首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA and histone methylation in plants   总被引:30,自引:0,他引:30  
Heritable patterns of gene activity and gene silencing arise by the formation and the propagation of specific chromatin states that restrict or permit gene expression. In mammals and in plants, restrictive heterochromatin is associated with the hypermethylation of DNA at CG sites and with the specific modification of histones, such as the methylation of histone H3 at lysine 9 (H3K9(Me)). In addition to CG methylation, plant nuclear DNA packaged in restrictive chromatin is also usually methylated in cytosines outside a CG sequence context. The functional relationship between an unexpectedly complex plant DNA-methylation system and histone modifications that lead to chromatin compaction and gene silencing is under intense scrutiny. The results of recent studies indicate intriguing links between chromatin remodeling, histone methylation, DNA methylation and RNA interference.  相似文献   

2.
Heterochromatin, a type of condensed DNA in eukaryotic cells, has two main categories: Constitutive heterochromatin, which contains H3K9 methylation, and facultative heterochromatin, which contains H3K27 methylation. Methylated H3K9 and H3K27 serve as docking sites for chromodomain-containing proteins that compact chromatin. M33 (also known as CBX2) is a chromodomain-containing protein that binds H3K27me3 and compacts chromatin in vitro. However, whether M33 mediates chromatin compaction in cellulo remains unknown. Here we show that M33 compacts chromatin into DAPI-intense heterochromatin domains in cells. The formation of these heterochromatin domains requires H3K27me3, which recruits M33 to form nuclear bodies. G9a and SUV39H1 are sequentially recruited into M33 nuclear bodies to create H3K9 methylated chromatin in a process that is independent of HP1α. Finally, M33 decreases progerin-induced nuclear envelope disruption caused by loss of heterochromatin. Our findings demonstrate that M33 mediates the formation of condensed chromatin by forming nuclear bodies containing both H3K27me3 and H3K9me3. Our model of M33-dependent chromatin condensation suggests H3K27 methylation corroborates with H3K9 methylation during the formation of facultative heterochromatin and provides the theoretical basis for developing novel therapies to treat heterochromatin-related diseases.  相似文献   

3.
4.
Histone phosphorylation and nuclear structure have been compared in cultured cell lines of two related species of deer mice, Peromyscus crinitus and Peromyscus eremicus, which differ greatly in their heterochromatin contents but which contain essentially the same euchromatin content. Flow microfluorometry measurements indicated that P. eremicus contained 36% more DNA than did P. crinitus, and C-band chromosome staining indicated that the extra DNA of P. eremicus existed as constitutive heterochromatin. Two striking differences in interphase nuclear structure were observed by electron microscopy. Peromyscus crinitus nuclei contained small clumps of heterochromatin and a loose, amorphous nucleolus, while P. eremicus nuclei contained large, dense clumps of heterochromatin and a densely structured, well defined, nucleolonema form of nucleolus. Incorporation of 32PO4 into histones indicated that the steady-state phosphorylation of H1 was identical in P. crinitus and P. eremicus cells. In contrast, the phosphorylation rate of H2a was 58% greater in the highly heterochromatic chromatin of P. eremicus cells than in the lesser heterochromatic chromatin of P. crinitus cells, suggesting an involvement of H2a phosphorylation in heterochromatin structure. It is suggested that the three histone phosphorylations related to cell growth (H1, H2a, and H3) may be associated with different levels of chromatin organization: H1 interphase phosphorylation with some submicroscopic (molecular) level of organization, H2a phosphorylation with a higher level of chromatin organization found in heterochromatin, and H3 and H1 superphosphorylation with the highest level of chromatin organization observed in condensed chromosomes.  相似文献   

5.
Linker histones bind to nucleosomes and modify chromatin structure and dynamics as a means of epigenetic regulation. Biophysical studies have shown that chromatin fibers can adopt a plethora of conformations with varying levels of compaction. Linker histone condensation, and its specific binding disposition, has been associated with directly tuning this ensemble of states. However, the atomistic dynamics and quantification of this mechanism remains poorly understood. Here, we present molecular dynamics simulations of octa-nucleosome arrays, based on a cryo-EM structure of the 30-nm chromatin fiber, with and without the globular domains of the H1 linker histone to determine how they influence fiber structures and dynamics. Results show that when bound, linker histones inhibit DNA flexibility and stabilize repeating tetra-nucleosomal units, giving rise to increased chromatin compaction. Furthermore, upon the removal of H1, there is a significant destabilization of this compact structure as the fiber adopts less strained and untwisted states. Interestingly, linker DNA sampling in the octa-nucleosome is exaggerated compared to its mono-nucleosome counterparts, suggesting that chromatin architecture plays a significant role in DNA strain even in the absence of linker histones. Moreover, H1-bound states are shown to have increased stiffness within tetra-nucleosomes, but not between them. This increased stiffness leads to stronger long-range correlations within the fiber, which may result in the propagation of epigenetic signals over longer spatial ranges. These simulations highlight the effects of linker histone binding on the internal dynamics and global structure of poly-nucleosome arrays, while providing physical insight into a mechanism of chromatin compaction.  相似文献   

6.
7.
8.
Histone modifications represent an important epigenetic mechanism for the organization of higher order chromatin structure and gene regulation. Methylation of position-specific lysine residues in the histone H3 and H4 amino termini has linked with the formation of constitutive and facultative heterochromatin as well as with specifically repressed single gene loci. Using an antibody, directed against dimethylated lysine 9 of histone H3 and several other lysine methylation sites, we visualized the nuclear distribution pattern of chromatin flagged by these methylated lysines in 3D preserved nuclei of normal and malignant cell types. Optical confocal serial sections were used for a quantitative evaluation. We demonstrate distinct differences of these histone methylation patterns among nuclei of different cell types after exit of the cell cycle. Changes in the pattern formation were also observed during the cell cycle. Our data suggest an important role of methylated histones in the reestablishment of higher order chromatin arrangements during telophase/early G1. Cell type specific histone methylation patterns are possibly casually involved in the formation of cell type specific heterochromatin compartments, composed of (peri)centromeric regions and chromosomal subregions from neighboring chromosomes territories, which contain silent genes.  相似文献   

9.
Protamine-like proteins constitute a group of sperm nuclear basic proteins that have been shown to be related to somatic linker histones (histone H1 family). Like protamines, they usually replace the chromatin somatic histone complement during spermiogenesis; hence their name. Several of these proteins have been characterized to date in invertebrate organisms, but information about their occurrence and characterization in vertebrates is still lacking. In this sense, the genus Mullus is unique, as it is the only known vertebrate that has its sperm chromatin organized by virtually only protamine-like proteins. We show that the sperm chromatin of this organism is organized by two type I protamine-like proteins (PL-I), and we characterize the major protamine-like component of the fish Mullus surmuletus (striped red mullet). The native chromatin structure resulting from the association of these proteins with DNA was studied by micrococcal nuclease digestion as well as electron microscopy and X-ray diffraction. It is shown that the PL-I proteins organize chromatin in parallel DNA bundles of different thickness in a quite distinct arrangement that is reminiscent of the chromatin organization of those organisms that contain protamines (but not histones) in their sperm.  相似文献   

10.
11.
12.
13.
14.
Holmgren  P.  Johansson  T.  Lambertsson  A.  Rasmuson  B. 《Chromosoma》1985,93(2):123-131
The amount of histone H1 relative to core histones has been determined in three Drosophila species (D. melanogaster, D. texana and D. virilis) in chromatin from several tissues differing in chromatin structure and genetic activity. Low levels of H1 were found in relatively undifferentiated, early embryos as well as in a line of cultured cells. In late embryos the content of H1 was highest in D. virilis which possesses larger amounts of and a partially more compacted constitutive heterochromatin than the two other species. Polytene chromatin from larval salivary glands showed increased levels of H1 compared with diploid chromatin and the degree of phosphorylation of this histone was relatively low. The degree of phosphorylation of H2A was found to be drastically reduced in polytene as compared with diploid embryonic chromatin, which parallels the extensive underreplication of constitutive heterochromatin. Also, in diploid chromatin a qualitative correlation was observed between the relative amounts of heterochromatin and the levels of H2A phosphorylation. These findings suggest a connection between H2A phosphorylation and heavy compaction of interphase chromatin.  相似文献   

15.
16.
Methyl CpG binding protein 2 (MeCP2) is a basic protein that contains a DNA methyl binding domain. The mechanism by which the highly positive charge of MeCP2 and its ability to bind methylated DNA contribute to the specificity of its binding to chromatin has long remained elusive. In this paper, we show that MeCP2 binds to nucleosomes in a very similar way to linker histones both in vitro and in vivo. However, its binding specificity strongly depends on DNA methylation. We also observed that as with linker histones, this binding is independent of the core histone H3 N-terminal tail and is not affected by histone acetylation.  相似文献   

17.
18.
Loss of linker histone H1 in cellular senescence   总被引:9,自引:0,他引:9       下载免费PDF全文
  相似文献   

19.
Core and linker histones are the most abundant protein components of chromatin. Even though they lack intrinsic structure, the N-terminal "tail" domains (NTDs) of the core histones and the C-terminal tail domain (CTD) of linker histones bind to many different macromolecular partners while functioning in chromatin. Here we discuss the underlying physicochemical basis for how the histone terminal domains can be disordered and yet specifically recognize and interact with different macromolecules. The relationship between intrinsic disorder and amino acid composition is emphasized. We also discuss the potential structural consequences of acetylation and methylation of lysine residues embedded in intrinsically disordered histone tail domains.  相似文献   

20.
Linker histone H1 plays an important role in chromatin folding in vitro. To study the role of H1 in vivo, mouse embryonic stem cells null for three H1 genes were derived and were found to have 50% of the normal level of H1. H1 depletion caused dramatic chromatin structure changes, including decreased global nucleosome spacing, reduced local chromatin compaction, and decreases in certain core histone modifications. Surprisingly, however, microarray analysis revealed that expression of only a small number of genes is affected. Many of the affected genes are imprinted or are on the X chromosome and are therefore normally regulated by DNA methylation. Although global DNA methylation is not changed, methylation of specific CpGs within the regulatory regions of some of the H1 regulated genes is reduced. These results indicate that linker histones can participate in epigenetic regulation of gene expression by contributing to the maintenance or establishment of specific DNA methylation patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号