首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The fine structure of L cells is described at 30 min and 24 h after enucleation by centrifugation in cytochalasin B. The morphology of the 30-min enucleates is the same as that of the cytoplasm of nucleated cells. Centrioles, a normal Golgi apparatus, endoplasmic reticulum, mitochondria, microtubules, and some microfilaments, are present in enucleates. At 24 h after enucleation, the enucleates are extensively vacuolated. The cisternae of the Golgi apparatus are extremely dilated, and the granular ER is sometimes dilated. Microtubules, and, in particular, microfilaments, are still abundant. Nuclei removed from cells by enucleation in cytochalasin B are surrounded by a thin shell of cytoplasm containing numerous ribosomes, an occasional mitochondrion, a few pieces of endoplasmic reticulum, and an enclosing plasma membrane. Continuities between the nuclear envelope and the ER are particularly frequent. These nuclei possesses a normal fine structure.  相似文献   

2.
db—cAMP对转化细胞钙调素基因表达与细胞骨架的影响   总被引:5,自引:0,他引:5  
We have demonstrated that the distribution of microtubules (MT), microfilaments (MF) and fibronectin (FN) were diminished, while the gene expression of the calmodulin and c-fos enhanced in the transformed C3 H10 T1/2 cells. After treatment with 1 mM db-cAMP for 1 hr. and 2 hrs., there was an early and rapidly reduced in gene expression of calmodulin and c-fos respectively. After db-cAMP treatment for 4-5 days, the number of Capping cells of ConA binding decreased significantly and the cell surface microvilli decreased also. The growth of treated cells was inhibited markedly. By using 4F1 cDNA probe, which is preferentially expressed in G1 phase, we have found that the db-cAMP treated cells were accumulated at G1 phase. Of particular interest is the fact that the distribution of microtubules, microfilaments and fibronectin were recovered after treatment with 1 mM db-cAMP for 6 days. It is suggested that the inhibition of proliferation, alteration of phenotype and recovery of cytoskeleton in transformed cells after treatment with db-cAMP are related to the inhibition of gene expression of calmodulin.  相似文献   

3.
The dependence of cytoplasmic membranes upon the nucleus was studied by examining enucleated amebae with the electron microscope at intervals up to 1 wk after enucleation. Amebae were cut into two approximately equal parts, and the fine structure of the enucleated portions was compared with that of the nucleated parts and starved whole cells which had been maintained under the same conditions. Golgi bodies were diminished in size 1 day after enucleation and were not detected in cells enucleated for more than 2 days. The endoplasmic reticulum of enucleated cells appeared to increase in amount and underwent changes in its morphology. The sparsely scattered short tubules of granular endoplasmic reticulum present in unmanipulated amebae from stock cultures were replaced in 1–3-day enucleates by long narrow cisternae. In 3–7-day enucleates, similar cisternae of granular endoplasmic reticulum encircled areas of cytoplasm partially or completely. It was estimated that in most cases hundreds of these areas encircled by two rough membranes were formed per enucleated cell. The number of ribosomes studding the surface of the endoplasmic reticulum decreased progressively with time after enucleation. In contrast, the membranes of nucleated parts and starved whole cells did not undergo these changes. The possible identification of membrane-encircled areas as cytolysomes and their mode of formation are considered. Implications of the observations regarding nuclear regulation of the form of the Golgi apparatus and the endoplasmic reticulum are discussed.  相似文献   

4.
The formation of axons induced by dibutyryl-adenosine 3′,5′-cyclic monophosphate (db-cAMP) in neuroblastoma cells was inhibited by concanavalin A (ConA) and vinblastine. These compounds also caused the retraction of existing axons. After removal of ConA or vinblastine, addition of db-cAMP again resulted in axon formation. The cytotoxicity of ConA and vinblastine for neuroblastoma cells was reduced when cell multiplication was inhibited by db-cAMP. Linearly growing normal fibroblasts were also more sensitive to the cytotoxic effect of ConA than confluent non-multiplying fibroblasts. The effects of ConA and vinblastine were additive both in their effects on axon formation and cytotoxicity. Wheat germ agglutinin (WGA) and lumicolchicine did not affect axon formation or reduce cell viability. It is suggested that ConA bound to the cell surface can interfere with the assembly of cytoplasmic microtubules involved in axon formation and cell division.  相似文献   

5.
转化的C_3H_(10)T_(1/2)细胞表现增殖速度加快、表面微绒毛增加,细胞变圆,叠层生长,ConA受体呈帽状分布,微管、微丝、纤粘蛋白分布明显减少。与增殖有关的癌基因c-fos表达增强,同时发现与细胞增殖、转化和细胞骨架调节有关的钙调素(CaM)基因表达加强。用1mmo/Ldb-cAMP处理转化细胞,观察到CaM基因和原癌基因c-fos的表达分别在处理后1小时和2小时急剧下降。处理后4—5天,转化细胞表型趋正常化,大部分细胞恢复单层生长。细胞表面微绒毛和泡状物减少,ConA受体帽状分布消失,恢复分散分布在细胞膜上的特点。细胞生长明显被抑制,用优先在G_1期表达的4F_1 cDNA为探针进行分子杂交,证实了经db-cAMP处理后的细胞被阻抑在G_1期。经db-cAMP处理6天的转化细胞中微管、微丝、纤粘蛋白基本恢复正常分布。实验表明CaM的表达增强与转化细胞表型变化和细胞骨架组装减弱密切相关,db-cAMP作用后CaM表达下降是抑制转化细胞增殖并使细胞表型和细胞骨架分布趋于正常的关键事件之一。  相似文献   

6.
We examined the fine structure of migrating granule cell neurons in cerebellar microexplant cultures. Radially migrating bipolar cells extended microspikes or small filopodia from their soma and processes and frequently made contact with neighboring cells. These microspikes contained microfilaments but no microtubules. At the later phase of the migration, in which they had symmetrical bipolar long processes, filopodia extending from perikarial region of cells contained microtubules, suggesting that they are precursors of the future thick perpendicular processes. When cell bodies changed orientation from radial to perpendicular, microtubules that were nucleated from perinuclear centrioles frequently extended into both thick radial and perpendicular processes from the perikarial region. Bundles of 10nm intermediate filaments also appeared in these processes. During migration by the perpendicular contact guidance, many filopodia extending from both the thick leading processes and thin trailing processes made close contacts with the radial parallel neurite. These findings suggest that; 1) The direct contact of the filopodia from both the growth cones and their processes of the granule cells to the neurite bundle plays roles in both the parallel and perpendicular contact guidances. 2) The spacial and temporal changes of cytoskeletons and the association of microtubules with perinuclear centrioles are important for the formation of perpendicular processes and initiation of the perpendicular contact guidance.  相似文献   

7.
《The Journal of cell biology》1985,101(5):1799-1807
Nerve growth factor (NGF) regulates the microtubule-dependent extension and maintenance of axons by some peripheral neurons. We show here that one effect of NGF is to promote microtubule assembly during neurite outgrowth in PC12 cells. Though NGF causes an increase in total tubulin levels, the formation of neurites and the assembly of microtubules follow a time course completely distinct from that of the tubulin induction. The increases in microtubule mass and neurite extension closely parallel 10- and 20-fold inductions of tau and MAP1, proteins shown previously to promote microtubule assembly in vitro. When NGF is removed from PC12 cells, neurites disappear, microtubule mass decreases, and both microtubule-associated proteins return to undifferentiated levels. These data suggest that the induction of tau and MAP1 in response to NGF promotes microtubule assembly and that these factors are therefore key regulators of neurite outgrowth.  相似文献   

8.
9.
cAMP induces neurite outgrowth in the rat pheochromocytoma cell line 12 (PC12). In particular, di-butyric cAMP (db-cAMP) induces a greater number of primary processes with shorter length than the number induced by nerve growth factor (NGF). db-cAMP up- and down-regulates GTP-RhoA levels in PC12 cells in a time-dependent manner. Tat-C3 toxin stimulates neurite outgrowth, whereas lysophosphatidic acid (LPA) and constitutively active (CA)-RhoA reduce neurite outgrowth, suggesting that RhoA inactivation is essential for the neurite outgrowth from PC12 cells stimulated by cAMP. In this study, the mechanism by which RhoA is inactivated in response to cAMP was examined. db-cAMP induces phosphorylation of RhoA and augments the binding of RhoA with Rho guanine nucleotide dissociation inhibitor (GDI). Moreover, RhoA (S188D) mimicking phosphorylated RhoA induces greater neurite outgrowth than RhoA (S188A) mimicking dephosphorylated form does. Additionally, db-cAMP increases GTP-Rap1 levels, and dominant negative (DN)-Rap1 and DN-Rap-dependent RhoGAP (ARAP3) block neurite outgrowth induced by db-cAMP. DN-p190RhoGAP and the Src inhibitor PP2 suppress neurite outgrowth, whereas transfection of c-Src and p190RhoGAP cDNAs synergistically stimulate neurite outgrowth. Taken together, RhoA is inactivated by phosphorylation of itself, by p190RhoGAP which is activated by Src, and by ARAP3 which is activated by Rap1 during neurite outgrowth from PC12 cells in response to db-cAMP.  相似文献   

10.
Cultured osteoblasts express three major types of cytoskeleton: actin microfilaments, microtubules, and intermediate filaments. The cytoskeletal network is thought to play an important role in the transmission and conversion of a mechanical stimulus into a biochemical response. To examine a role for the three different cytoskeletal networks in fluid shear stress-induced signaling in osteoblasts, we individually disrupted actin microfilaments, micro-tubules, and intermediate filaments in MC3T3-E1 osteoblasts with multiple pharmacological agents. We subjected these cells to 90 min of laminar fluid shear stress (10 dyn/cm(2)) and compared the PGE(2) and PGI(2) release and induction of cyclooxygenase-2 protein to control cells with intact cytoskeletons. Disruption of actin microfilaments, microtubules, or intermediate filaments in MC3T3-E1 cells did not prevent a significant fluid shear stress-induced release of PGE(2) or PGI(2). Furthermore, disruption of actin microfilaments or microtubules did not prevent a significant fluid shear stress-induced increase in cyclooxygenase-2 protein levels. Disruption of intermediate filaments with acrylamide did prevent the fluid shear stress-induced increase in cyclooxygenase-2 but also prevented a PGE(2)-induced increase in cyclooxygenase-2. Thus none of the three major cytoskeletal networks are required for fluid shear stress-induced prostaglandin release. Furthermore, although neither actin microfilaments nor microtubules are required for fluid shear stress-induced increase in cyclooxygenase-2 levels, the role of intermediate filaments in regulation of cyclooxygenase-2 expression is less clear.  相似文献   

11.

Aims

In the present study, we found that saccharin, an artificial calorie-free sweetener, promotes neurite extension in the cultured neuronal cells. The purposes of this study are to characterize the effect of saccharine on neurite extension and to determine how saccharin enhances neurite extension.

Main methods

The analyses were performed using mouse neuroblastoma N1E-115 cells and rat pheochromocytoma PC12 cells. Neurite extension was evaluated by counting the cells bearing neurites and measuring the length of neurites. Formation, severing and transportation of the microtubules were evaluated by immunostaining and western blotting analysis.

Key findings

Deprivation of glucose increased the number of N1E-115 cells bearing long processes. And the effect was inhibited by addition of glucose. Saccharin increased the number of these cells bearing long processes in a dose-dependent manner and total neurite length and longest neurite length in each cell. Saccharin also had a similar effect on NGF-treated PC12 cells. Saccharin increased the amount of the microtubules reconstructed after treatment with nocodazole, a disruptor of microtubules. The effect of saccharin on microtubule reconstruction was not influenced by dihydrocytochalasin B, an inhibitor of actin polymerization, indicating that saccharin enhances microtubule formation without requiring actin dynamics. In the cells treated with vinblastine, an inhibitor of microtubule polymerization, after microtubule reorganization, filamentous microtubules were observed more distantly from the centrosome in saccharin-treated cells, indicating that saccharin enhances microtubule severing and/or transportation.

Significance

These results suggest that saccharin enhances neurite extension by promoting microtubule organization.  相似文献   

12.
When the human myeloid leukemia cell line (HL60) is induced to differentiate with retinoic acid (RA), there is a concentration-dependent increase in transglutaminase (TGase) activity which peaks on day 5. While dibutyryl 3',5'-cyclic adenosine monophosphate (db-cAMP) alone produced only a slight increase in TGase activity in HL60 cells, the concomitant addition of db-cAMP (100 microM) with RA (10(-12)-10(-4) M) potentiates RA induction of TGase activity. Maximal increases in TGase activity (2- to 10-fold) were observed with 10(-4)-10(-7) M RA and when db-cAMP was present from 24 to 48 h after the addition of RA. The cyclic nucleotide enhancement was dose-dependent from 10 to 100 microM of cAMP. Less marked increases were observed with 8-bromo-cAMP and with the phosphodiesterase inhibitor theophylline. Although the simultaneous addition of PGE1 or PGE2 (10(-8)-10(-6) M) produced no enhancement of RA-induced TGase activity, adding PGE1 or PGE2 24 or 48 h following RA treatments produced an enhancement of TGase activity. The phosphodiesterase inhibitor potentiated the increases produced by db-cAMP and the prostaglandins. Dibutyryl cAMP enhanced the ability of RA to induce the cells to reduce nitroblue tetrazolium (NBT), a functional measure of differentiation, at lower concentrations of RA and with shorter treatment durations. cAMP potentiates RA-induced TGase activity in HL60 cells and the combination appears to be associated with enhanced RA-induced differentiation.  相似文献   

13.
The effect of melatonin (5-methoxy-N-acetyltryptamine) on microtubule assembly was assessed by means of viscometry, cell kinetics and [3H]colchicine binding studies. Evidence presented shows that melatonin has no effect on the in vitro assembly of bovine brain microtubules. [3H]Colchicine binding is not inhibited by melatonin in either crude or purified tubulin preparations. Furthermore, no increase in mitotic index is observed when Chinese hamster ovary cells are treated with melatonin; nor is neurite formation in neurobiastoma cells in culture affected by melatonin. It is concluded that melatonin does not interact with microtubules in a manner similar to colchicine and the Vinca alkaloids and it should not be classified as a colchicine-like mitotic inhibitor.  相似文献   

14.
A critical role for the small GTPase Rho and one of its targets, p160ROCK (a Rho-associated coiled coil-forming protein kinase), in neurite remodeling was examined in neuroblastoma N1E-115 cells. Using wild-type and a dominant-negative form of p160ROCK and a p160ROCK-specific inhibitor, Y-27632, we show here that p160ROCK activation is necessary and sufficient for the agonist-induced neurite retraction and cell rounding. The neurite retraction was accompanied by elevated phosphorylation of myosin light chain and the disassembly of the intermediate filaments and microtubules. Y-27632 blocked both neurite retraction and the elevation of myosin light chain phosphorylation in a similar concentration-dependent manner. On the other hand, suppression of p160ROCK activity by expression of a dominant-negative form of p160ROCK induced neurites in the presence of serum by inducing the reassembly of the intermediate filaments and microtubules. The neurite outgrowth by the p160ROCK inhibition was blocked by coexpression of dominant-negative forms of Cdc42 and Rac, indicating that p160ROCK constitutively and negatively regulates neurite formation at least in part by inhibiting activation of Cdc42 and Rac. The assembly of microtubules and intermediate filaments to form extended processes by inhibitors of the Rho–ROCK pathway was also observed in Swiss 3T3 cells. These results indicate that Rho/ROCK-dependent tonic inhibition of cell process extension is exerted via activation of the actomysin-based contractility, in conjunction with a suppression of assembly of intermediate filaments and microtubules in many cell types including, but not exclusive to, neuronal cells.  相似文献   

15.
Mouse neuroblastoma cells (clone NB2a) were cultured in the presence of 0.3–2.1% halothane in the gas phase for up to 72 h. Halothane inhibited neurite extension dose dependently and virtually abolished microspike formation even at the lowest concentration tested. These effects were completely reversible. Electron microscopy demonstrated that microfilaments measuring 40–80 Å in diameter are the only fibrous organelles visible within microspikes. When the cells were exposed to halothane, no microfilamentous complexes could be identified in any cells and the subcortical regions of neurites often appeared devoid of individual microfilaments. Microtubules were still present in neurites after exposure to halothane concentrations at which microfilaments disappeared. However, at concentrations above 1.0%, microtubules gradually appeared to decrease in number. Short-term experiments showed that existing neurites and microspikes rapidly retracted when suddenly exposed to culture medium equilibrated with 1.0% halothane and quickly reformed when the halothane was removed. The inhibition of neuroblastoma cell differentiation by halothane appears to be mediated by disruption of 40–80 Å diameter microfilaments.  相似文献   

16.
Cytoskeletal elements may be important in connexin transport to the cell surface, cell surface gap junction plaque formation and/or gap junction internalization. In this study, fluorescence recovery after photobleaching was used to examine the role of microfilaments and microtubules in the recruitment and coalescence of green fluorescent protein-tagged Cx43 (Cx43-GFP) or yellow fluorescent tagged-Cx26 (Cx26-YFP) into gap junctions in NRK cells. In untreated cells, both Cx26-YFP and Cx43-GFP were recruited into gap junctions within photobleached areas of cell-cell contact within 2 hrs. However, disruption of microfilaments with cytochalasin B inhibited the recruitment and assembly of both Cx26-YFP and Cx43-GFP into gap junctions within photobleached areas. Surprisingly, disruption of microtubules with nocodazole inhibited the recruitment of Cx43-GFP into gap junctions but had limited effect on the transport and clustering of Cx26-YFP into gap junctions within the photobleached regions of cell-cell contact. These results suggest that the recruitment of Cx43-GFP and Cx26-YFP to the cell surface or their lateral clustering into gap junctions plaques is dependent in part on the presence of intact actin microfilaments while Cx43-GFP was more dependent on intact microtubules than Cx26-YFP.  相似文献   

17.
Cytoskeletal elements may be important in connexin transport to the cell surface, cell surface gap junction plaque formation and/or gap junction internalization. In this study, fluorescence recovery after photobleaching was used to examine the role of microfilaments and microtubules in the recruitment and coalescence of green fluorescent protein-tagged Cx43 (Cx43-GFP) or yellow fluorescent tagged-Cx26 (Cx26-YFP) into gap junctions in NRK cells. In untreated cells, both Cx26-YFP and Cx43-GFP were recruited into gap junctions within photobleached areas of cell-cell contact within 2 hrs. However, disruption of microfilaments with cytochalasin B inhibited the recruitment and assembly of both Cx26-YFP and Cx43-GFP into gap junctions within photobleached areas. Surprisingly, disruption of microtubules with nocodazole inhibited the recruitment of Cx43-GFP into gap junctions but had limited effect on the transport and clustering of Cx26-YFP into gapjunctions within the photobleached regions of cell-cell contact. These results suggest that the recruitment of Cx43-GFP and Cx26-YFP to the cell surface or their lateral clustering into gap junctions plaques is dependent in part on the presence of intact actin microfilaments while Cx43-GFP was more dependent on intact microtubules than Cx26-YFP.  相似文献   

18.
Rho family GTPases have been shown to be involved in the regulation of neuronal cell morphology, including neurite extension and retraction. Rho activation leads to neurite retraction and cell rounding, whereas Rac and Cdc42 are implicated in the promotion of filopodia and lamellipodia formation in growth cones and, therefore, in neurite extension. In this study, we examined the morphological role of Rnd1, a new member of Rho family GTPases, in PC12 cells, and found that expression of Rnd1 by itself caused the formation of many neuritic processes from the cell body with disruption of the cortical actin filaments, the processes having microtubules but few filamentous actin and neurofilaments. Treatment with cytochalasin D, an inhibitor of actin polymerization, could mimic the effects of expression of Rnd1, in that this inhibitor disrupted the cortical actin filaments and induced the formation of many thin processes containing microtubules. The process formation induced by Rnd1 was inhibited by dominant negative Rac1. These results suggest that Rnd1 induces the Rac-dependent neuritic process formation in part by disruption of the cortical actin filaments.  相似文献   

19.
Cytoskeletal elements may be important in connexin transport to the cell surface, cell surface gap junction plaque formation and/or gap junction internalization. In this study, fluorescence recovery after photobleaching was used to examine the role of microfilaments and microtubules in the recruitment and coalescence of green fluorescent protein-tagged Cx43 (Cx43-GFP) or yellow fluorescent tagged-Cx26 (Cx26-YFP) into gap junctions in NRK cells. In untreated cells, both Cx26-YFP and Cx43-GFP were recruited into gap junctions within photobleached areas of cell-cell contact within 2 hrs. However, disruption of microfilaments with cytochalasin B inhibited the recruitment and assembly of both Cx26-YFP and Cx43-GFP into gap junctions within photobleached areas. Surprisingly, disruption of microtubules with nocodazole inhibited the recruitment of Cx43-GFP into gap junctions but had limited effect on the transport and clustering of Cx26-YFP into gapjunctions within the photobleached regions of cell-cell contact. These results suggest that the recruitment of Cx43-GFP and Cx26-YFP to the cell surface or their lateral clustering into gap junctions plaques is dependent in part on the presence of intact actin microfilaments while Cx43-GFP was more dependent on intact microtubules than Cx26-YFP.  相似文献   

20.
Inactivated Sendai virus was used to fuse nucleated chick erythrocytes with mouse L and A9 cells which had been enucleated by centrifugation in the presence of cytochalasinB. The enucleation step removed the nuclei from more than 99% of the cells. During the fusion step, chick erythrocyte nuclei were introduced into 20% of the enucleated mouse cytoplasms. This resulted in the formation of a large number of "reconstituted cells" where practically all the cytoplasm originated from the mouse cell while the nucleus was of chick origin. The chick erythrocyte nuclei appeared to become well integrated into the mouse cytoplasms since they increased dramatically in size and dry mass, formed nucleolus-like bodies, and resumed RNA synthesis. This, however, did not prevent a gradual decrease in the rate of protein synthesis in the cytoplasm after the removal of the mouse nucleus. Protein synthesis decayed at a similar rate in both reconstituted and enucleated cells. The majority of these "cells" died within 48 h and all of them within 5 days after enucleation/fusion. By contrast, the small number of L cells which failed to become enucleated multiplied rapidly. The results obtained suggest that the reactivation of the chick erythrocyte nuclei is not fast enough to rescue the enucleated mouse cytoplasms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号