首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Although the zebrafish has become a popular model organism for vertebrate developmental and genetic analyses, its use in transgenic studies still suffers from the scarcity of homologous gene promoters. In the present study, three different zebrafish cDNA clones were isolated and sequenced completely, and their expression patterns were characterized by whole‐mount in situ hybridization as well as by Northern blot hybridization. The first clone encodes a type II cytokeratin (CK), which is specifically expressed in skin epithelia in early embryos and prominently expressed in the adult skin tissue. The second clone is muscle specific and encodes a muscle creatine kinase (MCK). The third clone, expressed ubiquitously in all tissues, is derived from an acidic ribosomal phosphoprotein P0 (arp) gene. In order to test the fidelity of zebrafish embryos in transgenic expression, the promoters of the three genes were isolated using a rapid linker‐mediated PCR approach and subsequently ligated to a modified green fluorescent protein (gfp) reporter gene. When the three hybrid GFP constructs were introduced into zebrafish embryos by microinjection, the three promoters were activated faithfully in developing zebrafish embryos. The 2.2‐kb ck promoter was sufficient to direct GFP expression in skin epithelia, although a weak expression in muscle was also observed in a few embryos. This pattern of transgenic expression is consistent with the expression pattern of the endogenous cytokeratin gene. The 1.5‐kb mck promoter/gfp was expressed exclusively in skeletal muscles and not elsewhere. By contrast, the 0.8‐kb ubiquitous promoter plus the first intron of the arp gene were capable of expressing GFP in a variety of tissues, including the skin, muscle, lens, neurons, notochord, and circulating blood cells. Our experiments, therefore, further demonstrated that zebrafish embryos can faithfully express exogenously introduced genes under the control of zebrafish promoters. Dev. Genet. 25:158–167, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

4.
In a search for novel, developmentally regulated genes we screened randomly picked cDNA clones, obtained from zebrafish mRNA, by in situ hybridization with digoxigenin-labelled riboprobes. Out of 150 clones tested, 1 codes for a new beta-globin gene and is expressed during embryogenesis. Here we describe its pattern of expression and its use as a marker for early zebrafish erythropoiesis.  相似文献   

5.
目的:探讨心室肌球蛋白重链(vmhc)基因启动子的心肌组织特异性.方法:利用PCR技术从斑马鱼基因组中克隆了vmhc编码区5’上游大小为1952bp的调控区域,应用酶切连接方法将vmhc启动子插入pGEFP-N1质粒,成功构建pEGFP-vmhc重组载体.再应用高保真DNA聚合酶PCR扩增包含vmhc启动子序列,增强型绿色荧光蛋白(EGFP)基因序列及3'UTR序列的基因片段,经过纯化后通过显微注射将vmhc-EGFP基因片段导入斑马鱼受精卵中.结果:注射后的斑马鱼心脏中出现绿色荧光,而其他部位无荧光出现.结论:vmhc启动子能够正确有效地驱动外源基因在斑马鱼心脏中特异表达,适合应用于心血管疾病的基因功能研究,基因靶向治疗等.  相似文献   

6.
Transgenesis using bacterial artificial chromosomes (BAC) offers greater fidelity in directing desirable expression of foreign genes. Application of this technology in the optically transparent zebrafish with fluorescent protein reporters enables unparalleled visual analysis of regulation of gene expression in a living organism. Here we describe a streamlined procedure of direct selecting multiple BAC clones based on public sequence databases followed by rapid modification with GFP or RFP for transgenic analysis in zebrafish. Experimental procedures for BAC DNA preparation, microinjection of zebrafish embryos and screening of transgenic zebrafish carrying GFP/RFP modified BAC clones are detailed.  相似文献   

7.
8.
为了解抗菌肽在饵料微藻中表达后的抗菌特性,构建海洋微拟球藻(Nannochloropsis oceanica)、湖泊微拟球藻(N.limnetica)和三角褐指藻(Phaeodactylum tricornutum)的抗菌肽(源自虹鳟,Cath-1a)表达质粒,分别转化相应的微藻,检测转化子中抗菌肽的表达量和体外抑菌效果,将藻株作为鱼饲料添加剂喂食斑马鱼,初步分析了抗菌肽及藻体自身的岩藻黄素和多不饱和脂肪酸对鱼免疫系统的影响。结果表明,外源抗菌肽在3种微藻中均可以成功表达,体外抑菌试验表明,仅三角褐指藻对水产领域常见致病菌爱德华氏菌(Edwardsiella tarda)有一定的抑菌效果,然而抗菌肽的表达并未使3种藻株的体外抑菌性增加。添加藻粉对斑马鱼的生长无明显影响,通过检测鱼体肝脏中与抗氧化和免疫相关基因的表达水平及丙二醛的含量,表明添加藻粉可增强斑马鱼的抗氧化和抗炎症能力,表达抗菌肽(PtC组)能进一步提高斑马鱼的免疫力。另外,添加Pt6(富含岩藻黄素)藻粉组比添加PtC的抗炎效果更显著,表明三角褐指藻中的岩藻黄素和二十碳五烯酸对增强鱼的抗病能力具有潜在作用。  相似文献   

9.
10.
为了解斑马鱼胚胎发育过程中FGF3基因的时空性表达情况,并探讨其对胚胎发育的调控作用,该研究分别提取2,4,8,12,24,36,48,72hpf斑马鱼胚胎的总RNA,经逆转录成cDNA,实时荧光定量PcR检测FGF3基因mRNA表达量;扩增FGF3基因特异片段,构建pGEM-T/FGF3基因片段重组质粒,经克隆及测序验证后,合成地高辛标记的反义RNA探针,以整体原位杂交法检测斑马鱼胚胎FGF3基因的空间性表达。结果显示:FGF3P基因在2hp胚胎就有表达,并持续至胚胎孵化,12hpf胚胎FGF3表达量达到高峰(P〈0.01);胚胎发育过程中心表达部位以头、尾、咽弓为主。由此得出结论,FGF3主要在胚胎发育早期表达,其表达可能与胚胎脑、眼、耳、咽弓及尾部器官的发育调控有关。  相似文献   

11.
朱智慧  胡敏杰  常长青  彭金荣 《遗传》2012,34(9):1174-1180
基因leg1(liver-enriched gene 1)首先在斑马鱼中作为肝脏富集表达基因被鉴定。进一步的研究揭示leg1编码的Leg1蛋白代表一类新型外分泌蛋白, 它在斑马鱼胚期肝脏生长发育过程中起关键作用。小鼠leg1(mu-leg1)是斑马鱼leg1(zb-leg1)的直系同源基因, 二者编码的蛋白氨基酸序列相似性为31%。文章通过巢式PCR从成年小鼠肝脏中成功克隆了mu-leg1的cDNA序列, 并对该基因在成年小鼠不同组织中的表达特征进行分析和鉴定。Northern印迹杂交和半定量RT-PCR分析结果显示, mu-leg1在成年小鼠小肠中而非肝脏中富集表达。此外, 用制备的mu-Leg1多克隆抗体进行Western印迹杂交, 结果显示mu-Leg1也是一个分泌蛋白。同时, 还建立了mu-leg1基因条件性剔除杂合子小鼠。这些材料为今后深入研究和探讨mu-Leg1蛋白的生化功能奠定了基础。  相似文献   

12.
为了进一步研究GH/PRL家族信号通路在鱼类早期胚胎发育中的作用, 研究以斑马鱼为模型, 通过Real-time PCR技术和原位杂交技术刻画并比较了GH/PRL家族成员及其受体家族成员在胚胎发育早期的表达模式。结果发现, 在配体家族成员中, 生长激素(Growth hormone, GH)和生长催乳素(Somatolactin, smtl)存在母源表达, 在受体家族成员中, ghra、ghrb存在母源表达。利用荧光素酶分析spi2.1启动子活性的结果初步证明, 在斑马鱼早期胚胎发育中, 各配体家族成员与GHRa之间可以发生广泛的互作。这一系列结果对于我们认识GH/PRL家族信号通路在斑马鱼早期发育中的作用具有重要的指导意义。    相似文献   

13.
目的:斑马鱼NUP98基因的克隆及其在个体早期发育过程中的表达情况研究。方法:提取斑马鱼胚胎的总RNA,制备地高辛标记的NUP98RNA反义探针,WISH(整体胚胎原位杂交)研究NUP98在斑马鱼早期发育过程中的表达;提取斑马鱼胚胎各时相和成鱼各组织的RNA,实时定量PCR检测斑马鱼胚胎各时相和成鱼各组织中的表达。结果:成功克隆斑马鱼NUP98基因,通过实时定量RT-PCR和原位杂交,获得NUP98基因在斑马鱼早期发育过程中的表达情况:NUP98在2-cell、32.cell、oblong、shield期、12h前普遍性表达(0.75h、1.7h、3.7h、6h、12h);24h以后在眼部、头部表达较多,特别是在脊索表达较高;斑马鱼NUP98在0、0.5h、6h、12h、24h、48h表达逐渐降低,到72h和96h表达有所增加,但是仍低于24h其表达水平;NUP98在成鱼眼、脑、鳔、肾、肝、睾丸、胆囊、卵巢、鳍、心、肠、肌肉、腮、皮肤的表达中,眼的表达最高,明显高于其他组织,腮、卵巢、肠的表达次之,肌肉、鳔、胆囊、睾丸、皮肤、脑的表达紧随其后,鳍、肝、心、肾的表达最低。结论:NUP98基因可能在个体脑部、脊索及眼部的早期发育过程中起到了重要作用;NUP98基因可能具有抑制肿瘤发生的作用,该基因的调节异常对白血病的发生发展可能有重要影响。这些研究结果为进一步研究NUP98基因在造血系统中的作用,评估其是否适合作为血液系统恶性肿瘤的新的治疗靶点等奠定了理论基础。  相似文献   

14.
Atypical Rett syndrome is a child neurodevelopmental disorder induced by mutations in CDKL5 gene and characterized by a progressive regression in development with loss of purposeful use of the hands, slowed brain and head growth, problems with walking, seizures, and intellectual disability. At the moment, there is no cure for this pathology and little information is available concerning animal models capable of mimicking its phenotypes, thus the development of additional animal models should be of interest to gain more knowledge about the disease. Zebrafish has been used successfully as model organism for many human genetic diseases; however, no information is available concerning the spatial and temporal expression of cdkl5 orthologous in this organism. In the present study, we identified the developmental expression patterns of cdkl5 in zebrafish by quantitative PCR and whole-mount in situ hybridization. cdkl5 is expressed maternally at low levels during the first 24 h of development. After that the expression of the gene increases significantly and it starts to be expressed mainly in the nervous system and in several brain structures, such as telencephalon, mesencephalon and diencephalon. The expression patterns of cdkl5 in zebrafish is in accordance with the tissues known to be affected in humans and associated to symptoms and deficits observed in Rett syndrome patients thus providing the first evidence that zebrafish could be an alternative model to study the molecular pathways of this disease as well as to test possible therapeutic approaches capable of rescuing the phenotype.  相似文献   

15.
Zeng S  Gong Z 《Gene》2002,294(1-2):45-53
In the present study, two gonad cDNA libraries from zebrafish testes and ovaries were constructed and a total of 1025 expressed sequence tag (EST) clones were generated from the two libraries: 501 from the testis library and 524 from the ovary library. A total of 641 of the EST clones were identified to share significant sequence identity with known sequences in GenBank, representing at least 478 different zebrafish genes. In order to understand the molecular compositions of the two gonad organs, the expression profiles of the identified clones in these two gonad cDNA libraries were analyzed. Both gonad libraries have a higher portion of clones for nuclear proteins and a lower portion for proteins in translational machinery, cytoskeleton and mitochondria than our previously characterized whole-adult cDNA library. Most abundant cDNA clones in the two gonad libraries were identified and over 10% of ovary clones were found to encode egg membrane proteins (zona pellucida or ZP proteins). Furthermore, the testis library showed a more even distribution of cDNA clones with relatively fewer abundant clones that tend to contribute redundant clones in EST projects; thus, the testis library can supply more unique and novel cDNA sequences in a zebrafish EST project. Another aim of this study is to identify cDNA clones that can be used as molecular markers for the analysis of the gonad development in zebrafish. Eleven potential clones were selected to analyze their expression patterns by Northern blot hybridization. Most of them showed a specific or predominant expression in the expected testis or ovary tissue. At last, four of the clones were found, by section in situ hybridization, to be expressed specifically in the germ cells of the testis or ovary and thus they are suitable molecular markers for analyses of spermatogenesis and oogenesis.  相似文献   

16.
17.
为研究转化生长因子 (Transforming growth factor , TGF)1对斑马鱼胚胎发育的调控作用, 通过NCBI获得TGF-1基因序列, TGF-1 cDNA全长1571 bp, 编码377个氨基酸。系统进化树分析发现, TGF-蛋白按照不同的类型严格聚类, 斑马鱼TGF-1与其他鱼类的TGF-1聚集到一个分支, 在进化中非常保守。对斑马鱼胚胎进行RT-PCR和Real-Time PCR检测显示, TGF-1基因为母源表达基因, 在分节期之前的表达水平比较低, 而从咽囊期开始持续高水平的表达。胚胎整体原位杂交发现, TGF-1基因在斑马鱼24 hpf 胚胎中开始有特异信号出现, TGF-1基因的表达主要分布在腮弓、侧线原基、耳囊、嗅觉基板、心脏和前肾等处, 表明TGF-1基因可能参与斑马鱼胚胎免疫调节、循环系统发育和侧线形成。用低氧处理斑马鱼胚胎, 发现低氧处理24h后斑马鱼胚胎发育延迟。利用Real-Time PCR和胚胎整体原位杂交检测发现, 低氧处理后发育延迟的斑马鱼胚胎中TGF-1 mRNA表达量较常氧组显著降低。以上结果表明, TGF-1基因参与斑马鱼胚胎发育调控, 并且可能与低氧处理后斑马鱼胚胎发育延迟有关。研究结果将为深入研究斑马鱼TGF-1基因的功能奠定基础。    相似文献   

18.
19.
The pharyngeal arches are one of the defining features of the vertebrates, with the first arch forming the mandibles of the jaw and the second forming jaw support structures. The cartilaginous elements of each arch are formed from separate migratory neural crest cell streams, which derive from the dorsal aspect of the neural tube. The second and more posterior crest streams are characterized by specific Hox gene expression. The zebrafish has a larger overall number of Hox genes than the tetrapod vertebrates, as the result of a duplication event in its lineage. However, in both zebrafish and mouse, there are just two members of Hox paralogue group 2 (PG2): Hoxa2 and Hoxb2. Here, we show that morpholino-mediated "knock-down" of both zebrafish Hox PG2 genes results in major defects in second pharyngeal arch cartilages, involving replacement of ventral elements with a mirror-image duplication of first arch structures, and accompanying changes to pharyngeal musculature. In the mouse, null mutants of Hoxa2 have revealed that this single Hox gene is required for normal second arch patterning. By contrast, loss-of-function of either zebrafish Hox PG2 gene individually has no phenotypic consequence, showing that these two genes function redundantly to confer proper pattern to the second pharyngeal arch. We have also used hoxb1a mis-expression to induce localized ectopic expression of zebrafish Hox PG2 genes in the first arch; using this strategy, we find that ectopic expression of either Hox PG2 gene can confer second arch identity onto first arch structures, suggesting that the zebrafish Hox PG2 genes act as "selector genes."  相似文献   

20.
The Mdm2 protein is most probably the main negative cellular regulator of the p53 tumor-suppressor protein. It was found to be overexpressed in a great number of human tumors and is considered as a potential target for anti-tumor therapies. Mdm2 is an essential gene in mice, yet its role in normal development and tissue differentiation is unknown. In order to study the role of this important protein in an evolutionary perspective, we cloned an Mdm2 cDNA from the fish Danio rerio and analyzed its expression pattern as well as the phenotypic consequences of its overexpression. The main functional domains as well as the interaction between Mdm2 and p53 are conserved in zebrafish. Moreover, we show here that the gene is expressed specifically during early development in neural and muscular tissues. Surprisingly, microinjection of Mdm2 mRNA in two-cell-stage embryos led to inhibition of cellular convergence during gastrulation. The clones derived from Mdm2 microinjected blastomeres were significantly smaller than those derived from control microinjections, and, in contrast to what was observed in Xenopus, did not develop tumors. Our results suggest that Mdm2 expression may be important during the differentiation of neural and muscular tissues of zebrafish. They also point to important differences between phyla in the susceptibility to tumor formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号