首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Molybdenum(V) e.p.r. spectra from reduced forms of aldehyde oxidase were obtained and compared with those from xanthine oxidase. Inhibited and Desulpho Inhibited signals from aldehyde oxidase were fully characterized, and parameters were obtained with the help of computer simulations. These differ slightly but significantly from the corresponding parameters for the xanthine oxidase signals. Rapid type 1 and type 2 and Slow signals were obtained from aldehyde oxidase, but were not fully characterized. From the general similarities of the signals from the two enzymes, it is concluded that the ligands of molybdenum must be identical and that the overall co-ordination geometries must be closely similar in the enzymes. The striking differences in substrate specificity must relate primarily to structural differences in a part of the active centre concerned with substrate binding and not involving the catalytically important molybdenum site.  相似文献   

2.
3.
Molybdenum, applied in vivo, restored the damage from low temperature with winter wheat (Triticum aestivum, var “Sadovo 1”) grown on acid soil and, in addition, sharply increased productivity (G Salcheva, D Georgieva, 1982; G Salcheva et al., 1977, 1979). Two fractions with molybdenum-cofactor activity in seeds were detected. One of them has a molecular weight of about 230 kilodaltons corresponding to xanthine oxidase activity and leaf nitrate reductase activity. The other has a molecular weight of about 60 kilodaltons. The ratio between the molybdenum-cofactor activity of these fractions was different in `mother' seeds used in the experiment, in seeds obtained from the damaged plants, and in seeds obtained from the damaged plants restored by in vivo molybdenum addition. Every one of these fractions consisted of several components in which molybdenum-cofactor activity and stability in vitro was different. We suggest that plants store molybdenum as molybdenum carriers in these low molecular weight fractions.  相似文献   

4.
5.
Reduction of sulphite oxidase by sulphite at low pH values in Mes (4-morpholine-ethanesulphonic acid) buffer gives rise to a new molybdenum(V) electron-paramagnetic-resonance spectrum different from that obtained by photoreduction of the enzyme in the same medium. The spectrum is attributed to a sulphite complex of the enzyme, showing g-values of about 2.000, 1.972 and 1.963. The complex is analogous to that with the inhibitor phosphate in that it gives rise to no observable hyperfine coupling of Mo(V) to exchangeable protons.  相似文献   

6.
7.
8.
9.
Studies by e.p.r. (electron-paramagnetic-resonance) spectroscopy and by stopped-flow spectrophotometry on turkey liver xanthine dehydrogenase revealed strong similarities to as well as important differences from the Veillonella alcalescens xanthine dehydrogenase and milk xanthine oxidase. The turkey enzyme is contaminated by up to three non-functional forms, giving molybdenum e.p.r. signals designated Resting I, Resting II and Slow. Slow and to a lesser extent Resting I signals are like those from the Veillonella enzyme, whereas Resting II is very like a resting signal described by K. V. Rajagopolan, P. Handler, G. Palmer & H. Beinert (1968) (J. Biol. Chem. 243, 3784-3796) for aldehyde oxidase. Another non-functional form that gives the Inhibited signal is produced on treatment of the enzyme with formaldehyde. Stopped-flow measurements at 450 nm show that, as for the milk enzyme, reduction by xanthine is rate-limiting in enzyme turnover. The active enzyme gives rise to Very Rapid and Rapid molybdenum(V) e.p.r. signals, as well as to an FADH signal. That these signals are almost indistinguishable from those of the milk enzyme, confirms the similarities between the active sites. There are two types of iron-sulphur centres that give signals like those in the milk enzyme, though with slightly different parameters. Quantitative reduction titration of the functional enzyme with xanthine revealed two important differences between the turkey and the milk enzymes. First, the turkey enzyme FADH/FADH2 system has a redox potential sufficiently low that xanthine is incapable of reducing the flavin completely. This finding presumably explains the very low oxidase activity. Secondly, whereas the Fe/S II chromophore in the milk enzyme has a relatively high redox potential, for the turkey enzyme the value of this potential is lower and similar to that of its Fe/S I chromophore.  相似文献   

10.
BACKGROUND: The molybdenum cofactor (Moco) is an essential component of a large family of enzymes involved in important transformations in carbon, nitrogen and sulfur metabolism. The Moco biosynthetic pathway is evolutionarily conserved and found in archaea, eubacteria and eukaryotes. In humans, genetic deficiencies of enzymes involved in this pathway trigger an autosomal recessive and usually deadly disease with severe neurological symptoms. The MoaC protein, together with the MoaA protein, is involved in the first step of Moco biosynthesis. RESULTS: MoaC from Escherichia coli has been expressed and purified to homogeneity and its crystal structure determined at 2 A resolution. The enzyme is organized into a tightly packed hexamer with 32 symmetry. The monomer consists of an antiparallel, four-stranded beta sheet packed against two long alpha helices, and its fold belongs to the ferredoxin-like family. Analysis of structural and biochemical data strongly suggests that the active site is located at the interface of two monomers in a pocket that contains several strictly conserved residues. CONCLUSIONS: Asp128 in the putative active site appears to be important for catalysis as its replacement with alanine almost completely abolishes protein activity. The structure of the Asp128-->Ala variant reveals substantial conformational changes in an adjacent loop. In the human MoaC ortholog, substitution of Thr182 with proline causes Moco deficiency, and the corresponding substitution in MoaC severely compromises activity. This residue is located near the N-terminal end of helix alpha4 at an interface between two monomers. The MoaC structure provides a framework for the analysis of additional dysfunctional mutations in the corresponding human gene.  相似文献   

11.
Previous e.p.r. work [George, Bray, Morpeth & Boxer (1985) Biochem. J. 227, 925-931] has provided evidence for a pH- and anion-dependent transition in the structure of the Mo(V) centre of Escherichia coli nitrate reductase, with the low-pH form bearing both an anion and probably a hydroxy-group ligand. Initial e.x.a.f.s. measurements [Cramer, Solomonson, Adams & Mortenson (1984) J. Am. Chem. Soc. 106, 1467-1471] demonstrated the presence of sulphur (or chloride) ligands in the Mo(IV) and Mo(VI) oxidation states, as well as a variable number of terminal oxo (Mo = O) groups. To synthesize the e.p.r. and e.x.a.f.s. results better, we have conducted new e.p.r. experiments and complementary e.x.a.f.s. measurements under redox and buffer conditions designed to give homogeneous molybdenum species. In contrast with results on other molybdoenzymes, attempts to substitute the enzyme with 17O by dissolving in isotopically enriched water revealed only very weak hyperfine coupling to 17O. The significance of this finding is discussed. Experiments with different buffers indicated that buffer ions (e.g. Hepes) could replace the Cl- ligand in the low-pH Mo(V) enzyme form, with only a small change in e.p.r. parameters. E.x.a.f.s. studies of the oxidized and the fully reduced enzyme were consistent with the e.p.r. work in indicating a pH- and anion-dependent change in structure. However, in certain cases non-stoichiometric numbers of Mo = O interactions were determined, complicating the interpretation of the e.x.a.f.s. Uniquely for a molybdenum cofactor enzyme, a substantial proportion of the molecules in a number of enzyme samples appeared to contain no oxo groups. No evidence was found in our samples for the distant 'heavy' ligand atom reported in the previous e.x.a.f.s. study. The nature of the high-pH-low-pH transition is briefly discussed.  相似文献   

12.
The transition element molybdenum (Mo) is an essential micronutrient for plants where it is needed as a catalytically active metal during enzyme catalysis. Four plant enzymes depend on molybdenum: nitrate reductase, sulphite oxidase, xanthine dehydrogenase, and aldehyde oxidase. However, in order to gain biological activity and fulfil its function in enzymes, molybdenum has to be complexed by a pterin compound thus forming the molybdenum cofactor. In this article, the path of molybdenum from its uptake into the cell, via formation of the molybdenum cofactor and its storage, to the final modification of the molybdenum cofactor and its insertion into apo-metalloenzymes will be reviewed.  相似文献   

13.
Escherichia coli MoeA and MogA are required for molybdenum cofactor biosynthesis and are believed to function in the addition of molybdenum to the dithiolene of molybdopterin to form molybdenum cofactor. Here we show that moeA(-) and mogA(-) cells are able to synthesize molybdopterin, but both are deficient in molybdenum incorporation and, as a consequence, are deficient in the formation of molybdopterin-guanine dinucleotide. Human sulfite oxidase expressed in E. coli moeA(-) could be activated in vitro in the presence of MoeA and low concentrations of molybdate. Sulfite oxidase purified from the moeA(-) lysate was also activated, although to a lesser extent than observed in the presence of lysate. MogA was incapable of activating sulfite oxidase expressed in E. coli mogA(-). These results demonstrate that molybdenum insertion into molybdopterin is required for molybdopterin-guanine dinucleotide formation, and that MoeA facilitates molybdenum incorporation at low levels of molybdate, but MogA has an alternative function, possibly as a carrier for molybdopterin during molybdenum incorporation.  相似文献   

14.
15.
Characterization of molybdenum cofactor from Escherichia coli.   总被引:4,自引:6,他引:4       下载免费PDF全文
Molybdenum cofactor activity was found in the soluble fraction of cell-free extracts of Escherichia coli grown aerobically in media supplemented with molybdate. Cofactor was detected by its ability to complement the nitrate reductase-deficient mutant of Neurospora crossa, nit-1, resulting in the vitro formation of nitrate reductase activity. Acid treatment of E. coli extracts was not required for release of cofactor activity. Cofactor was able to diffuse through a membrane of nominal 2,000-molecular-weight cutoff and was insensitive to trypsin. The cofactor was associated with a carrier molecule (approximately 40,000 daltons) during gel filtration and sucrose gradient centrifugation, but was easily removed from the carrier by dialysis. The carrier molecule protected the cofactor from inactivation by heat or oxygen. E. coli grown in molybdenum-free media, without and with tungsten, synthesized a metal-free "empty" cofactor and its tungsten analog, respectively, both of which were subsequently activated by the addition of molybdate. Empty and tungsten-containing cofactor complemented the nitrate reductase subunits in the nit-1 extract, forming inactive, but intact, 7.9S nitrate reductase. Addition of molybdate to the enzyme complemented in this manner restored nitrate reductase activity.  相似文献   

16.
17.
18.
The molybdenum cofactor (Moco) is synthesized by an ancient and conserved biosynthetic pathway. In plants, the two-domain protein Cnx1 catalyzes the insertion of molybdenum into molybdopterin (MPT), a metal-free phosphorylated pyranopterin carrying an ene-dithiolate. Recently, we identified a novel biosynthetic intermediate, adenylated molybdopterin (MPT-AMP), which is synthesized by the C-terminal G domain of Cnx1. Here, we show that MPT-AMP and molybdate bind in an equimolar and cooperative way to the other N-terminal E domain (Cnx1E). Tungstate and sulfate compete for molybdate, which demonstrates the presence of an anion-binding site for molybdate. Cnx1E catalyzes the Zn(2+)-/Mg(2+)-dependent hydrolysis of MPT-AMP but only when molybdate is bound as co-substrate. MPT-AMP hydrolysis resulted in stoichiometric release of Moco that was quantitatively incorporated into plant apo-sulfite oxidase. Upon Moco formation AMP is release as second product of the reaction. When comparing MPT-AMP hydrolysis with the formation of Moco and AMP a 1.5-fold difference in reaction rates were observed. Together with the strict dependence of the reaction on molybdate the formation of adenylated molybdate as reaction intermediate in the nucleotide-assisted metal transfer reaction to molybdopterin is proposed.  相似文献   

19.
Tetrahydrobiopterin (BH4) is synthesized from guanosine triphosphate (GTP) by GTP cyclohydrolase I (GCH), 6-pyruvoyltetrahydropterin synthase (PTS), and sepiapterin reductase (SPD). GCH is the rate-limiting enzyme. BH4 is a cofactor for three pteridine-requiring monooxygenases that hydroxylate aromatic L-amino acids, i.e., tyrosine hydroxylase (TH), tryptophan hydroxylase (TPH), and phenylalanine hydroxylase (PAH), as well as for nitric oxide synthase (NOS). The intracellular concentrations of BH4, which are mainly determined by GCH activity, may regulate the activity of TH (an enzyme-synthesizing catecholamines from tyrosine), TPH (an enzyme-synthesizing serotonin and melatonin from tryptophan), PAH (an enzyme required for complete degradation of phenylalanine to tyrosine, finally to CO2 + H2O), and also the activity of NOS (an enzyme forming NO from arginine), Dominantly inherited hereditary progressive dystonia (HPD), also termed DOPA-responsive dystonia (DRD) or Segawa's disease, is a dopamine deficiency in the nigrostriatal dopamine neurons, and is caused by mutations of one allele of the GCH gene. GCH activity and BH4 concentrations in HPD/DRD are estimated to be 2-20% of the normal value. By contrast, recessively inherited GCH deficiency is caused by mutations of both alleles of the GCH gene, and the GCH activity and BH4 concentrations are undetectable. The phenotypes of recessive GCH deficiency are severe and complex, such as hyperphenylalaninemia, muscle hypotonia, epilepsy, and fever episode, and may be caused by deficiencies of various neurotransmitters, including dopamine, norepinephrine, serotonin, and NO. The biosynthesis of dopamine, norepinephrine, epinephrine, serotonin, melatonin, and probably NO by individual pteridine-requiring enzymes may be differentially regulated by the intracellular concentration of BH4, which is mainly determined by GCH activity. Dopamine biosynthesis in different groups of dopamine neurons may be differentially regulated by TH activity, depending on intracellular BH4 concentrations and GCH activity. The nigrostriatal dopamine neurons may be most susceptible to a partial decrease in BH4, causing dopamine deficiency in the striatum and the HPD/DRD phenotype.  相似文献   

20.
The biosynthesis of the iron-molybdenum cofactor (FeMo-co) of dinitrogenase was investigated using 99Mo to follow the incorporation of Mo into precursors. 99Mo label accumulates on dinitrogenase only when all known components of the FeMo-co synthesis system, NifH, NifNE, NifB-cofactor, homocitrate, MgATP, and reductant, are present. Furthermore, 99Mo label accumulates only on the gamma protein, which has been shown to serve as a chaperone/insertase for the maturation of apodinitrogenase when all known components are present. It appears that only completed FeMo-co can accumulate on the gamma protein. Very little FeMo-co synthesis was observed when all known components are used in purified forms, indicating that additional factors are required for optimal FeMo-co synthesis. 99Mo did not accumulate on NifNE under any conditions tested, suggesting that Mo enters the pathway at some other step, although it remains possible that a Mo-containing precursor of FeMo-co that is not sufficiently stable to persist during gel electrophoresis occurs but is not observed. 99Mo accumulates on several unidentified species, which may be the additional components required for FeMo-co synthesis. The molybdenum storage protein was observed and the accumulation of 99Mo on this protein required nucleotide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号