共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Garcion C Guilleminot J Kroj T Parcy F Giraudat J Devic M 《The Plant journal : for cell and molecular biology》2006,48(6):895-906
EMB506 is a chloroplast protein essential for embryo development, the function of which is unknown. A two-hybrid interaction screen was performed to provide insight into the role of EMB506. A single interacting partner, AKRP, was identified among a cDNA library from immature siliques. The AKR gene (Zhang et al., 1992, Plant Cell 4, 1575-1588) encodes a protein containing five ankyrin repeats, very similar to EMB506. Protein truncation series demonstrated that both proteins interact through their ankyrin domains. Using reverse genetics, we showed that loss of akr function resulted in an embryo-defective (emb) phenotype indistinguishable from the emb506 phenotype. Transient expression of the signal peptide of AKRP fused to green fluorescent protein demonstrated the chloroplast localization of AKRP. The ABI3 promoter was used to express AKR in a seed-specific manner in order to analyse the post-embryonic effect of AKR loss of function in akr/akr seedlings. Homozygous fertile and viable akr/akr plants were obtained. These plants exhibited mild to severe defects in chloroplast and leaf cellular organization. We conclude that EMB506 and AKRP are involved in crucial and tightly controlled events in plastid differentiation linked to cell differentiation, morphogenesis and organogenesis during the plant life cycle. 相似文献
3.
TANMEI/EMB2757 encodes a WD repeat protein required for embryo development in Arabidopsis 总被引:6,自引:0,他引:6
下载免费PDF全文

Yamagishi K Nagata N Yee KM Braybrook SA Pelletier J Fujioka S Yoshida S Fischer RL Goldberg RB Harada JJ 《Plant physiology》2005,139(1):163-173
We identified the Arabidopsis (Arabidopsis thaliana) tanmei/emb2757 (tan) mutation that causes defects in both embryo and seedling development. tan mutant embryos share many characteristics with the leafy cotyledon (lec) class of mutants in that they accumulate anthocyanin, are intolerant of desiccation, form trichomes on cotyledons, and have reduced accumulation of storage proteins and lipids. Thus, TAN functions both in the early and late phases of embryo development. Moreover, the TAN and LEC genes interact synergistically, suggesting that they do not act in series in the same genetic pathway but, rather, that they have overlapping roles during embryogenesis. tan mutants die as embryos, but immature mutant seeds can be germinated in culture. However, tan mutant seedlings are defective in shoot and root development, their hypocotyls fail to elongate in the dark, and they die as seedlings. We isolated the TAN gene and showed that the predicted polypeptide has seven WD repeat motifs, suggesting that TAN forms complexes with other proteins. Together, these results suggest that TAN interacts with other proteins to control many aspects of embryo development. 相似文献
4.
A FUSCA gene of Arabidopsis encodes a novel protein essential for plant development. 总被引:9,自引:8,他引:9
下载免费PDF全文

Arabidopsis fusca mutants display striking purple coloration due to anthocyanin accumulation in their cotyledons. We describe six recessive fusca mutants isolated from Agrobacterium-transformed Arabidopsis families. These mutants first become defective during embryogenesis and exhibit limited seedling development. Double mutant constructs revealed that developmental defects were not simply a consequence of anthocyanin accumulation. fusca seedlings showed altered responses to several environmental and endogenous factors. Allelism tests established that three fusca loci are represented by mutants previously described as defective in light-regulated responses. To study the molecular basis of the fusca phenotype, we cloned the FUS6 gene. FUS6 encodes a novel protein that is hydrophilic, alpha-helical, and contains potential protein kinase C phosphorylation sites. The FUSCA proteins appear to act in a network of signal transduction pathways critical for plant development. 相似文献
5.
The Arabidopsis HUELLENLOS gene, which is essential for normal ovule development, encodes a mitochondrial ribosomal protein. 总被引:4,自引:0,他引:4
D J Skinner S C Baker R J Meister J Broadhvest K Schneitz C S Gasser 《The Plant cell》2001,13(12):2719-2730
The HUELLENLOS (HLL) gene participates in patterning and growth of the Arabidopsis ovule. We have isolated the HLL gene and shown that it encodes a protein homologous to the L14 proteins of eubacterial ribosomes. The Arabidopsis genome also includes a highly similar gene, HUELLENLOS PARALOG (HLP), and genes for both cytosolic (L23) and chloroplast ribosome L14 proteins. Phylogenetic analysis shows that HLL and HLP differ significantly from these other two classes of such proteins. HLL and HLP fusions to green fluorescent protein were localized to mitochondria. Ectopic expression of HLP complemented the hll mutant, indicating that HLP and HLL share redundant functions. We conclude that HLL and HLP encode L14 subunits of mitochondrial ribosomes. HLL mRNA was at significantly higher levels than HLP mRNA in pistils, with the opposite pattern in leaves. This differential expression can explain the confinement of effects of hll mutations to gynoecia and ovules. Our elucidation of the nature of HLL shows that metabolic defects can have specific effects on developmental patterning. 相似文献
6.
The ankyrin repeat containing SOCS box protein 5: a novel protein associated with arteriogenesis 总被引:1,自引:0,他引:1
Boengler K Pipp F Fernandez B Richter A Schaper W Deindl E 《Biochemical and biophysical research communications》2003,302(1):17-22
Arteriogenesis, the growth of pre-existing collateral arteries, can be induced in rabbit by occlusion of the femoral artery. In order to identify and characterize genes differentially expressed during the early phase of arteriogenesis, cDNA of collateral arteries 24h after femoral ligation or sham operation was subjected to suppression subtractive hybridization. We identified the ankyrin repeat containing SOCS box protein 5 (asb5) and cloned the rabbit full-length cDNA. Asb5 was demonstrated to be a single-copy gene. We localized the asb5 protein in vivo in endothelial and smooth muscle cells of collateral arteries as well as in satellite cells. Asb5 was significantly upregulated in growing collateral arteries on mRNA and protein level. The infusion of doxorubicin in rabbit led to a significant decrease of the asb5 mRNA. In summary, our data show that asb5 is a novel protein implicated in the initiation of arteriogenesis. 相似文献
7.
8.
In Drosophila melanogaster, the process of oogenesis is initiated with the asymmetric division of a germline stem cell. This division results in the self-renewal of the stem cell and the generation of a daughter cell that undergoes four successive mitotic divisions to produce a germline cyst of 16 cells. Here, we show that shut-down is essential for the normal function of the germline stem cells. Analysis of weak loss-of-function alleles confirms that shut-down is also required at later stages of oogenesis. Clonal analysis indicates that shut-down functions autonomously in the germline. Using a positional cloning approach, we have isolated the shut-down gene. Consistent with its function, the RNA and protein are strongly expressed in the germline stem cells and in 16-cell cysts. The RNA is also present in the germ cells throughout embryogenesis. shut-down encodes a novel Drosophila protein similar to the heat-shock protein-binding immunophilins. Like immunophilins, Shut-down contains an FK506-binding protein domain and a tetratricopeptide repeat. In plants, high-molecular-weight immunophilins have been shown to regulate cell divisions in the root meristem in response to extracellular signals. Our results suggest that shut-down may regulate germ cell divisions in the germarium. 相似文献
9.
10.
Li J Ji C Zheng H Fei X Zheng M Dai J Gu S Xie Y Mao Y 《Cellular & molecular biology letters》2005,10(1):185-193
Ankyrin repeat, one of the most important protein motifs, plays a wide variety of roles in protein-protein interactions and in the signal pathways. Via large-scale sequencing, a novel 941-bp gene was isolated from an 18-week old human fetal brain cDNA library. It encodes a putative protein of 158 amino acid residues with four conserved ankyrin repeat domains. It displays a high degree of homology with rat low-density lipoprotein receptor-related protein 2-binding protein (Lrp2bp), and was therefore was named hLrp2bp (human Lrp2bp). The hLrp2bp gene was located in chromosome 4q35 and the conserved ankyrin repeat domains were located between amino acid residues 10 and 116. RT-PCR revealed that hLrp2bp was mainly expressed in the human testis, small intestine, colon and blood leukocytes, and in human pancreatic adenocarcinoma cells. A HEK293 cell was transfected with the ORF of hLrp2bp, and analyses showed that the protein was distributed both in the cytoplasm and nucleus. 相似文献
11.
We have isolated the Hansenula polymorpha ATG25 gene, which is required for glucose-induced selective peroxisome degradation by macropexophagy. ATG25 represents a novel gene that encodes a 45 kDa coiled-coil protein. We show that this protein colocalizes with Atg11 on a small structure, which most likely represents the pre-autophagosomal structure (PAS). In cells of a constructed ATG25 deletion strain (atg25) peroxisomes are constitutively degraded by nonselective microautophagy, a process that in WT H. polymorpha is only observed at nitrogen limitation conditions. This suggests that nonselective microautophagy is deregulated in H. polymorpha atg25 cells. 相似文献
12.
Glycosyltransferases are enzymes that catalyze the attachment of a sugar molecule to specific acceptor molecules. These enzymes have been shown to play important roles in a number of biological processes. Whereas a large number of putative glycosyltransferase genes have been identified by genomic sequencing, the functions of most of these genes are unknown. Here we report the characterization of an Arabidopsis mutant, designated gaolaozhuangren1 (glz1), which is allelic to parvus characterized recently. The glz1 mutant exhibited a reduced plant stature, reduced size of organs in the shoot and dark-green leaves, indicating an important role of GLZ1 gene in normal development. The earliest GLZ1 expression appears at the shoot apical region of 4-d-old seedlings, which coincides with the onset of the glz1 morphological phenotypes. GLZ1 is expressed in a tissue-specific and developmentally regulated manner, predominantly in the stem and silique, and moderately in the flower. GLZ1 expression is strong in the midrib of rosette and cauline leaves; however, its expression was not detectable in the midrib of the cotyledon. Further analyses revealed that carbohydrate composition and distribution were aberrant in the glz1 mutant. These, together with the GLZ1 expression pattern, suggest a requirement for the GLZ1 function in normal sink-source transition during plant development. 相似文献
13.
14.
Gómez-Skarmeta J de La Calle-Mustienes E Modolell J 《Development (Cambridge, England)》2001,128(4):551-560
In the early Xenopus embryo, the Xiro homeodomain proteins of the Iroquois (Iro) family control the expression of proneural genes and the size of the neural plate. We report that Xiro1 functions as a repressor that is strictly required for neural differentiation, even when the BMP4 pathway is impaired. We also show that Xiro1 and Bmp4 repress each other. Consistently, Xiro1 and Bmp4 have complementary patterns of expression during gastrulation. The expression of Xiro1 requires Wnt signaling. Thus, Xiro1 is probably a mediator of the known downregulation of Bmp4 by Wnt signaling. 相似文献
15.
Sasamura T Sasaki N Miyashita F Nakao S Ishikawa HO Ito M Kitagawa M Harigaya K Spana E Bilder D Perrimon N Matsuno K 《Development (Cambridge, England)》2003,130(20):4785-4795
Notch signalling, which is highly conserved from nematodes to mammals, plays crucial roles in many developmental processes. In the Drosophila embryo, deficiency in Notch signalling results in neural hyperplasia, commonly referred to as the neurogenic phenotype. We identify a novel maternal neurogenic gene, neurotic, and show that it is essential for Notch signalling. neurotic encodes a Drosophila homolog of mammalian GDP-fucose protein O-fucosyltransferase, which adds fucose sugar to epidermal growth factor-like repeats and is known to play a crucial role in Notch signalling. neurotic functions in a cell-autonomous manner, and genetic epistasis tests reveal that Neurotic is required for the activity of the full-length but not an activated form of Notch. Further, we show that neurotic is required for Fringe activity, which encodes a fucose-specific beta1, 3 N-acetylglucosaminyltransferase, previously shown to modulate Notch receptor activity. Finally, Neurotic is essential for the physical interaction of Notch with its ligand Delta, and for the ability of Fringe to modulate this interaction in Drosophila cultured cells. We present an unprecedented example of an absolute requirement of a protein glycosylation event for a ligand-receptor interaction. Our results suggest that O-fucosylation catalysed by Neurotic is also involved in the Fringe-independent activities of Notch and may provide a novel on-off mechanism that regulates ligand-receptor interactions. 相似文献
16.
17.
18.
The arabidopsis serrate gene encodes a zinc-finger protein required for normal shoot development 总被引:9,自引:0,他引:9
下载免费PDF全文

Organogenesis in plants depends upon the proper regulation of many genes, but how such necessary changes in gene expression are coordinated is largely unknown. The serrate (se) mutant of Arabidopsis displays defects in the initiation and elaboration of cotyledons and post-embryonic lateral organs. Cloning the SE gene revealed that it encodes a protein with a single, C(2)H(2)-type, zinc finger related to genes in other eukaryotes. Consistent with a role in organogenesis, the SE gene is transcribed in shoot meristems and in emerging organ primordia throughout development. Expression of the SE cDNA under the control of a heterologous promoter caused both accelerated and arrested plant growth, and these phenotypes were due to overexpression and co-suppression of the SE gene, respectively. Our analysis of the se mutant and the SE gene suggests a role for the SE gene product in regulating changes in gene expression via chromatin modification. Consistent with this proposed function, a synergistic double mutant phenotype was seen for plants mutant at both the SE locus and the locus encoding the largest subunit of chromatin assembly factor I. 相似文献
19.
20.
《植物学报(英文版)》2017,(9)
In sexual organisms, division of the zygote initiates a new life cycle. Although several genes involved in zygote division are known in plants, how the zygote is activated to start embryogenesis has remained elusive.Here, we showed that a mutation in ZYGOTE-ARREST 3(ZYG3) in Arabidopsis led to a tight zygote-lethal phenotype.Map-based cloning revealed that ZYG3 encodes the transfer RNA(tRNA) ligase AtRNL, which is a single-copy gene in the Arabidopsis genome. Expression analyses showed that AtRNL is expressed throughout zygotic embryogenesis, and in meristematic tissues. Using pAtRNL::cAtRNL-sYFP-complemented zyg3/zyg3 plants, we showed that AtRNL is localized exclusively in the cytoplasm, suggesting that tRNA splicing occurs primarily in the cytoplasm. Analyses using partially rescued embryos showed that mutation in AtRNL compromised splicing of intron-containing tRNA.Mutations of two tRNA endonuclease genes, SEN1 and SEN2, also led to a zygote-lethal phenotype. These results together suggest that tRNA splicing is critical for initiating zygote division in Arabidopsis. 相似文献