首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
植物中的光敏色素   总被引:2,自引:0,他引:2  
光敏色素是植物体内的光受体。本介绍了光敏色素的结构、特征及由光敏色素引发的昼夜节律生物钟,着重介绍了在信号转导和昼夜节律系统中的光敏色素作用因子。  相似文献   

2.
Internode extension-growth responses to neighbouring plants and to red to far-red ratios (R:FR) were investigated in wild-type (WT) and aurea (au)-mutant seedlings of tomato grown under natural radiation. The genomic location of the au mutant is not known, but one of its consequences is the reduced phytochrome level. In WT seedlings, internode growth was promoted by the presence of non-shading neighbours reflecting far-red light (FR), the shade of a tall canopy, FR provided as a supplement during the photoperiod, and FR pulses either provided at the end of the day or delayed into the dark period. Supplementary FR during the photoperiod also promoted growth in herbicide-treated partially bleached WT seedlings. The au mutant showed higher background extension-growth rates, but only responded to the most severe treatments: deep shade light and very low R:FR at the end of the day, i.e. au-mutant seedlings were less sensitive than WT seedlings to R:FR signals. Wild-type seedlings were transferred from the glasshouse to a growth room and exposed to white light with two levels of phytochrome-absorbable radiation but similar phytochrome photoequilibria and radiation for photosynthesis. The plants exposed to the lowest level showed a transient increase of internode extension growth rate and a simultaneous reduction of response to FR pulses, i.e. reproduced some of the features of au-mutant seedlings. Phytochrome itself could set the degree of response to Pfr during neighbour detection.  相似文献   

3.
The photoreceptors in the high irradiance response of plants   总被引:1,自引:0,他引:1  
Several studies show that the high irradiance response (HIR) of plants is probably due to two photoreceptors. One of the photoreceptors is phytochrome, and the other is an unidentified pigment provisionally named heliochrome. One of the functions of heliochrome is the synthesis of phytochrome, using far-red and blue radiations of high intensities, to replace the phytochrome destroyed by light. Another possible function could be an interaction of heliochrome with a substance produced by phytochrome. The data presented show that heliochrome is a pigment with different properties from phytochrome. It shows a far-red/green reversibility. Heliochrome has been shown to participate with phytochrome in such HIRs as leaf movement in Albizzia and flowering in a long-day plant. The first event initiated by phytochrome and by heliochrome could be the generation of a strong positive, electrostatic charge in the cell membrane.  相似文献   

4.
Preliminary evidence is presented which indicates that far-red irradiation promotes and near-red inhibits rapid stipe elongation in Nereocystis luetkeana (Mertens) Postels & Ruprecht. Laboratory results showed afar-red reversal of red inhibition, but a red/far-red reversal was not evident in field experiments. The effects of changing ratios of red and far-red irradiation brought about by selective water absorption are discussed in relation to stipe elongation of Nereocystis.  相似文献   

5.
The ratio of red to far-red light (R : FR) experienced by seeds during maturation affects germination, but the genetic regulation of this effect is poorly understood. In Arabidopsis thaliana , responses to R : FR are governed by five phytochrome photoreceptors, PHYA–PHYE . PHYA , PHYB and PHYE mediate germination, but their roles in germination response to the seed maturation environment are largely unknown. Seeds of A. thaliana phytochrome mutants and natural accessions were matured in a factorial combination of cold (16 °C) and warm (24 °C) temperatures and high (R : FR = 1) and low (R : FR = 0.6) R : FR environments, resembling sunlight and foliar shade, respectively. Germination was observed in resulting seeds. All five phytochromes mediated germination responses to seed maturation temperature and/or R : FR environment. PHYA suppressed germination in seeds matured under cold temperature, and PHYB promoted germination under the same conditions. PHYD and PHYE promoted germination of seeds matured under warm temperature, but this effect diminished when seeds matured under reduced R : FR. The A. thaliana natural accessions exhibited interesting variation in germination responses to the experimental conditions. Our results suggest that the role of individual PHY loci in regulating plant responses to R : FR varies depending on temperature and provide novel insights into the genetic basis of maternal effects.  相似文献   

6.
7.
Flowering in Arabidopsis is accelerated by a reduced ratio of red light to far-red light (R/FR), which indicates the proximity of competitive vegetation. By exploiting the natural genetic variation in flowering time responses to low R/FR, we obtained further insight into the complex pathways that fine-tune the transition to flowering in Arabidopsis. The Bla-6 ecotype does not flower significantly earlier in response to low R/FR, but is still able to display other features of shade avoidance, suggesting branching of low R/FR signalling. Here we show that the muted flowering response of Bla-6 is due to high levels of the floral repressor FLOWERING LOCUS C (FLC), conferred by a combination of functional FLC and FRIGIDA ( FRI ) alleles with a 'weak' FY allele. The Bla-6 FY allele encodes a protein with a corrupted WW binding domain, and we provide evidence that this locus plays a key role in the natural variation in light quality-induced flowering in Arabidopsis. In Bla-6, FLC blocks promotion to flowering by reduced R/FR by inhibiting expression of the floral integrator FLOWERING LOCUS T ( FT ) in a dose-dependent manner. Reduction of FLC removes this obstruction, and Bla6 plants then exhibit strong induction of FT and flower early in response to a low R/FR signal. This paper illustrates the intricate interaction of environmental signals and genetic factors to regulate flowering in Arabidopsis.  相似文献   

8.
Temperature perception and signal transduction in plants   总被引:6,自引:0,他引:6  
Plants can show remarkable responses to small changes in temperature, yet one of the great unknowns in plant science is how that temperature signal is perceived. The identity of the early components of the temperature signal transduction pathway also remains a mystery. To understand the consequences of anthropogenic environmental change we will have to learn much more about the basic biology of how plants sense temperature. Recent advances show that many known plant-temperature responses share common signalling components, and suggest ways in which these might be linked to form a plant temperature signalling network.  相似文献   

9.
Cotton ( Gossypium hirsutum L.) plants were grown in irrigated field plots over red, green or white soil covers (mulches). The far-red (FR) to red (R) light ratios were higher in upwardly reflected light over the red and green surfaces than in incoming sunlight. Plants that grew over the white mulches received higher photosynhetic photon flux (PPF), but the reflected FR/R ratio did not differ significantly from that in incoming sunlight. At five weeks after emergence, seedling stern lengths were significantly longer over red and green than over white surfaces. At maturity, plants that had grown over the red and green surfaces had longer stems, larger shoots, more bolls (fruit), more seed cotton, and longer fibers than plants grown over the white surfaces even though those grown over the white surfaces had received more reflected photosynthetic light during growth and development.  相似文献   

10.
DELLA protein function in growth responses to canopy signals   总被引:9,自引:0,他引:9  
Plants can sense neighbour competitors through light-quality signals and respond with shade-avoidance responses. These include increased shoot elongation, which enhances light capture and thus competitive power. Such plant-plant interactions therefore profoundly affect plant development in crowded populations. Shade-avoidance responses are tightly coordinated by interactions between light signals and hormones, with essential roles for the phytochrome B photoreceptor [sensing the red:far red (R:FR) ratio] and the hormone gibberellin (GA). The family of growth-suppressing DELLA proteins are targets for GA signalling and are proposed to integrate signals from other hormones. However, the importance of these regulators has not been studied in the ecologically relevant, complex realm of plant canopies. Here we show that DELLA abundance is regulated during growth responses to neighbours in dense Arabidopsis stands. This occurs in a R:FR-dependent manner in petioles, depends on GA, and matches the induction kinetics of petiole elongation. Similar interactions were observed in the growth response of seedling hypocotyls and are general for a second canopy signal, reduced blue light. Enhanced DELLA stability in the gai mutant inhibits shade-avoidance responses, indicating that DELLA proteins constrain shade-avoidance. However, using multiple DELLA knockout mutants, we show that the observed DELLA breakdown is not sufficient to induce shade-avoidance in petioles, but plays a more central role in hypocotyls. These data provide novel information on the regulation of shade-avoidance under ecologically important conditions, defining the importance of DELLA proteins and GA and unravelling the existence of GA- and DELLA-independent mechanisms.  相似文献   

11.
Flowering symbolizes the transition of s plant from vegetative phase to reproductive phase and is controlled by fairly complex and highly coordinated regulatory pathways. Over the last decade, genetic studies in Arabidopsis have aided the discovery of many signaling components involved in these pathways. In this review, we discuss how the timing of flowering is regulated by photoperiod and the involvement of light perception and the circadian clock in this process. The specific regulatory mechanisms on CONSTANS expression and CONSTANS stability by the circadian clock and photoreceptors are described in detail. In addition, the roles of CONSTANS, FLOWERING LOCUS T, and several other light signaling and circadian-dependent components in photoperiodic flowering are also highlighted.  相似文献   

12.
Flowering symbolizes the transition of a plant from vegetative phase to reproductive phase and is controlled by fairly complex and highly coordinated regulatory pathways. Over the last decade, genetic studies in Arabidopsis have aided the discovery of many signaling components involved in these pathways. In this review, we discuss how the timing of flowering is regulated by photoperiod and the involvement of light perception and the circadian clock in this process. The specific regulatory mechanisms on CONSTANS expression and CONSTANS stability by the circadian clock and photoreceptors are described in detail. In addition, the roles of CONSTANS, FLOWERING LOCUS T, and several other light signaling and circadiandependent components in photoperiodic flowering are also highlighted.  相似文献   

13.
Abstract. It has previously been proposed that the fundamental function of phytochrome in the natural environment is the perception of the relative proportions of red and far-red light, i.e. the red: far-red ratio. This paper re-evaluates this hypothesis, for vegetative green plants, in the light of recent findings. Essentially, three issues are considered: (a) the modulation of the response to red: far-red by fluence rate: (b) the anticipation of competition for light by perception of changes in red: far-red that precede actual shading: and (c) characteristics of phytochrome that may be important in the mechanism of photoperception (i.e. the accumulation of photoconversion intermediates, and the stability of Pfr). We conclude: (a) the red: far-red ratio provides a reliable signal of plant density, even before shading by neighbours occurs: (b) plants are able to perceive and respond to these signals, and that possible ambiguities due to low red: far-red at low solar angles may be avoided by modulation of the perception process by fluence-rate dependent mechanisms; (c) although direct experimental evidence does not yet exist, circumstantial evidence suggests that the perception of red: far-red may confer positive adaptive advantage; and (d) plants of certain species perceive and respond to fluence rate changes, mediated perhaps by a blue-light absorbing photoreceptor or by phytochrome, but that these responses do not necessarily lead to shade avoidance reactions and their ecological relevance is not fully understood.  相似文献   

14.
15.
16.
Flowering response and plant form of photomorphogenic mutants (hy1, hy2, hy3, hy4 and hy5) of Arabidopsis thaliana (L.), a long-day plant, were examined in long and short days. There were only slight differences among genotypes including Landsberg wild type with respect to the flowering time under long days. The effect of 1 h light-(night)-breaks of far-red, red, blue and white light given in the middle of the dark period of plants grown under short days, was studied. Effects of far-red light applied at the end or the beginning of the main photoperiod on flowering and plant form were also examined. The light-breaks with all the above mentioned light qualities promoted floral initiation of all the genotypes including the wild type in terms of both the flowering time and the number of rosette leaves. In general, far-red light was most effective. It is possible to classify the hy-mutants into 3 groups by their responses to light-breaks under short day conditions: (a) Mutants hy2 and hy3, which have a reduced number of rosette leaves, and flower early. Red light is as effective as far-red light. The wavelength of light-breaks is relatively unimportant for flowering response. (b) Mutants hy4, hy5 and Landsberg wild type, which have a greater number of rosette leaves, and flower relatively late. The effectiveness of light-breaks is in the following order, far-red, blue, and red light, which is in reverse order to the transformation of phytochrome to the Pfr form. (c) Mutant hy1, which behaves anomalously with respect to relations between flowering time and number of rosette leaves; late flowering with reduced number of rosette leaves. Red, blue and far-red light are effective, but white light is ineffective for reducing the number of rosette leaves. When far-red light was given in the middle of the night or at the end of the main photoperiod, it markedly reduced the number of rosette leaves compared to those grown under short days for all the genotypes, while when applied at the beginning of the main photoperiod far-red light did not affect the number of rosette leaves. Different effects on the plant form dependent on the time of treatment with far-red light-breaks are also discussed.  相似文献   

17.
以普洱地区14种常见植物种子为材料,在实验室条件下研究了其在白光、黑暗、红光和蓝光条件下的萌发特性,并分析了种子大小与萌发率、萌发速率、萌发开始时间的关系。结果表明:光质对四方蒿、沙针、尖子木、藿香蓟种子萌发率和萌发速率均有显著影响(P0.05)。光质对大叶斑鸠菊、云南山枇花、臭灵丹、车桑子、光萼猪屎豆、葫芦茶、云南地桃花、西南宿苞豆、岗柃、中国宿苞豆10个物种的种子萌发率和萌发速率均没有显著影响(P0.05),以上物种中除中国宿苞豆外,其他物种种子萌发率均在20%以下,处于休眠状态。四方蒿种子在白光(89.9%)和红光(84.7%)下萌发率最高,红光下种子萌发最快(4.93),蓝光下种子萌发开始时间最晚(11.3 d);沙针种子在白光下萌发率最高(80.4%)、萌发速率最快(2.71),在黑暗和蓝光下萌发率较低(43.9%和38%)、萌发速率最慢(0.73和0.85),白光、红光下萌发开始最早(11 d),黑暗条件下萌发开始最晚(21.7 d);尖子木种子萌发率在白光、黑暗、蓝光下均在86%以上,而红光下仅32%且萌发速率最慢(1.29),在蓝光下萌发开始时间最晚(13 d);藿香蓟种子萌发率和萌发速率在红光下最高(分别为71.3%和6.46),黑暗条件下最低(分别为42.5%和2.62);大叶斑鸠菊萌发开始时间在黑暗条件下最早(6 d),其次是白光下(7 d),蓝光和红光下较晚,分别为8 d和7.7 d。14个物种种子的萌发率与种子大小间均有显著负相关关系;种子萌发速率、萌发开始时间与种子大小间也有负相关关系,但不显著;种子大小与萌发率、萌发速率和萌发开始时间的关系不会随着光质的变化而发生变化。  相似文献   

18.
Time-dependent phototropism (TDP), sometimes called second positive curvature, occurs when the duration of phototropic stimulation with blue light (B) exceeds a few minutes. TDP was characterized in maize (Zea mays L.) coleoptiles raised under continuous red light (R). Subsequently, coleoptiles adapted to darkness were used to investigate the effect of R on TDP. It was found that TDP, which is induced in R-grown coleoptiles, does not occur in dark-adapted coleoptiles and that dark-adapted coleoptiles begin to show TDP after treatment with R. The TDP responsiveness became maximal 1-2 h after treatment with a R pulse and decreased during the next few hours. At least 10 min was required after a short pulse of R before the coleoptile began to respond to B for the induction of TDP. The effect of R in establishing the TDP responsiveness was totally suppressed by a pulse of far-red light given immediately after an inductive pulse of R. It is concluded that the mechanism of TDP requires for its establishment a R signal perceived by phytochrome. The TDP of R-grown and R-pretreated coleoptiles showed relationships to stimulation times and fluence rates that are similar to those reported for oat coleoptiles, except that TDP of maize showed a sharp increase in its magnitude within a narrow range of stimulation times as short as 5-10 min.  相似文献   

19.
Plant elongation in Allium cepa L. cv. Dorata di Parma was stimulated by end-of-day far-red radiation, while the same treatment was ineffective with respect to bulbing response. It was concluded that the Pfr-dependent reactions which control bulbing are completed during the long daily light period (18 h). Day breaks of 3 h fluorescent white light, in the middle of the inductive photoperiod were inhibitory to bulbing. Repeated brief far-red irradiations could substitute for continuous far-red irradiations lasting 3 h in the middle of the photoperiod. Red light alone or applied immediately after each far-red irradiation inhibits bulb formation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号