, although the same Asp residue defines the orientation of the hairpin in both the HTLV-1 and HIV-1 CA proteins, the HTLV-I hairpin is oriented away, rather than towards, the helical core. Significant differences were also detected in the spatial orientation and helical content of the long centrally located loop connecting the helices in the core. It has been proposed that the salt bridge allows the formation of a CA-CA interface that is important for the assembly of the conical cores that are characteristic of HIV-1. As HTLV-I forms spherical cores, the salt-bridge feature is apparently not conserved for this function although its role in determining the orientation of the beta-hairpin may be critical, along with the central loop. Comparison of three-dimensional structures is expected to elucidate the relationships between the retroviral capsid protein structure and its function.  相似文献   

3.
After budding, the human immunodeficiency virus (HIV) must 'mature' into an infectious viral particle. Viral maturation requires proteolytic processing of the Gag polyprotein at the matrix-capsid junction, which liberates the capsid (CA) domain to condense from the spherical protein coat of the immature virus into the conical core of the mature virus. We propose that upon proteolysis, the amino-terminal end of the capsid refolds into a beta-hairpin/helix structure that is stabilized by formation of a salt bridge between the processed amino-terminus (Pro1) and a highly conserved aspartate residue (Asp51). The refolded amino-terminus then creates a new CA-CA interface that is essential for assembling the condensed conical core. Consistent with this model, we found that recombinant capsid proteins with as few as four matrix residues fused to their amino-termini formed spheres in vitro, but that removing these residues refolded the capsid amino-terminus and redirected protein assembly from spheres to cylinders. Moreover, point mutations throughout the putative CA-CA interface blocked capsid assembly in vitro, core assembly in vivo and viral infectivity. Disruption of the conserved amino-terminal capsid salt bridge also abolished the infectivity of Moloney murine leukemia viral particles, suggesting that lenti- and oncoviruses mature via analogous pathways.  相似文献   

4.
The human immunodeficiency virus type 1 (HIV-1) and human T-cell leukemia virus type 1 (HTLV-1) capsid proteins (CA) display similar structures formed by two independently folded N-terminal (NTD) and C-terminal (CTD) domains. To characterize the functions harbored by the HTLV-1 CA domains in particle formation, 12 sites scattered throughout the protein were mutated. The effects of the mutations on Gag membrane binding, proteolytic processing, and virus-like particle secretion were analyzed. It appears that the NTD is the major partner of indirect or direct Gag-Gag interactions. In particular, most of the NTD mutations impaired virion morphogenesis, and no mutation located in the NTD could be fully rescued by coexpression of wild-type Gag. In contrast, the CTD seems not to be involved in Gag-Gag interactions. Nevertheless, an unknown function required for particle formation is located in the CTD. Thus, despite an overall structural similarity between the HIV-1 and HTLV-1 CA proteins, their NTDs and CTDs exhibit different functions.  相似文献   

5.
The first few residues of the Rous sarcoma virus (RSV) CA protein comprise a structurally dynamic region that forms part of a Gag-Gag interface in immature virus particles. Dissociation of this interaction during maturation allows refolding and formation of a beta-hairpin structure important for assembly of CA monomers into the mature capsid shell. A consensus binding site for the cellular Ubc9 protein was previously identified within this region, suggesting that binding of Ubc9 and subsequent small ubiquitin-like modifier protein 1 (SUMO-1) modification of CA may play a role either in regulating the assembly activity of CA in immature particles or mature cores or in controlling postentry function(s) during the establishment of infection. In the present study, mutations designed to eliminate the consensus binding site were used to dissect the potentially overlapping functions of these residues. The resulting replication defects could not be traced to a failure to form particles of normal composition but, rather, to a deficit in genome replication. Genetic suppressors of two detrimental beta-hairpin mutations improved infectivity without restoring the consensus site or creating a novel one elsewhere. Optimal restoration of infectivity to a Lys-to-Arg mutant required a combination of secondary changes, one on the surface of each domain of CA. Rather than arguing for a critical role of Ubc9 and SUMO in RSV replication, these findings provide strong support for a structural role of the N-terminal residues and a particularly striking example of long-range interactions between regions of CA in achieving a functional core competent for genome replication.  相似文献   

6.
7.
Human T-cell leukemia virus type 1 (HTLV-I) is an oncogenic retrovirus that exhibits specific tropism for human T-cells. The capsid (CA) proteins of retroviruses share highly conserved secondary and tertiary structures. However, they can form quaternary structures (assembled cores) that are conical (e.g., the lentivirus subgroup, including HIV) or spherical (e.g., the oncovirus subgroup, including HTLV). The intrinsic features that drive these differences are not understood. So far, only structural studies have been used as a basis for comparison. Dynamics may play a role in particle formation. High-resolution nuclear magnetic resonance (NMR) (15)N relaxation data (T(1), T(1rho), and NOE) have been used to characterize the backbone dynamics of the N-terminal domain (NTD) of the oncovirus HTLV-I and to compare with the CA NTD of HIV-1. Large variations in the (15)N heteronuclear NOEs and transversal relaxation rates for individual residues are consistent with the bundle RMSD of the previously calculated NMR structures. The beta-hairpin and CyP-A loop exhibit different mobility in HTLV-I and HIV-1. The overall hydrodynamic property of the HTLV-I capsid NTD is quite distinct from the HIV-1.  相似文献   

8.
9.
Immature retroviral particles are assembled by self-association of the structural polyprotein precursor Gag. During maturation the Gag polyprotein is proteolytically cleaved, yielding mature structural proteins, matrix (MA), capsid (CA), and nucleocapsid (NC), that reassemble into a mature viral particle. Proteolytic cleavage causes the N terminus of CA to fold back to form a β-hairpin, anchored by an internal salt bridge between the N-terminal proline and the inner aspartate. Using an in vitro assembly system of capsid-nucleocapsid protein (CANC), we studied the formation of virus-like particles (VLP) of a gammaretrovirus, the xenotropic murine leukemia virus (MLV)-related virus (XMRV). We show here that, unlike other retroviruses, XMRV CA and CANC do not assemble tubular particles characteristic of mature assembly. The prevention of β-hairpin formation by the deletion of either the N-terminal proline or 10 initial amino acids enabled the assembly of ΔProCANC or Δ10CANC into immature-like spherical particles. Detailed three-dimensional (3D) structural analysis of these particles revealed that below a disordered N-terminal CA layer, the C terminus of CA assembles a typical immature lattice, which is linked by rod-like densities with the RNP.  相似文献   

10.
The mature human immunodeficiency virus type 1 proteinase (PR; 11 kDa) can cleave all interdomain junctions in the Gag and Gag-Pol polyprotein precursors. To determine the activity of the enzyme in its precursor form, we blocked release of mature PR from a truncated Gag-Pol polyprotein by introducing mutations into the N-terminal Phe-Pro cleavage site of the PR domain. The mutant precursor autoprocessed efficiently upon expression in Escherichia coli. No detectable mature PR was released; however, several PR-related products ranging in size from approximately 14 to 18 kDa accumulated. Products of the same size were generated when mutant precursors were digested with wild-type PR. Thus, PR can utilize cleavage sites in the region upstream of the PR domain, resulting in the formation of extended PR species. On the basis of active-site titration, the PR species generated from mutated precursor exhibited wild-type activity on peptide substrates. However, the proteolytic activity of these extended enzymes on polyprotein substrates provided exogenously was low when equimolar amounts of extended and wild-type PR proteins were compared. Mammalian cells expressing the mutated precursor produced predominantly precursor and considerably reduced amounts of mature products. Released particles consisted mostly of uncleaved or partially cleaved polyproteins. Our results suggest that precursor forms of PR can autoprocess but are less efficient in processing of the Gag precursor for formation of mature virus particles.  相似文献   

11.
Gag, the major structural protein of retroviruses such as HIV-1, comprises a series of domains connected by flexible linkers. These domains drive viral assembly by mediating multiple interactions between adjacent Gag molecules and by binding to viral genomic RNA and host cell membranes. Upon viral budding, Gag is processed by the viral protease to liberate distinct domains as separate proteins. The first two regions of Gag are MA, a membrane-binding module, and CA, which is a two-domain protein that makes important Gag-Gag interactions, forms the cone-shaped outer shell of the core (the capsid) in the mature HIV-1 particle, and makes an important interaction with the cellular protein cyclophilin A (CypA). Here, we report crystal structures of the mature CA N-terminal domain (CA(N)(133-278)) and a MA-CA(N) fusion (Gag(1-278)) at resolutions/R(free) values of 1.9 A/25.7% and 2.2 A/25.8%, respectively. Consistent with earlier studies, a comparison of these structures indicates that processing at the MA-CA junction causes CA to adopt an N-terminal beta-hairpin conformation that seems to be required for capsid morphology and viral infectivity. In contrast with an NMR study (Tang, C., et al. (2002) Nat. Struct. Biol. 9, 537-543), structural overlap reveals only small relative displacements for helix 6, which is located between the beta-hairpin and the CypA-binding loop. These observations argue against the proposal that CypA binding is coupled with beta-hairpin formation and support an earlier surface plasmon resonance study (Yoo, S., et al. (1997) J. Mol. Biol. 269, 780-795), which concluded that beta-hairpin formation and CypA-binding are energetically independent events.  相似文献   

12.
The mature fullerene cone-shaped capsid of the human immunodeficiency virus 1 is composed of about 1,500 copies of the capsid protein (CA). The CA is 231 residues long, and consists of two distinct structural domains, the N-terminal domain and the C-terminal domain (CTD), joined by a flexible linker. The wild type CA exhibits monomer-dimer equilibrium in solution through the CTD-CTD dimerization. This CTD-CTD interaction, together with other intermolecular interdomain interactions, plays significant roles during the assembly of the mature capsid. In addition, CA-CA interactions also play a role in the assembly of the immature virion. The CA also interacts with some host cell proteins within the viral replication cycle. Thus, the capsid protein has been of significant interest as a target for designing inhibitors of assembly of immature virions and mature capsids and inhibitors of its interactions with host cell proteins. However, the equilibrium exhibited by the wild-type CA protein between the monomeric and dimeric states, along with the inherent flexibility from the interdomain linker, have hindered attempts at structural determination by solution NMR and X-ray crystallography methods. In this study, we have utilized a CA protein with W184A and M185A mutations that abolish the dimerization of CA protein as well as its infectivity, but preserve most of the remaining properties of the wild type CA. We have determined the detailed solution structure of the monomeric W184A/M185A-CA protein using 3D-NMR spectroscopy. Here, we present the detailed sequence-specific NMR assignments for this protein.  相似文献   

13.
The solution structure of the capsid protein (CA) from the human T-cell leukemia virus type one (HTLV-I), a retrovirus that causes T-cell leukemia and HTLV-I-associated myelopathy in humans, has been determined by NMR methods. The protein consists of independent N and C-terminal domains connected by a flexible linker. The domains are structurally similar to the N-terminal "core" and C-terminal "dimerization" domains, respectively, of the human immunodeficiency virus type one (HIV-1) and equine infectious anemia virus (EIAV) capsid proteins, although several important differences exist. In particular, hydrophobic residues near the major homology region are partially buried in HTLV-I CA, which is monomeric in solution, whereas analogous residues in HIV-1 and EIAV CA project from the C-terminal domain and promote dimerization. These differences in the structure and oligomerization state of the proteins appear to be related to, and possibly controlled by, the oxidation state of conserved cysteine residues, which are reduced in HTLV-I CA but form a disulfide bond in the HIV-1 and EIAV CA crystal structures. The results are consistent with an oxidative capsid assembly mechanism, in which CA oligomerization or maturation is triggered by disulfide bo nd formation as the budding virus enters the oxidizing environment of the bloodstream.  相似文献   

14.
The roles played by the N-linked glycans of the Friend murine leukemia virus envelope proteins were investigated by site-specific mutagenesis. The surface protein gp70 has eight potential attachment sites for N-linked glycan; each signal asparagine was converted to aspartate, and mutant viruses were tested for the ability to grow in NIH 3T3 fibroblasts. Seven of the mutations did not affect virus infectivity, whereas mutation of the fourth glycosylation signal from the amino terminus (gs4) resulted in a noninfectious phenotype. Characterization of mutant gene products by radioimmunoprecipitation confirmed that glycosylation occurs at all eight consensus signals in gp70 and that gs2 carries an endoglycosidase H-sensitive glycan. Elimination of gs2 did not cause retention of an endoglycosidase H-sensitive glycan at a different site, demonstrating that this structure does not play an essential role in envelope protein function. The gs3- mutation affected a second posttranslational modification of unknown type, which was manifested as production of gp70 that remained smaller than wild-type gp70 after removal of all N-linked glycans by peptide N-glycosidase F. The gs4- mutation decreased processing of gPr80 to gPr90, completely inhibited proteolytic processing of gPr90 to gp70 and Pr15(E), and prevented incorporation of envelope products into virus particles. Brefeldin A-induced mixing of the endoplasmic reticulum and parts of the Golgi apparatus allowed proteolytic processing of wild-type gPr90 to occur in the absence of protein transport, but it did not overcome the cleavage defect of the gs4- precursor, indicating that gs4- gPr90 is resistant to the processing protease. The work reported here demonstrates that the gs4 region is important for env precursor processing and suggests that gs4 may be a critical target in the disruption of murine leukemia virus env product processing by inhibitors of N-linked glycosylation.  相似文献   

15.
Structure and self-association of the Rous sarcoma virus capsid protein   总被引:13,自引:0,他引:13  
BACKGROUND: The capsid protein (CA) of retroviruses, such as Rous sarcoma virus (RSV), consists of two independently folded domains. CA functions as part of a polyprotein during particle assembly and budding and, in addition, forms a shell encapsidating the genomic RNA in the mature, infectious virus. RESULTS: The structures of the N- and C-terminal domains of RSV CA have been determined by X-ray crystallography and solution nuclear magnetic resonance (NMR) spectroscopy, respectively. The N-terminal domain comprises seven alpha helices and a short beta hairpin at the N terminus. The N-terminal domain associates through a small, tightly packed, twofold symmetric interface within the crystal, different from those previously described for other retroviral CAs. The C-terminal domain is a compact bundle of four alpha helices, although the last few residues are disordered. In dilute solution, RSV CA is predominantly monomeric. We show, however, using electron microscopy, that intact RSV CA can assemble in vitro to form both tubular structures constructed from toroidal oligomers and planar monolayers. Both modes of assembly occur under similar solution conditions, and both sheets and tubes exhibit long-range order. CONCLUSIONS: The tertiary structure of CA is conserved across the major retroviral genera, yet sequence variations are sufficient to cause change in associative behavior. CA forms the exterior shell of the viral core in all mature retroviruses. However, the core morphology differs between viruses. Consistent with this observation, we find that the capsid proteins of RSV and human immunodeficiency virus type 1 exhibit different associative behavior in dilute solution and assemble in vitro into different structures.  相似文献   

16.
The human immunodeficiency virus (HIV) capsid (CA) protein assembles into a hexameric lattice that forms the mature virus core. Contacts between the CA N-terminal domain (NTD) of one monomer and the C-terminal domain (CTD) of the adjacent monomer are important for the assembly of this core. In this study, we have examined the effects of mutations in the NTD region associated with this interaction. We have found that such mutations yielded modest reductions of virus release but major effects on viral infectivity. Cell culture and in vitro assays indicate that the infectivity defects relate to abnormalities in the viral cores. We have selected second-site compensatory mutations that partially restored HIV infectivity. These mutations map to the CA CTD and to spacer peptide 1 (SP1), the portion of the precursor Gag protein immediately C terminal to the CTD. The compensatory mutations do not locate to the molecularly modeled intermolecular NTD-CTD interface. Rather, the compensatory mutations appear to act indirectly, possibly by realignment of the C-terminal helix of the CA CTD, which participates in the NTD-CTD interface and has been shown to serve an important role in the assembly of infectious virus.  相似文献   

17.
The retroviral structural protein, Gag, is capable of independently assembling into virus-like particles (VLPs) in living cells and in vitro. Immature VLPs of human immunodeficiency virus type 1 (HIV-1) and of Rous sarcoma virus (RSV) are morphologically distinct when viewed by transmission electron microscopy (TEM). To better understand the nature of the Gag-Gag interactions leading to these distinctions, we constructed vectors encoding several RSV/HIV-1 chimeric Gag proteins for expression in either insect cells or vertebrate cells. We used TEM, confocal fluorescence microscopy, and a novel correlative scanning EM (SEM)-confocal microscopy technique to study the assembly properties of these proteins. Most chimeric proteins assembled into regular VLPs, with the capsid (CA) domain being the primary determinant of overall particle diameter and morphology. The presence of domains between matrix and CA also influenced particle morphology by increasing the spacing between the inner electron-dense ring and the VLP membrane. Fluorescently tagged versions of wild-type RSV, HIV-1, or murine leukemia virus Gag did not colocalize in cells. However, wild-type Gag proteins colocalized extensively with chimeric Gag proteins bearing the same CA domain, implying that Gag interactions are mediated by CA. A dramatic example of this phenomenon was provided by a nuclear export-deficient chimera of RSV Gag carrying the HIV-1 CA domain, which by itself localized to the nucleus but relocalized to the cytoplasm in the presence of wild type HIV-1 Gag. Wild-type and chimeric Gag proteins were capable of coassembly into a single VLP as viewed by correlative fluorescence SEM if, and only if, the CA domain was derived from the same virus. These results imply that the primary selectivity of Gag-Gag interactions is determined by the CA domain.  相似文献   

18.
While several cellular proteins are incorporated in the human immunodeficiency virus type 1 virion, cyclophilin (CyP) A is the only one whose absence has been demonstrated to impair infectivity. Incorporation of the cytosolic protein results from interaction with a highly exposed Pro-rich loop in the N-terminal region of the capsid (CA) domain of the precursor polyprotein, Pr55(Gag). Even when prevented from interacting with CyP A, Pr55Gag still forms particles that proceed to mature into morphologically wild-type virions, suggesting that CyP A influences a postassembly event. The nature of this CyP A influence has yet to be elucidated. Here, we show that while CyP A binds both Gag and mature CA proteins, the two binding interactions are actually different. Tryptophan 121 (W121) in CyP A distinguished the two proteins: a phenylalanine substitution (W121F) impaired binding of mature CA protein but not of Gag. This indicates the occurrence of a maturation-dependent switch in the conformation of the Pro-rich loop. A structural consequence of Gag binding to CyP A was to block this maturational refolding, resulting in a 24-kDa CA protein retaining the immature Pro-rich loop conformation. Using trypsin as a structure probe, we demonstrate that the conformation of the C-terminal region in mature CA is also a product of maturational refolding. Binding to wild-type CyP A altered this conformation, as indicated by a reduction in the accessibility of Cys residue(s) in the region to chemical modification. Hence, the end result of binding to CyP A, whether the Pro-rich loop is in the context of Gag or mature CA protein, is a structurally modified mature CA protein. The postassembly role of CyP A may be mediated through these modified mature CA proteins.  相似文献   

19.
The structural precursor polyprotein of human immunodeficiency virus type 1, Pr55(gag), contains a proline-rich motif (PTAP) called the "late domain" in its C-terminal p6 region that directs release of mature virus-like particles (VLPs) from the plasma membranes of gag-transfected COS-1 cells. The motif binds Tsg101 (vacuolar protein-sorting protein 23, or Vps23), which functions in endocytic trafficking. Here, we show that accumulation of the wild-type (wt) Gag precursor in a fraction of COS-1 cytoplasm enriched in multivesicular bodies and small particulate components of the plasma membrane (P100) is p6 dependent. Cleavage intermediates and mature CA mainly partitioned with more rapidly sedimenting larger material enriched in components of lysosomes and early endosomes (P27), and this also was p6 dependent. Expression of truncated or full-length Tsg101 proteins interfered with VLP assembly and Gag accumulation in the P100 fraction. This correlated with reduced accumulation of Gag tagged with green fluorescent protein (Gag-GFP) at the plasma membrane and colocalization with the tagged Tsg101 in perinuclear early endosomes, as visualized by confocal microscopy. Fractionation analysis and confocal examination both indicated that the N-terminal region of Tsg101, which contains binding sites for PTAP and ubiquitin (Ub), was required for Gag trafficking to the plasma membrane. Expression of FLAG-tagged Tsg101 with a deletion in the Ub-binding pocket inhibited VLP release almost completely and to a significantly greater extent than expression of the wt tagged Tsg101 protein or Tsg101-FLAG containing a deletion in the PTAP-binding region. The results demonstrate that Gag associates with endosomal trafficking compartments and indicate that efficient release of virus particles from the plasma membrane requires both the PTAP- and Ub-binding functions of Tsg101 to recruit the cellular machinery required for budding.  相似文献   

20.
An experimental protocol for folding the mature human immunodeficiency virus-1 (HIV-1) protease is presented that facilitates NMR studies at a low protein concentration of approximately 20 micoM. Under these conditions, NMR spectra show that the mature protease lacking its terminal beta-sheet residues 1-4 and 96-99 (PR(5-95)) exhibits a stable monomer fold spanning the region 10-90 that is similar to that of the single subunit of the wild-type dimer and the dimer bearing a D25N mutation (PR(D25N)). Urea-induced unfolding monitored both by changes in (1)H-(15)N heteronuclear single quantum correlation spectra and by protein fluorescence indicates that although PR(5-95) monomer displays a transition profile similar to that of the PR(D25N) dimer (50% unfolded (U(50)) = approximately 1.9 M), extending the protease with 4 residues (SFNF) of its N-terminally flanking sequence in the Gag-Pol precursor ((SFNF)PR(D25N)) decreases the stability of the fold (U(50) = approximately 1.5 M). Assigned backbone chemical shifts were used to elucidate differences in the stability of the PR(T26A) (U(50) = 2.5 M) and (SFNF)PR(D25N) monomers and compared with PR(D25N/T26A) monomer. Discernible differences in the backbone chemical shifts were observed for N-terminal protease residues 3-6 of (SFNF)PR(D25N) that may relate to the increase in the equilibrium dissociation constant (K(d)) and the very low catalytic activity of the protease prior to its autoprocessing at its N terminus from the Gag-Pol precursor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号