共查询到20条相似文献,搜索用时 0 毫秒
1.
The Cochliobolus carbonum SNF1 gene is required for cell wall-degrading enzyme expression and virulence on maize 总被引:3,自引:0,他引:3
The production of cell wall-degrading enzymes (wall depolymerases) by plant pathogenic fungi is under catabolite (glucose) repression. In Saccharomyces cerevisiae, the SNF1 gene is required for expression of catabolite-repressed genes when glucose is limiting. An ortholog of SNF1, ccSNF1, was isolated from the maize pathogen Cochliobolus carbonum, and ccsnf1 mutants of HC toxin-producing (Tox2(+)) and HC toxin-nonproducing (Tox2(-)) strains were created by targeted gene replacement. Growth in vitro of the ccsnf1 mutants was reduced by 50 to 95% on complex carbon sources such as xylan, pectin, or purified maize cell walls. Growth on simple sugars was affected, depending on the sugar. Whereas growth on glucose, fructose, or sucrose was normal, growth on galactose, galacturonic acid, maltose, or xylose was somewhat reduced, and growth on arabinose was strongly reduced. Production of HC toxin was normal in the Tox2(+) ccsnf1 mutant, as were conidiation, conidial morphology, conidial germination, and in vitro appressorium formation. Activities of secreted beta-1,3-glucanase, pectinase, and xylanase in culture filtrates of the Tox2(+) ccsnf1 mutant were reduced by 53, 24, and 65%, respectively. mRNA expression was downregulated under conditions that induced the following genes encoding secreted wall-degrading enzymes: XYL1, XYL2, XYL3, XYL4, XYP1, ARF1, MLG1, EXG1, PGN1, and PGX1. The Tox2(+) ccsnf1 mutant was much less virulent on susceptible maize, forming fewer spreading lesions; however, the morphology of the lesions was unchanged. The Tox2(-) ccsnf1 mutant also formed fewer nonspreading lesions, which also retained their normal morphology. The results indicate that ccSNF1 is required for biochemical processes important in pathogenesis by C. carbonum and suggest that penetration is the single most important step at which ccSNF1 is required. The specific biochemical processes controlled by ccSNF1 probably include, but are not necessarily restricted to, the ability to degrade polymers of the plant cell wall and to take up and metabolize the sugars produced. 相似文献
2.
Tuc2009 is a P335-type member of the tailed-phage supergroup Siphoviridae and was originally identified as a resident prophage of the gram-positive bacterium Lactococcus lactis UC509. A Tuc2009 gene designated tal2009 which is located within the morphogenic module was shown to specify a lytic activity within the 3' portion of its coding region. Comparative sequence analysis indicated that the cell wall-degrading part of Tal2009 is a member of the M37 protein family and that Tal2009 lacks a cell-binding domain, a finding supported by binding studies. Tal2009 appears to undergo self-mediated posttranslational processing in both L. lactis and Escherichia coli. Antibodies directed against a purified C-terminal portion of Tal2009 were used for immunoelectron microscopy, which showed that Tal2009 is located at the tail tip of Tuc2009. Antibody neutralization studies demonstrated that Tal2009-directed antibodies inhibited the ability of phage to mediate host lysis by more than 100-fold. These data indicate that tal2009 encodes a tail-associated lysin involved in localized cell wall degradation, thus allowing the Tuc2009 DNA injection machinery access to the membrane of its bacterial host. 相似文献
3.
Mycobacterial virulence factors 总被引:3,自引:0,他引:3
4.
5.
6.
beta-lactam antibiotics induce the SOS response and horizontal transfer of virulence factors in Staphylococcus aureus
下载免费PDF全文

Maiques E Ubeda C Campoy S Salvador N Lasa I Novick RP Barbé J Penadés JR 《Journal of bacteriology》2006,188(7):2726-2729
Antibiotics that interfere with DNA replication and cell viability activate the SOS response. In Staphylococcus aureus, the antibiotic-induced SOS response promotes replication and high-frequency horizontal transfer of pathogenicity island-encoded virulence factors. Here we report that β-lactams induce a bona fide SOS response in S. aureus, characterized by the activation of the RecA and LexA proteins, the two master regulators of the SOS response. Moreover, we show that β-lactams are capable of triggering staphylococcal prophage induction in S. aureus lysogens. Consequently, and as previously described for SOS induction by commonly used fluoroquinolone antibiotics, β-lactam-mediated phage induction also resulted in replication and high-frequency transfer of the staphylococcal pathogenicity islands, showing that such antibiotics may have the unintended consequence of promoting the spread of bacterial virulence factors. 相似文献
7.
8.
Motile actinomycetes capable of degrading walls of viable yeast cells were isolated from soil and identified as Oerskovia xanthineolytica. A lytic assay based on susceptibility of enzyme-treated cells to osmotic shock was developed, and 10 of 15 strains of O. xanthineolytica, Oerskovia turbata, and nonmotile Oerskovia- like organisms from other collections were found to possess yeast lytic activities. All lytic strains produced laminaranase and alpha-mannanase, but the amounts, determined by reducing group assays, were not proportional to the observed lytic activities. The Oerskovia isolates demonstrated chemotactic, predatory activity against various yeast strains and killed yeasts in mixed cultures. Of 15 carbon sources tested for production of lytic enzyme, purified yeast cell walls elicited the highest activity. Glucose repressed enzyme production and caused cells to remain in the microfilamentous and motile rod stages of the Oerskovia cell cycle. Crude lytic activity was optimal at pH 5.6 to 7.0 and inactivated by heating for 6 min at 50 degrees C. Partial purification by isoelectric focusing showed that all lytic activity was associated with four beta-(1-->3)-glucanases. The absence of protein disulfide reductase, N-acetyl-beta-d-hexosaminidase, and phosphomannanase in crude preparations indicated that the principal enzyme responsible for yeast wall lysis was a beta-(1-->3)-glucanase that produced relatively little reducing sugar from yeast glucan. 相似文献
9.
R.N.S. Haddadin S. Saleh I.S.I. Al‐Adham T.E.J. Buultjens P.J. Collier 《Journal of applied microbiology》2010,108(4):1281-1291
Aims: The effect of subminimal inhibitory concentrations (sub‐MICs) of cefalexin, ciprofloxacin and roxithromycin was investigated on some virulence factors [e.g. coagulase, Toxic Shock Syndrome Toxin 1 (TSST‐1) and biofilm formation] expressed by Staphylococcus aureus biofilms. Methods and Results: Biofilms were grown with and without the presence of 1/16 MIC of antibiotics on Sorbarod filters. Eluate supernatants were collected, and coagulase and TSST‐1 production were evaluated. Coagulase production was reduced in eluates exposed to roxithromycin when compared to control, while TSST‐1 production was reduced in biofilms exposed to cefalexin and to a lesser extent, ciprofloxacin. In addition, the ability of Staph. aureus to produce biofilm in microtitre plates in the presence of sub‐MIC antibiotics indicated that cefalexin induced biofilm formation at a wide range of sub‐MICs. TSST‐1 produced from the challenged and control biofilms was purified, and its proliferative activity was studied on single cell suspension of mouse splenocytes using MTS/PMS assay. No significant difference in the activity between the treated toxin and the control has been observed. Conclusions: Antibiotics at sub‐MIC levels interfere with bacterial biofilm virulence expression depending on the type and concentration of antibiotic used. Significance and Impact of the Study: The establishment of sub‐MICs of antibiotics in clinical situations may result in altered virulence states in pathogenic bacteria. 相似文献
10.
C Fernández-Tornero R López E García G Giménez-Gallego A Romero 《Nature structural biology》2001,8(12):1020-1024
Choline binding proteins are virulence determinants present in several Gram-positive bacteria. Because anchorage of these proteins to the cell wall through their choline binding domain is essential for bacterial virulence, their release from the cell surface is considered a powerful target for a weapon against these pathogens. The first crystal structure of a choline binding domain, from the toxin-releasing enzyme pneumococcal major autolysin (LytA), reveals a novel solenoid fold consisting exclusively of beta-hairpins that stack to form a left-handed superhelix. This unique structure is maintained by choline molecules at the hydrophobic interface of consecutive hairpins and may be present in other choline binding proteins that share high homology to the repeated motif of the domain. 相似文献
11.
Effect of sub-MIC antibiotics on the cell surface and extracellular virulence determinants of Pseudomonas cepacia 总被引:1,自引:0,他引:1
D. McKenney L. Willcock P.A. Trueman D.G. Allison 《Journal of applied microbiology》1994,76(2):190-195
The effects of sub-MICs of ciprofloxacin and tobramycin on the cell surface characteristics and extracellular virulence factors of Pseudomonas cepacia were evaluated. Cells were grown in batch culture under iron-deficient and iron-replete conditions. At sub-MIC levels that did not affect bacterial growth cell surface hydrophobicity decreased under both iron-replete and iron-depleted conditions with ciprofloxacin, but increased with tobramycin under iron-sufficient conditions. Exopolysaccharide synthesis, lipase production and siderophore production were all significantly increased by the presence of ciprofloxacin under both growth conditions. Outer membrane protein and lipopolysaccharide profiles were not affected by exposure to the two antibiotics. 相似文献
12.
Wilkinson 《Ecology letters》1999,2(4):207-209
The evolution of antibiotic resistance in bacteria is well known. Here I describe possible mechanisms by which an increased rate of re-colonization of vertebrate guts by microbes caused by antibiotic use could lead to selection for increased virulence in currently mutualistic or benign microbes. The importance of understanding both the source and the frequency of colonization in such mutualisms is stressed and the possible importance of pseudo-vertical transmission in the evolution of these systems is discussed. A number of areas requiring experimental investigation are identified. 相似文献
13.
A novel antimicrobial protein, designated enterolysin A, was purified from an Enterococcus faecalis LMG 2333 culture. Enterolysin A inhibits growth of selected enterococci, pediococci, lactococci, and lactobacilli. Antimicrobial activity was initially detected only on solid media, but by growing the bacteria in a fermentor under optimized production conditions (MRS broth with 4% [wt/vol] glucose, pH 6.5, and a temperature between 25 and 35 degrees C), the bacteriocin activity was increased to 5,120 bacteriocin units ml(-1). Enterolysin A production was regulated by pH, and activity was first detected in the transition between the logarithmic and stationary growth phases. Killing of sensitive bacteria by enterolysin A showed a dose-response behavior, and the bacteriocin has a bacteriolytic mode of action. Enterolysin A was purified, and the primary structure was determined by combined amino acid and DNA sequencing. This bacteriocin is translated as a 343-amino-acid preprotein with an sec-dependent signal peptide of 27 amino acids, which is followed by a sequence corresponding to the N-terminal part of the purified protein. Mature enterolysin A consists of 316 amino acids and has a calculated molecular weight of 34,501, and the theoretical pI is 9.24. The N terminus of enterolysin A is homologous to the catalytic domains of different cell wall-degrading proteins with modular structures. These include lysostaphin, ALE-1, zoocin A, and LytM, which are all endopeptidases belonging to the M37 protease family. The N-terminal part of enterolysin A is linked by a threonine-proline-rich region to a putative C-terminal recognition domain, which shows significant sequence identity to two bacteriophage lysins. 相似文献
14.
Taissia G Popova Bryan Millis Chris Bradburne Svetlana Nazarenko Charles Bailey Vikas Chandhoke Serguei G Popov 《BMC microbiology》2006,6(1):8-16
Background
It has been recently reported that major pathogens Staphylococcus aureus and Pseudomonas aeruginosa accelerate a normal process of cell surface syndecan-1 (Synd1) ectodomain shedding as a mechanism of host damage due to the production of shedding-inducing virulence factors. We tested if acceleration of Synd1 shedding takes place in vitro upon treatment of epithelial cells with B. anthracis hemolysins, as well as in vivo during anthrax infection in mice. 相似文献15.
Lammerts van Bueren A Ficko-Blean E Pluvinage B Hehemann JH Higgins MA Deng L Ogunniyi AD Stroeher UH El Warry N Burke RD Czjzek M Paton JC Vocadlo DJ Boraston AB 《Structure (London, England : 1993)》2011,19(5):640-651
SpuA is a large multimodular cell wall-attached enzyme involved in the degradation of glycogen by the pathogenic bacterium Streptococcus pneumoniae. The deletion of the gene encoding SpuA from the bacterium resulted in a strain with reduced competitiveness in a mouse model of virulence relative to the parent strain, linking the degradation of host-glycogen to the virulence of the bacterium. Through the combined use of X-ray crystallography, small-angle X-ray scattering, and inhibitor binding, the molecular features involved in substrate recognition by this complex protein are revealed. This uniquely illustrates the complexity of the active site, the conformational changes incurred during carbohydrate binding by this protein, and the interaction and cooperation of its composite modules during this process. New insight into the function of this particular pneumococcal virulence factor is provided along with substantial contributions to the nascent framework for understanding the structural and functional interplay between modules in multimodular carbohydrate-active enzymes. 相似文献
16.
D. Giuffrida†‡ I. M. Rogers† A. Nagy† A. E. Calogero‡ T. J. Brown† R. F. Casper† 《Cell proliferation》2009,42(6):788-798
Objectives: The aim of this study was to determine whether normal human embryonic stem cells (hESC) would secrete factors that arrest growth of human epithelial cancer cell lines.
Materials and methods: Cell proliferation was examined using the MTT assay then haemocytometer cell counts. Staining with propidium iodide followed by flow cytometry was used to detect cell cycle stages. Heat denaturation and molecular fractionation experiments were also performed.
Results: We found that hESC conditioned medium (hESC CM) inhibited SKOV-3 and HEY cell proliferation. Similar results were also obtained when we used breast and prostate cancer cell lines, whereas little or no inhibitory effect was observed when human fibroblasts were tested. Moreover, a co-culture model confirmed that inhibition of cancer cell proliferation is mediated by soluble factors produced by hESCs. We also determined that the proportion of cancer cells in G1 phase was increased by hESC CM treatment, accompanied by decrease in cells in S and G2 /M phases, suggesting that the factors slow progression of cancer cells by cell cycle inhibition. Heat denaturation and molecular fractionation experiments indicated a low molecular weight thermostable factor was responsible for these properties.
Conclusions: Our findings provide evidence that the human embryonic microenvironment contains soluble factor(s) that are capable of inhibiting growth of cancer cells, and that exposure to such factors may represent a new cancer treatment strategy. 相似文献
Materials and methods: Cell proliferation was examined using the MTT assay then haemocytometer cell counts. Staining with propidium iodide followed by flow cytometry was used to detect cell cycle stages. Heat denaturation and molecular fractionation experiments were also performed.
Results: We found that hESC conditioned medium (hESC CM) inhibited SKOV-3 and HEY cell proliferation. Similar results were also obtained when we used breast and prostate cancer cell lines, whereas little or no inhibitory effect was observed when human fibroblasts were tested. Moreover, a co-culture model confirmed that inhibition of cancer cell proliferation is mediated by soluble factors produced by hESCs. We also determined that the proportion of cancer cells in G
Conclusions: Our findings provide evidence that the human embryonic microenvironment contains soluble factor(s) that are capable of inhibiting growth of cancer cells, and that exposure to such factors may represent a new cancer treatment strategy. 相似文献
17.
18.
19.
Microbial lipases as virulence factors 总被引:2,自引:0,他引:2
F. Stehr M. Kretschmar C. Krger B. Hube W. Schfer 《Journal of Molecular Catalysis .B, Enzymatic》2003,22(5-6):347-355
Up to now, lipases of microbial origin are known to be very useful in a palette of industrial applications. But it becomes more and more obvious that extracellular lipases also play a role during microbial infections. This review will focus on the virulent traits of these secreted enzymes from bacteria and fungi. Special emphasis will be laid on Candida albicans research. This human pathogenic fungus possesses a lipase gene family, which is expressed and differentially regulated under a variety of in vitro conditions. First results show that this isoenzyme family is also expressed during an experimental infection.
In addition, putative functions of extracellular lipases of pathogenic micro-organisms will be discussed. 相似文献
20.
Pseudomonas lipodepsipeptides and fungal cell wall-degrading enzymes act synergistically in biological control 总被引:3,自引:0,他引:3
Fogliano V Ballio A Gallo M Woo S Scala F Lorito M 《Molecular plant-microbe interactions : MPMI》2002,15(4):323-333
Pseudomonas syringae pv. syringae strain B359 secreted two main lipodepsipeptides (LDPs), syringomycin E (SRE) and syringopeptin 25A (SP25A), together with at least four types of cell wall-degrading enzymes (CWDEs). In antifungal bioassays, the purified toxins SRE and SP25A interacted synergistically with chitinolytic and glucanolytic enzymes purified from the same bacterial strain or from the biocontrol fungus Trichoderma atroviride strain P1. The synergism between LDPs and CWDEs occurred against all seven different fungal species tested and P. syringae itself, with a level dependent on the enzyme used to permeabilize the microbial cell wall. The antifungal activity of SP25A was much more increased by the CWDE action than was that of the smaller SRE, suggesting a stronger antifungal role for SP25A. In vivo biocontrol assays were performed by using P. syringae alone or in combination with T. atroviride, including a Trichoderma endochitinase knock-out mutant in place of the wild type and a chitinase-specific enzyme inhibitor. These experiments clearly indicate that the synergistic interaction LDPs-CWDEs is involved in the antagonistic mechanism of P. syringae, and they support the concept that a more effective disease control is given by the combined action of the two agents. 相似文献