首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A cDNA clone encoding a putative RTE1-like protein (Rh-RTH1) was obtained from total RNA isolated from senescing rose (Rosa hybrida cv. Tineke) petals using RT-PCR and RACE techniques. The cDNA (1,061 bp) contained an open reading frame of 684 bp corresponding to 227 amino acids. The amino acid sequence had 60.0, 49.6, 61.2, 42.5 and 39.8% identity with that of Arabidopsis RTH, RTE1, tomato GRL2, GRL1 and GR, respectively. Northern hybridization indicated that Rh-RTH1 expression is enhanced by endogenous and exogenous ethylene and inhibited by 1-MCP in petals and gynoecia. Rh-RTH1 expression partly correlated with sites of the ethylene receptor gene Rh-ETR1 and Rh-ETR3 expression, such as the petals, gynoecia, roots, and buds. The induction of Rh-RTH1 and Rh-ETR3 expression was substantially suppressed by 1-MCP treatment, while Rh-ETR1 expression was not reduced by 1-MCP treatment. Following treatment of flowers with sucrose, the level of Rh-RTH1 and Rh-ETR3 mRNA was only slightly decreased in petals and gynoecia. Upon wounding treatment, Rh-RTH1, Rh-ETR1 and Rh-ETR3 showed a quick increase in mRNA accumulation which was positively correlated with the increase in ethylene production. The expression of Rh-RTH1 showed partial correlation with that of Rh-ETR1 and Rh-ETR3.  相似文献   

4.
外源乙烯及1-MCP对牡丹CTR基因表达的影响   总被引:2,自引:0,他引:2  
采用RT-PCR法研究外源乙烯和1-MCP对牡丹品种洛阳红(Paeonia suffruticosa Luoyanghong)1级切花CTR基因家族3个成员基因表达的影响,以揭示乙烯在牡丹采后开花和衰老进程中的调控机制.结果表明,在花朵开放和衰老进程中,PsCTR1和PsCTR2类似组成型表达,PsCTR3随内源乙烯的增加表达增强.PsCTR2和PsCTR3表达受外源乙烯的促进,PsCTR1的表达仅在花朵开放后期受到外源乙烯的促进.1-MCP处理增加了PsCTR1和PsCTR2的表达,但对PsCTR3的表达起先促进后抑制的作用.复合处理的结果表明,1-MCP处理可以逆转乙烯处理对PsCTR1和PsCTR2的作用;在切花进入盛花期和衰老期后,乙烯处理可以逆转1-MCP处理对PsCTR1、PsCTR2和PsCTR3的作用.  相似文献   

5.
6.
7.
R. Nichols 《Planta》1977,135(2):155-159
Production of endogenous ethylene from the styles, ovary and petals of pollinated and unpollinated flowers of Dianthus caryophyllus L. was measured. The rate of ethylene production of cut, unpollinated flowers aged in water at 18°C was low until the onset of petal wilting, when a rapid surge of ethylene occurred in all tissues. The flower ethylene production was evolved mostly from the styles and petals. The bases of petals from unpollinated, senescing flowers evolved ethylene faster and sometimes earlier than the upper parts. Treatment of cut flowers with propylene, an ethylene analogue, accelerated wilting of flower petals and promoted endogenous ethylene production in all flower tissues. Pollination of intact flowers also promoted endogenous ethylene production and caused accelerated petal wilting within 2–3 days from pollination. Although the data are consistent with the hypothesis that ethylene forms a link between pollination of the style and petal wilting, in the unpollinated flower the style and petals can evolve a surge of ethylene independently of each other, about the time when the petals irreversibly wilt. The results are discussed in relation to the role of ethylene in flower senescence.  相似文献   

8.
Ethylene production, as well as the expression of ethylene biosynthetic (Rh-ACS1-4 and Rh-ACO1) and receptor (Rh-ETR1-5) genes, was determined in five different floral tissues (sepals, petals, stamens, gynoecia, and receptacles) of cut rose (Rosa hybrida cv. Samantha upon treatment with ethylene or the ethylene inhibitor 1-methylcyclopropene (1-MCP). Ethylene-enhanced ethylene production occurred only in gynoecia, petals, and receptacles, with gynoecia showing the greatest enhancement in the early stage of ethylene treatment. However, 1-MCP did not suppress ethylene production in these three tissues. In sepals, ethylene production was highly decreased by ethylene treatment, and increased dramatically by 1-MCP. Ethylene production in stamens remained unchanged after ethylene or 1-MCP treatment. Induction of certain ethylene biosynthetic genes by ethylene in different floral tissues was positively correlated with the ethylene production, and this induction was also not suppressed by 1-MCP. The expression of Rh-ACS2 and Rh-ACS3 was quickly induced by ethylene in gynoecia, but neither Rh-ACS1 nor Rh-ACS4 was induced by ethylene in any of the five tissues. In addition, Rh-ACO1 was induced by ethylene in all floral tissues except sepals. The induced expression of ethylene receptor genes by ethylene was much faster in gynoecia than in petals, and the expression of Rh-ETR3 was strongly suppressed by 1-MCP in all floral tissues. These results indicate that ethylene biosynthesis in gynoecia is regulated developmentally, rather than autocatalytically. The response of rose flowers to ethylene occurs initially in gynoecia, and ethylene may regulate flower opening mainly through the Rh-ETR3 gene in gynoecia.  相似文献   

9.
10.
The effect of cis-propenylphosphonic acid (PPOH), a structural analoge of ethylene, on flower wilting and ethylene production was investigated using cut carnation flowers which are very sensitive to ethylene. Wilting (petal in-rolling) of the flowers was delayed by continuously immersing the stems in a 5–20 mM PPOH solution. In addition, the continuous treatment with PPOH markedly reduced autocatalytic ethylene production of the petals accompanying senescence. This reduction of autocatalytic ethylene production was considered responsible for the inhibitory effect of PPOH on flower wilting. The inhibitory activity of trans-propenylphosphonic acid (trans-PPOH), on both flower wilting and the autocatalytic ethylene production accompanying senescence was markedly lower than that of PPOH, suggesting that PPOH action is stereoselective. PPOH may be of interest as a new, water-soluble inhibitor of wilting and autocatalytic ethylene production in cut carnation flowers.  相似文献   

11.
Phalaenopsis frequently exhibits bud drop during production and in response to adverse postharvest conditions. The effect of exogenous ethylene on bud drop of mini Phalaenopsis was studied and ethylene sensitivity of four cultivars was compared. Water content, membrane permeability and ABA (abscisic acid) content in floral buds and flowers were determined after ethylene treatment. Exogenous ethylene induced flower bud drop in all tested Phalaenopsis cultivars and the different cultivars showed distinct differences in ethylene sensitivity. The cultivar Sogo ‘Vivien’ exhibited the highest bud drop, water loss and change in membrane permeability in floral petals, while Sogo ‘Berry’ showed the lowest sensitivity. The ethylene inhibitor 1-MCP (1-methylcyclopropene) reduced ethylene-induced floral bud drop in the cultivar Sogo ‘Yenlin’. ABA content in floral buds was increased in response to ethylene and 1-MCP pretreatment inhibited the ethylene-induced increase in ABA levels efficiently. This finding suggests that the observed increase in ABA content during bud drop was mediated by ethylene. The interaction between ABA and ethylene is discussed.  相似文献   

12.
Role of ethylene in the senescence of isolated hibiscus petals   总被引:2,自引:1,他引:1       下载免费PDF全文
Senescence of petals isolated from flowers of Hibiscus rosa-sinensis L. (cv Pink Versicolor) was associated with increased ethylene production. Exposure to ethylene (10 microliters per liter) accelerated the onset of senescence, as indicated by petal in-rolling, and stimulated ethylene production. Senescence was also hastened by basal application of 1-aminocyclopropane-1-carboxylic acid (ACC). Aminooxyacetic acid, an inhibitor of ethylene biosynthesis, effectively inhibited ethylene production by petals and delayed petal in-rolling. In marked contrast to these results with mature petals, immature petals isolated from flowers the day before flower opening did not respond to ethylene in terms of an increase in ethylene production or petal in-rolling. Furthermore, treatment with silver thiosulfate the day before flower opening effectively prevented petal senescence, while silver thiosulfate treatment on the morning of flower opening was ineffective. Application of ACC to both immature and mature petals greatly stimulated ethylene production indicating the presence of an active ethylene-forming enzyme in both tissues. Immature petals contained less free ACC than mature, presenescent petals and appeared to possess a more active system for converting ACC into its conjugated form. Thus, while the nature of the lack of responsiveness of immature petals to ethylene is unknown, ethylene production in hibiscus petals appears to be regulated by the control over ACC availability.  相似文献   

13.
1,1-Dimethyl-4-(phenylsulfonyl)semicarbazide (DPSS)inhibited ethylene productionin carnation flowers during natural senescence, butdid not inhibit the ethyleneproduction induced by exogenous ethylene in carnationflowers, by indole-3-acetic acid (IAA) in mungbean hypocotylsegments and by wounding in winter squashmesocarp tissue. These findings suggested that DPSSdoes not directly inhibit ethylene biosynthesis fromL-methionine to ethylenevia S-adenosyl-L-methionine and1-aminocyclopropane-1-carboxylate. During naturalsenescence of carnation flowers, abscisic acid (ABA)was accumulated in the pistil and petals 2 days beforethe onset of ethylene production in the flower, andthe ABA content remained elevated until the onset ofethylene production. Application of exogenousABA to cut flowers from the cut stem end caused arapid increase in the ABA content in flower tissuesand promoted ethylene production in the flowers. These results were in agreement with the previousproposal that ABA plays a crucial role in theinduction of ethylene production during natural senescence incarnation flowers. DPSS preventedthe accumulation of ABA in both the pistil and petals,suggesting that DPSS exerted its inhibitory action onethylene production in naturally-senescing carnationflowers through the effect on the ABA-related process.  相似文献   

14.
K. Manning 《Planta》1986,168(1):61-66
The relationship between ethylene production and the CN--assimilating enzyme -cyanoalanine synthase (CAS; EC 4.4.1.9) was examined in the carnation (Dianthus caryophyllus L.) flower. In petals from cut flowers aged naturally or treated with ethylene to accelerate senescence the several hundred-fold increase in ethylene production which occurred during irreversible wilting was accompanied by a one- to twofold increase in CAS activity. The basal parts of the petal, which produced the most ethylene, had the highest CAS activity. Studies of flower parts (styles, ovaries, receptacles, petals) showed that the styles had a high level of CAS together with the ethylene-forming enzyme (EFE) system for converting 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene. The close association between CAS and EFE found in styles could also be observed in detached petals after induction by ACC or ethylene. Treatment of the cut flowers with cycloheximide reduced synthesis of CAS and EFE. The data indicate that CAS and ethylene production are associated, and are discussed in relation to the hypothesis that CN- is formed during the conversion of ACC to ethylene.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG aminoethoxyvinylglyoine - CAS -cyanoalanine synthase - CHI cycloheximide - EFE ethylene-forming enzyme  相似文献   

15.
A cDNA from deep water rice treated with ethylene, encoding an ethylene receptor homologous to Arabidopsis thaliana ETR2 and EIN4, was isolated using differential display and RACE techniques. The cDNA (2880 bp), corresponding to the Os-ERL1 gene (Oryza sativa ETHYLENE RESPONSE 2 like 1; GenBank accession number AB107219), contained an open reading frame of 2289 bp coding for 763 amino acids. The protein Os-ERL1 has 50% and 52% similarity to Arabidopsis ETR2 and EIN4, respectively. The Os-ERL1 gene was up-regulated by flooding, and by treatment with ethylene and gibberellin. These results suggest that deep water rice responds to flooding by increasing the number of its ethylene receptors.  相似文献   

16.
D. Orzáez  R. Blay  A. Granell 《Planta》1999,208(2):220-226
The role of ethylene in the control of senescence of both petals and unpollinated carpels of pea was investigated. An increase in ethylene production accompanied senescence, and the inhibitors of ethylene action were effective in delaying senescence symptoms in different flower verticils. Pollination did not seem to trigger the senescence syndrome in the corolla as deduced from the observation that petals from pollinated and unpollinated flowers and from flowers whose carpels had been removed senesced at the same time. A cDNA clone encoding a putative ethylene-response sensor (psERS) was isolated from pea flowers, and the pattern of expression of its mRNA was studied during development and senescence of different flower tissues. The levels of psERS mRNA paralleled ethylene production (and also levels of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) mRNA) in both petals and styles. Silver thiosulfate treatments were efficient at preventing ACO and psERS mRNA induction in petals. However, the same inhibitor showed no ability to modify expression patterns in pea carpels around the anthesis stage, suggesting different controls for ethylene synthesis and sensitivity in different flower organs. Received: 18 June 1998 / Accepted: 22 December 1998  相似文献   

17.
Prevention of ethylene- and shipping-induced flower abscission is necessary to maintain the quality of both cut flowers and potted plants during handling, transport and retail display. The aims of the present work were to determine the sensitivity of Plectranthus cultivars to applied ethylene, to alleviate ethylene- and shipping-induced flower abscission in intact potted plants using 1-methylcyclopropene (1-MCP), and to investigate the possible causes of dark-induced flower abscission. All cultivars were sensitive to ethylene in a concentration-dependent manner, and complete abscission occurred within 24 h with 1 and 2 μl l 1 ethylene. Unopened buds were more sensitive to applied ethylene, and exhibited greater abscission than open flowers. Ethylene synthesis remained below detection limits at all time points under control and continuous dark conditions. Dark treatment significantly increased flower abscission in Plectranthus cultivars, and like ethylene-induced flower abscission, this could be prevented by continuous 1-MCP treatment. Gene expression of ethylene biosynthetic enzymes ACS and ACO was examined as possible causes for the accelerated flower abscission observed in plants kept in continuous darkness. Expression patterns of ACS and ACO varied between different cultivars of Plectranthus. In some cases, increased expression of ACS and ACO led to increased flower abscission. Gene expression was higher in open flowers when compared to unopened flowers suggesting a cause for the observed preferential shedding of open flowers in some cultivars. Although the cause of dark-induced abscission in Plectranthus remains elusive, it can be effectively controlled by treatment with 1-MCP.  相似文献   

18.
19.
The purpose of this paper is to investigate the differential responses of flower opening to ethylene in two cut rose cultivars, ‘Samantha’, whose opening process is promoted, and ‘Kardinal’, whose opening process is inhibited by ethylene. Ethylene production and 1-aminocyclopropane-1-carboxylate (ACC) synthase and oxidase activities were determined first. After ethylene treatment, ethylene production, ACC synthase (ACS) and ACC oxidase (ACO) activities in petals increased and peaked at the earlier stage (stage 3) in ‘Samantha’, and they were much more dramatically enhanced and peaked at the later stage (stage 4) in ‘Kardinal’ than control during vasing. cDNA fragments of three Rh-ACSs and one Rh-ACO genes were cloned and designated as Rh-ACS1, Rh-ACS2, Rh-ACS3 and Rh-ACO1 respectively. Northern blotting analysis revealed that, among three genes of ACS, ethylene-induced expression patterns of Rh-ACS3 gene corresponded to ACS activity and ethylene production in both cultivars. A more dramatic accumulation of Rh-ACS3 mRNA was induced by ethylene in ‘Kardinal’ than that of ‘Samantha’. As an ethylene action inhibitor, STS at concentration of 0.2 mmol/L generally inhibited the expression of Rh-ACSs and Rh-ACO in both cultivars, although it induced the expression of Rh-ACS3 transiently in ‘Kardinal’. Our results suggests that ‘Kardinal’ is more sensitive to ethylene than ‘Samantha’; and the changes of Rh-ACS3 expression caused by ethylene might be related to the acceleration of flower opening in ‘Samantha’ and the inhibition in ‘Kardinal’. Additional results indicated that three Rh-ACSs genes were differentially associated with flower opening and senescence as well as wounding.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号