首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2-Deoxy-d-glucose (2DG) acted as a competitive inhibitor of the synthesis of cell wall components in Saccharomyces cerevisiae protoplasts. The synthesis of fibrillar glucan cell wall component was inhibited at a glucose to 2DG ratio of 4:1 in the cultivating medium. The completion of the formation of cell wall by the synthesis of the amorphous mannan-protein cell wall component was inhibited at a glucose to 2DG ratio of about 20:1. The inhibition could be reversed by increasing the glucose to 2DG ratio in the nutrient medium. No incorporation of 2DG into fibrillar glucan cell wall component was observed.  相似文献   

2.
Inhibition of the synthesis of alkali-insoluble glucan by aculeacin A in Saccharomyces cerevisiae cells caused a decrease in the incorporation of a high molecular weight heterogeneous mannoprotein material and of a 33000 mannoprotein into the wall network. This was concomitant with the excretion of the latter molecule into the growth medium. Regenerating yeast protoplasts liberated considerable amounts of the heterogeneous material to the medium independently of the presence of aculeacin. The protoplast walls did lack this component and contained only minor amounts of the 33000 molecule, which was also completely absent from walls of aculeacin-treated protoplasts. Considerable levels of the 33000 species were immunodetected in the supernatants from treated and untreated protoplasts. These results point to the existence of specific interactions between the glucan network of the yeast cell surface and some of the wall mannoproteins. On the other hand, the presence of a population of SDS-solubilizable mannoproteins in the wall was independent of glucan levels.Abbreviations SDS sodium dodecyl sulphate - YNB Yeast nitrogen base  相似文献   

3.
The effect of a synthetic glucose analogue, 2-deoxy-2-fluoro-d-glucose (FG) on growth and glucose metabolism of Saccharomyces cerevisiae was studied. The addition of FG (0.005-0.05%) to a 2% glucose medium resulted in reduction of the initial growth rate and, after several hours, in a complete cessation of the culture growth. These two events were due to extensive lysis of the population which continued long after the period when no more growth was recorded. Electron microscope examination of lysed cells showed that the lysis was a consequence of a dissolution of the cell walls. FG inhibited to a similar extent the initial growth rate and the incorporation of radioactivity from labeled glucose into growing population. The inhibition of radioactivity incorporation from glucose by growing protoplasts was much less. The yeast was found to be extremely FG sensitive whenever the synthesis of new cell wall material was involved. All observations imply that FG interferes mainly with the cell wall formation of S. cerevisiae. A comparison of the FG effects on metabolic activity of protoplasts, simultaneous secretion of mannan-proteins into the growth medium, and the formation of glucan fibrils on the surface of protoplasts demonstrated that the cell wall glucan synthesis is the most FG-sensitive process and evidently the growth-limiting factor in intact cells. FG-resistant cells were selected during growth experiments. They exhibited an altered mode of cell division when grown in the presence of FG.  相似文献   

4.
The effect of papulacandin B on regenerating protoplasts ofSaccharomyces cerevisiae was studied by light and electron microscopy. In liquid media it inhibited the biogenesis of (1→3)-β-d-glucan fibrillar nets; as a result, the protoplasts did not grow polarly but only spherically. The effect was reversible. Instead of the nets the inhibited protoplasts synthesized only individual microfibrils soluble in hydroxide; these were not joined in the nets and were partially masked by amorphous material. The microfibrils disintegrated after lysis and did not maintain the shape of protoplasts. Protoplasts inhibited in solid media grew spherically up to 25 μm but they did not divide or revert or revert, in spite of forming cell walls. These walls were amorphous and fragile and they disintegrated during preparation. Papulacandin B did not decrease the viability of protoplasts and did not interfere with their growth, biogenesis of alkali-soluble glucan microfibrils or amorphous wall matrix. It inhibited specifically the synthesis of alkali-insoluble branched (1→3)-β-d-glucan, a necessary building unit required for the formation of the fibrillar component of the cell wall responsible for the cell wall shape, its rigidity and tensile strength.  相似文献   

5.
Cell walls are essential for fungal survival and growth. Fungal walls are ~ 90% carbohydrate, mostly types not found in humans, making them promising targets for anti‐fungal drug development. Echinocandins, which inhibit the essential β‐glucan synthase, are already clinically available. In contrast, α‐glucan, another abundant fungal cell wall component has attracted relatively little research attention because it is not essential for most fungi. Aspergillus nidulans has two α‐glucan synthases (AgsA and AgsB) and two α‐amylases (AmyD and AmyG), all of which affect α‐glucan synthesis. Gene deletion showed that AgsB was the major synthase. In addition, AmyG promoted α‐glucan synthesis whereas AmyD had a repressive effect. The lack of α‐glucan had no phenotypic impact on solid medium, but reduced conidial adhesion during germination in shaken liquid. Moreover, α‐glucan level correlated with resistance to Calcofluor White. Intriguingly, overexpression of agsA could compensate for the loss of agsB at the α‐glucan level, but not for phenotypic defects. Thus, products of AgsA and AgsB have different roles in the cell wall, consistent with agsA being mainly expressed at conidiation. These results suggest that α‐glucan contributes to drug sensitivity and conidia adhesion in A. nidulans, and is differentially regulated by two synthases and two amylases.  相似文献   

6.
Incorporation of polysaccharides into the walls of regenerating protoplasts of Candida albicans was followed in the presence of papulacandin B, tunicamycin and nikkomycin. With the first drug, chitin was incorporated normally whereas incorporation of glucans and mannoproteins was significantly decreased. Tunicamycin decreased incorporation of all wall polymers when added at the beginning of the regeneration process but blocked only mannan and alkali-insoluble glucan incorporation when added after 5 h. Nikkomycin inhibited chitin synthesis, and the walls formed by the protoplasts were enriched in alkali-soluble glucan. Pulse-chase experiments suggested that a precursor-product relationship between the alkali-soluble and alkali-insoluble glucans existed in the wall. The results obtained with the antibiotics were confirmed and extended by cytological studies using wheat-germ agglutinin labelled with colloidal gold and concanavalin A-ferritin as specific markers of chitin and mannoproteins respectively. The results support the idea that regeneration of walls by protoplasts occurs in two steps: firstly, a chitin microfibrillar skeleton is formed, and in a later step glucan-mannoprotein complexes are added to the growing structure. The chitin skeleton probably allows the orderly spatial arrangement of the other polymers giving rise to the regenerated cell wall.  相似文献   

7.
Mutants of Saccharomyces cerevisiae characterized by osmotic fragility showed a marked fibrillar structure on the inner wall surface when studied by two electron microscopic techniques, i.e. freeze-etching of whole native cells and metal shadowing of isolated cell walls. The walls of the mutant cells were more permeable to macromolecules than were those of the wild-type parental strain. The synthesis and assembly of (1----3)-beta-D-glucan wall microfibrils studied in protoplasts of mutant cells were not impaired. It is suggested that the osmotic fragility of the mutant cells is related to the deficiency of the wall structure as a consequence of the srb1 mutation affecting biogenesis of the amorphous (glucan) component.  相似文献   

8.
To assess the dynamics of synthesis of the wall by regenerating Candida albicans protoplasts deposition of chitin and mannoproteins were investigated ultrastructurally using wheat germ agglutinin conjugated with either horseradish peroxidase or colloidal gold, and Concanavalin A coupled to ferritin respectively.Freshly prepared protoplasts lacked wheat germ agglutinin receptor sites but after 1–2 h of regeneration, they were detected. After 4–5 h of regeneration, the cell wall showed a discrete structure which was only labelled with wheat germ agglutinin in thin sections. At this stage of regeneration the outermost layer of the wall was labelled with clusters of Concanavalin A-ferritin particles.After 8 h regeneration, the cell wall appeared compact, and homogenously marked with wheat germ agglutinin whereas only the surface layers appeared consistently labelled with Concanavalin A-ferritin.From these observations we conclude that C. albicans protoplasts are able to regenerate in liquid medium a cell wall consisting of a network of chitin fibrils and mannoproteins at least (glucan polymers were not determined in the present cytological study). The former are the fundamental component of the inner layers at early stages of regeneration, whereas the latter molecules are predominant in the outer layers of the wall.Abbreviations WGA-HRP wheat germ agglutinin conjugated with horseradish peroxidase - WGA-Au wheat germ agglutinin conjugated with colloidal gold - Con A-ferritin Concanavalin A coupled to ferritin  相似文献   

9.
The mycelial wall of the protoplastic Entomophthorales is essentially composed of linear β-(1 → 3)glucan associated with low concentrations of chitin. It is also characterized by the absence of galactose, uronic acids, and chitosan. A similar wall composition is found in species of the Entomophthorales unable to form protoplasts, indicating that the ability to form protoplasts is not related to a specific wall composition.  相似文献   

10.
Structural analysis of the cell walls regenerated by carrot protoplasts   总被引:1,自引:0,他引:1  
A procedure was developed to isolate protoplasts rapidly from carrot (Daucus carota L. cv. Danvers) cells in liquid culture. High purity of cell-wall-degrading enzymes and ease of isolation each contributed to maintenance of viability and initiation of regeneration of the cell wall by a great majority of the protoplasts. We used this system to re-evaluate the chemical structure and physical properties of the incipient cell wall. Contrary to other reports, callose, a (1 3)-d-glucan whose synthesis is associated with wounding, was not a component of the incipient wall of carrot protoplasts. Intentional wounding by rapid shaking or treatment with dimethyl sulfoxide initiated synthesis of callose, detected both by Aniline blue and Cellufluor fluorescence of dying cells and by an increase in (1 3)-linked glucan quantified in methylation analyses. Linkage analyses by gas-liquid chromatography of partially methylated alditol-acetate derivatives of polysaccharides of the incipient wall of protoplasts and various fractions of the cell walls of parent cells showed that protoplasts quickly initiated synthesis of the same pectic and hemicellulosic polymers as normal cells, but acid-resistant cellulose was formed slowly. Complete formation of the wall required 3 d in culture, and at least 5 d were required before the wall could withstand turgor. Pectic substances synthesized by protoplasts were less anionic than those of parent cells, and became more highly charged during wall regeneration. We propose that de-esterification of the carboxyl groups of pectin uronic-acid units permits formation of a gel that envelops the protoplast, and the rigid cellulose-hemicellulose frame-work forms along with this gel matrix.Abbreviations DEAE Diethylaminoethyl - DMSO dimethyl sulfoxide - ECP extracellular polymers - EDTA ethylenediaminetetraacetic acid - HGA nomogalacturonan - RG rhamnogalacturonan - Tes N-tris(hydroxymethyl)methyl-2-amino-ethanesufonic acid - TFA trifluoroacetic acid Journal paper No. 11,776 of the Purdue University Agriculture Experiment Station  相似文献   

11.
(1–3) glucan and chitin synthases were studied in spontaneously produced protoplasts and in the mycelium (hyphal body) of the entomopathogenic Entomophthorale species Entomophaga aulicae, Conidiobolus obscurus and Entomophthora muscae. The absence of wall in protoplasts was correlated to an absence of chitin synthase and to a very low (1–3) glucan synthase activity, whereas these two polysaccharide synthases were present and active in the walled hyphal bodies. Physicochemical properties of chitin and (1–3) glucan synthases such as localization, optimum pH and temperature, activation by disaccharides and proteases were similar to those found in other fungi unable to spontaneously produce protoplasts and could not be related to the ability for protoplastic Entomophthorale species to produce and proliferate under a protoplast form. The absence or the low chitin and glucan synthase activites in Entomophthorale protoplasts was not due to an absence of proteolytic activation of the enzyme. However, all protoplast fractions contained inhibitory substances of glucan and chitin synthase activities. These inhibitors were stable and specific of the protoplast stage. They were not glucanase nor chitinase. These results suggest that the absence of wall synthesis in Entomophthorale protoplasts is due to a continuous inhibition of (1–3) glucan and chitin synthase activities by intracellular compounds and also for glucan synthase by protoplast medium constituents such as NaCl and fetal calf serum.Abbreviations BSA bovine serum albumin - DFP diisopropylfluorophosphate - EDTA ethylenediamine tetraaoetic acid - FCS fetal calf serum - GlcNAc N-acetylglucosamine - TCA trichloroacetic acid - 2 k pellet 2,000 g wall fraction - 140 k pellet 140,000 g particulate fraction - 140 k supernatant 140,000 g soluble fraction  相似文献   

12.
Smith TL  Rutter J 《Molecular cell》2007,26(4):491-499
The ability of cells to recognize and respond to specific metabolic deficiencies is required for all forms of life. We have uncovered a system in the yeast S. cerevisiae that, in response to a perceived deficiency in cell wall glucan, alters partitioning of glucose toward glucan synthesis and away from glycogen synthesis. The paralogous yeast PAS kinases Psk1 and Psk2 phosphorylate UDP-glucose pyrophosphorylase (Ugp1), the primary producer of UDP-glucose, the glucose donor for glucan biosynthesis. Unexpectedly, phosphorylation of Ugp1 does not affect its catalytic activity but instead alters the terminal destination of the UDP-glucose it generates. Phosphorylated Ugp1 is required for intensive glucan production, and inability to phosphorylate Ugp1 is associated with a weak cell wall, decreased glucan content, and increased glycogen content. We provide data indicating that phosphorylation by Psk1 or Psk2 targets Ugp1 to the cell periphery, where the UDP-glucose it produces is in proximity to the site of glucan synthesis. We propose that regulation of glucose partitioning by altered enzyme and substrate localization is a rapid and potent response to metabolic deficiency.  相似文献   

13.
It is known that cell wall remodeling and the salvaging pathway act to compensate for an impaired or a damaged cell wall. Lately, it has been indicated that this mechanism is partly required for resistance to the glucan synthesis inhibitor echinocandin. While cell wall remodeling has been described in mutants of glucan or mannan synthesis, it has not yet been reported in a chitin synthesis mutant. Here, we describe a novel cell wall remodeling and salvaging pathway in chitin synthesis mutants, Δchs3A and Δchs3B, of the pathogenic yeast Candida glabrata. Electron microscopic analysis revealed a thickened mannoprotein layer in Δchs3A cells and a thickened chitin-glucan layer of Δchs3B cells, and it indicated the hypothesis that mannan synthase and chitin-glucan synthase indemnify Δchs3A and Δchs3B cells, respectively. The double-mutant CHS3A and MNN10, encoding α-1,6-mannosyltransferase, showed synergistic stress sensitization, and the Δchs3B strain showed supersensitivity to echinocandins. Hence, these findings support the above hypothesis of remodeling. Furthermore, unlike Δchs3A cells, Δchs3B cells showed supersensitivity to calcineurin inhibitor FK506 and Tor1p kinase inhibitor rapamycin, indicating that the Δchs3B strain uses the calcineurin pathway and a Tor1p kinase for cell wall remodeling.  相似文献   

14.
15.
The regeneration of the yeast cell-wall was studied using 5-fluorouracil and yeast protoplasts. Protein synthesis in yeast cells (Saccharomyces cerevisiae) was kept reduced in the presence of this inhibitor at a rate corresponding to that before inhibition and was independent on the concentration of the inhibitor (10 or 100 μg/ml). The inhibition of the RNA synthesis was incomplete and dependent on the concentration of the inhibitor. Synthesis of thymidine and DNA was not inhibited as indicated by the growth tests. On the basis of the obtained data it may be concluded that fluorouracil inhibits only thede novo and the induced protein synthesis while permitting protein synthesis that has already been started before inhibition. Fluorouracil was then applied during the regeneration of yeast protoplasts. The results obtained have shown that fluorouracil does not inhibit the synthesis of the yeast cell wall but that the normal course of cell division is impaired by fluorouracil. The low efficiency of the fluorouracil inhibition of the cell wall synthesis indicates that processes leading to the regeneration of the cell wall are in fact only a continuation of those taking place under normal growth conditions.  相似文献   

16.
Purification of Phosphomannanase and Its Action on the Yeast Cell Wall   总被引:8,自引:2,他引:6  
An improved assay for phosphomannanase (an enzyme required for the preparation of yeast protoplasts) has been developed based on the release of mannan from yeast cell walls. A procedure for the growth of Bacillus circulans on a large scale for maximal production of the enzyme is described. The culture medium containing the secreted enzyme was concentrated, and the enzyme was purified by protamine sulfate treatment, ammonium sulfate fractionation, gel filtration on P-100, and isoelectric density gradient electrophoresis. Although the enzyme was purified to apparent homogeneity, it still contained laminarinase activity which could not be separated by size or charge. The two enzymatic activities also exhibited two isoelectric points (pH 5.9 and 6.8) on ampholine electrophoresis. The laminarinase was not active on yeast glucan. The enzyme preparation was shown to remove mannan from yeast without removing glucan. Electron microscopic observation supports the idea that this mannan is the outer layer of the yeast wall. Phosphomannanase will produce protoplasts from yeast when supplemented with relatively low amounts of snail enzyme. This activity is present in snail enzyme but appeares to be rate-limiting when snail enzyme alone is used. Phosphomannanase has proven useful for studying the macromolecular organization of polymers in the yeast cell wall.  相似文献   

17.
Form follows function: The fungal cell wall as a support structure Within the domain of Eukarya, the fungi form a seperate kingdom. The typical formation of branched mycelia from single hyphae is based on cell wall production at the growing hyphal tip. There, excretory vesicle fuse with the membrane releasing cell wall synthesis enzymes like chitin synthase forming the polymer of N‐acetyl glucosamin, the backbone of fungal cell walls. In addition, glucan synthases form the structural component β‐1.3‐glucan. Via β‐1,6‐glucan, cell wall proteins can be linked to the maturing cell wall, and α‐1,3‐glucan can form a matrix within the cell wall, but also a slimy matrix secreted into the medium. A layer of hydrophobins allows for growth into the air, but also facilitates formation of macroscopic structures like mushrooms.  相似文献   

18.
Alpha(1-3) glucan is a main component of the Aspergillus fumigatus cell wall. In spite of its importance, synthesis of this amorphous polymer has not been investigated to date. Two genes in A. fumigatus, AGS1 and AGS2, are highly homologous to the AGS genes of Schizosaccharomyces pombe, which encode putative alpha(1-3) glucan synthases. The predicted Ags proteins of A. fumigatus have an estimated molecular mass of 270 kDa. AGS1 and AGS2 were disrupted in A. fumigatus. Both Deltaags mutants have similar altered hyphal morphologies and reduced conidiation levels. Only Deltaags1 presented a reduction in the alpha(1-3) glucan content of the cell wall. These results showed that Ags1p and Ags2p were functionally different. The cellular localization of the two proteins was in agreement with their different functions: Ags1p was localized at the periphery of the cell in connection with the cell wall, whereas Ags2p was intracellularly located. An original experimental model of invasive aspergillosis based on mixed infection and quantitative PCR was developed to analyze the virulence of A. fumigatus mutant and wild-type strains. Using this model, it was shown that the cell wall and morphogenesis defects of Deltaags1 and Deltaags2 were not associated with a reduction in virulence in either mutant. This result showed that a 50% reduction in the content of the cell wall alpha(1-3) glucan does not play a significant role in A. fumigatus pathogenicity.  相似文献   

19.
The synthesis of the glycoprotein enzymes, invertase and acid phosphatase, by protoplasts of Saccharomyces mutant 1016, is inhibited by 2-deoxy-d-glucose (2-dG) after a 20- to 30-min lag period under conditions (external sugar to 2-dG ratio of 40:1) which cause only a slight decrease in total protein synthesis. Formation of one intracellular enzyme, alpha-glucosidase, is also sensitive, but production of another, alkaline phosphatase, is unaffected. A nonmetabolized glucose analogue, 6-deoxy-d-glucose, had no inhibitory effect. The total uptake of external fructose and maltose was decreased by 2-dG after a lag period of about the same duration as that before the inhibition of synthesis of enzymes or of mannan and glucan; during this time 2-dG was taken up by the protoplasts and accumulated primarily as 2-dG-6-phosphate (2-dG-6-P). Studies in vitro showed that 2-dG-6-P inhibits both yeast phosphoglucose isomerase and phosphomannose isomerase. The intracellular levels of the 6-phosphates of glucose, fructose, and mannose did not increase in the presence of 2-dG. We suggest that the high internal level of 2-dG-6-P blocks synthesis of the cell wall polysaccharides and glycoproteins in two ways. It directly inhibits the conversion of fructose-6-P to glucose-6-P and to mannose-6-P. At the same time, it restricts the transport of fructose and maltose into the cell; however, the continuing limited uptake of the sugars still provides sufficient energy for protein synthesis. The cessation of alpha-glucosidase synthesis is probably a result of depletion of the internal pool of maltose (the inducer). Our findings support the suggestion that restriction of synthesis of the carbohydrate moiety of glycoproteins reduces formation of the active enzyme.  相似文献   

20.
Sunflower hypocotyl protoplasts ( Helianthus annuus L. cv. Emil) divide symmetrically to form loosely associated microcolonies when cultured in liquid medium, whereas when embedded in agarose beads they divide asymmetrically to give rise to embryo-like structures. To understand the relationship between protoplast embedding and cell division patterns, we studied the deposition of β-linked glucan and the dynamics of microtubules during early phases of culture. After one day in culture, under both culture conditions, a small proportion of the protoplasts had already begun to rebuild a β-glucan cell wall and the process reached completion in all protoplasts after 10 days. Callose deposition was faster in agarose than in liquid medium but it concerned only 30–40% of the protoplasts and was not related to either division type. No marked differences were observed in cortical arrays of microtubules. However, in embedded protoplasts perinuclear microtubules formed a well-defined basket around the nucleus; these microtubules were never observed in liquid-cultured protoplasts. A narrow preprophase band was present only in dividing protoplasts cultured in liquid medium. The results suggest that asymmetric division could be related to the lack of a narrow preprophase band and that protoplast embedding enhances nucleation or stabilization of microtubules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号