首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Owing to their massive use, Staphylococcus epidermidis has recently developed significant resistance to several antibiotics, and became one of the leading causes of hospital-acquired infections. Current antibiotics are typically ineffective in the eradication of bacteria in biofilm-associated persistent infections. Accordingly, the paucity of effective treatment against cells in this mode of growth is a key factor that potentiates the need for new agents active in the prevention or eradication of biofilms. Daptomycin and linezolid belong to the novel antibiotic therapies that are active against gram-positive cocci. On the other hand, rifampicin has been shown to be one of the most potent, prevalent antibiotics against S. epidermidis biofilms. Therefore, the main aim of this study was to study the susceptibility of S. epidermidis biofilm cells to the two newer antimicrobial agents previously mentioned, and compare the results obtained with the antimicrobial effect of rifampicin, widely used in the prevention/treatment of indwelling medical device infections. To this end the in vitro activities of daptomycin, linezolid, and rifampicin on S. epidermidis biofilms were accessed, using these antibiotics at MIC and peak serum concentrations. The results demonstrated that at MIC concentration, rifampicin was the most effective antibiotic tested. At peak serum concentration, both strains demonstrated similar susceptibility to rifampicin and daptomycin, with colony-forming units (CFUs) reductions of approximately 3–4 log10, with a slightly lower response to linezolid, which was also more strain dependent. However, considering all the parameters studied, daptomycin was considered the most effective antibiotic tested, demonstrating an excellent in vitro activity against S. epidermidis biofilm cells. In conclusion, this antibiotic can be strongly considered as an acceptable therapeutic option for S. epidermidis biofilm-associated infections and can represent a potential alternative to rifampicin in serious infections where rifampicin resistance becomes prevalent.  相似文献   

2.
Wang L  Zhang C  Gong F  Li H  Xie X  Xia C  Chen J  Song Y  Shen A  Song J 《Current microbiology》2011,63(4):377-386
In Pseudomonas aeruginosa PAO1, the pvdQ gene has been shown to have at least two functions. It encodes the acylase enzyme and hydrolyzes 3-oxo-C12-HSL, the key signaling molecule of quorum sensing system. In addition, pvdQ is involved in swarming motility. It is required for up-regulated during swarming motility, which is triggered by high cell densities. As high-density bacterial populations also display elevated antibiotic resistance, studies have demonstrated that swarm-cell differentiation in P. aeruginosa promotes increased resistance to various antibiotics. PvdQ acts as a signal during swarm-cell differentiation, and thus may play a role in P. aeruginosa antibiotic resistance. The aim of this study is to examine whether pvdQ was involved in modifying antibiotic susceptibility during swarming conditions, and to investigate the mechanism by which this occurred. We constructed the PAO1pMEpvdQ strain, which overproduced PvdQ. PAO1pMEpvdQ promotes swarming motility, while PAO1ΔpvdQ abolishes swarming motility. In addition, both PAO1 and PAO1pMEpvdQ acquired resistance to ceftazidime, ciprofloxacin, meropenem, polymyxin B, and gentamicin, though PAO1pMEpvdQ exhibited a two to eightfold increase in antibiotic resistance compared to PAO1. These results indicate that pvdQ plays an important role in elevating antibiotic resistance via swarm-cell differentiation and possibly other mechanisms as well. We analyzed outer membrane permeability. Our data also suggest that pvdQ decreases P. aeruginosa outer membrane permeability, thereby elevating antibiotic resistance under swarming conditions. Our results suggest new approaches for reducing P. aeruginosa resistance.  相似文献   

3.
In Gram negative bacteria, fluoroquinolone resistance is acquired by target mutations in topoisomerase genes or by reducing the permeation of drugs due to the increase in expression of endogenous multidrug efflux pumps that expel structurally unrelated antimicrobial agents. An ongoing challenge is searching for new inhibitory substances in order to block efflux pumps and restore the antibiotic drugs susceptibility. In this research, we sought to investigate the interplay between ciprofloxacin and an efflux pump inhibitor (EPI), phenyl alanine arginyl β-naphtylamide (PAβN), to determine the prevalence of efflux pump overexpression in clinical isolates of Pseudomonas aeruginosa. Ciprofloxacin was tested at different concentrations (256–0.25 μg/ml) with a fixed concentration of PAβN (50 μg/ml). The isolates susceptibility profiles were analyzed by disc diffusion and agar dilution methods using 10 antibiotic discs and 4 powders. It was found that in the presence of PAβN, resistance to ciprofloxacin was inhibited obviously and MIC values were decreased. The comparison between subgroups of P. aeruginosa isolates with different resistance profiles indicates that efflux pump overexpression (EPO) is present in 35% of ciprofloxacin resistant isolates with no cross resistance and in variable frequencies among isolates showing cross resistance to other tested antibiotics: gentamicin (31%), ceftazidime (29%), and imipenem (18%). Altogether, these results imply that PAβN maybe effective to restore the fluoroquinolone drugs susceptibility in clinical treatment procedures. Results also show that increased use of a fluoroquinolone drug such as ciprofloxacin can affect the susceptibility of P. aeruginosa to other different antipseudomonal agents.  相似文献   

4.
During treatment of infections with antibiotics in critically ill patients in the intensive care resistance often develops. This study aims to establish whether under those conditions this resistance can develop de novo or that genetic exchange between bacteria is by necessity involved. Chemostat cultures of Pseudomonas aeruginosa were exposed to treatment regimes with ceftazidime and meropenem that simulated conditions expected in patient plasma. Development of antibiotic resistance was monitored and mutations in resistance genes were searched for by sequencing PCR products. Even at the highest concentrations that can be expected in patients, sufficient bacteria survived in clumps of filamentous cells to recover and grow out after 3 to 5 days. At the end of a 7 days simulated treatment, the minimal inhibitory concentration (MIC) had increased by a factor between 10 and 10,000 depending on the antibiotic and the treatment protocol. The fitness costs of resistance were minimal. In the resistant strains, only three mutations were observed in genes associated with beta-lactam resistance. The development of resistance often observed during patient treatment can be explained by de novo acquisition of resistance and genetic exchange of resistance genes is not by necessity involved. As far as conclusions based on an in vitro study using P. aeruginosa and only two antibiotics can be generalized, it seems that development of resistance can be minimized by treating with antibiotics in the highest concentration the patient can endure for the shortest time needed to eliminate the infection.  相似文献   

5.
Bacterial infections of the central nervous system, especially acute infections such as bacterial meningitis require immediate, invariably empiric antibiotic therapy due to the widespread emergence of resistance among bacterial species. Nosocomial infections by Pseudomonas aeruginosa have been described with an increasing trend towards multidrug resistance. P. aeruginosa isolates n = 53 (66%) isolated from the cerebrospinal fluid (CSF) were used for this study. Antibiotic resistance in 53 P. aeruginosa clinical isolates from 80 CSF samples were evaluated. Of these, n = 42 (80%) of the isolates showed multidrug resistance to more than eight antibiotics and n = 17 (32%) isolates were found to be imipenem resistant P. aeruginosa (IMPR-Pa). Genotypical examination by ERIC based PCR revealed minor genetic variations. Polymicrobial infections are common in the CSF samples. However, high prevalence of P. aeruginosa as an opportunistic pathogen has been developing with increased resistance to antimicrobial agents and thus becoming a significant threat.  相似文献   

6.
Pseudomonas aeruginosa is a leading cause of hospital-acquired infections and difficult to treat due to acquired-resistance to multiple antibiotics. A pair of strains, M38100A and M38100B, previously identified from a single clinical isolate of P. aeruginosa was investigated to understand phenotypic and genotypic characteristics. Results revealed that the pair of strains was very similar for serum susceptibility, growth rate in a complex medium (Luria–Bertani), RAPD-genotype profiles, status of genes encoding type III secretion toxins, and no extra-chromosomal DNA. However, antibiotic susceptibility of the strain M38100B showed resistant to all tested-antibiotics while the strain M38100A showed susceptible to the same tested-antibiotics as similar levels of P. aeruginosa PAO1. The strain M38100B exhibited no growth in a minimal medium as a sole carbon and nitrogen source of glutamate while the strain M38100A grew well in the same minimal medium. These results suggest that multidrug resistance of the strain M38100B may be caused by multiple mutations on its genomic DNA and a precursor stage for a homogeneous multidrug resistant population.  相似文献   

7.
Respiratory tract and device associated infections caused by biofilm forming Pseudomonas aeruginosa play a primary role in the pathogenesis and prognosis of cystic fibrosis (CF) diseases. The biofilm formed by these pathogens attributes to the antibiotic resistance and protection from host immune response. Once established, the pathogens respond poorly to therapeutic agents. Recently medicinal plants are largely explored as potential source of bioactive agents. In this context the present study reports the antibiofilm activity of the folkloric medicinal plant Andrographis paniculata against biofilm forming CF causative Pseudomonas aeruginosa isolated from CF sputum. P. aeruginosa was also assessed for their growth and development of the biofilm, phylogenetic relationship and antibiotic susceptibility. Antibiogram of the strains indicated that they were resistant to more than one antibiotic. Six extracts of A. paniculata showed significant antibiofilm activity. P. aeruginosa strains, KMS P03 and KMS P05, were found to be maximally inhibited by the methanol extract to an extent of 88.6 and 87.5% respectively. This is the first report on antibiofilm activity of A. paniculata extracts, and our results indicate scope for development of complementary medicine for biofilm associated infections.  相似文献   

8.
Aims: To investigate the effect of sub‐lethal challenge with tea tree oil (TTO) on the antibiotic resistance profiles of staphylococci. Methods and Results: Isolates of methicillin‐resistant/‐sensitive Staphylococcus aureus (MRSA and MSSA) and coagulase‐negative staphylococci (CoNS) were habituated to sub‐lethal concentrations of TTO (72 h). Following habituation, the minimum inhibitory concentrations (MIC) of antibiotics and TTO were determined. Habituated MRSA/MSSA cultures had higher (P < 0·05) MIC values than control cultures for the examined antibiotics. Habituated MRSA/MSSA cultures also displayed decreased susceptibility to TTO. Although the MIC of habituated MRSA/MSSA for the examined antibiotics reverted to control values after subsequent culture in the absence of TTO, the increased MIC against TTO were maintained. When compared with control cultures, habituated CoNS cultures had higher (P < 0.05) MIC values against three‐fifths of the antibiotics examined; no changes in TTO MIC were observed. Conclusions: TTO habituation ‘stress‐hardens’ MRSA and MSSA, evidenced by transient decreased antibiotic susceptibility and stable decreased TTO susceptibility. Although TTO habituation did not decrease susceptibility of CoNS to TTO, such cultures showed transient decreased antibiotic susceptibility. Significance and Impact of the Study: Application of TTO at sub‐lethal concentrations may reduce the efficacy of topical antibiotics used with TTO in combination therapies.  相似文献   

9.
In analyzing the drug resistance phenotype and mechanism of resistance to macrolide antibiotics of clinical Pseudomonas aeruginosa isolates, the agar dilution method was used to determine the minimum inhibitory concentrations (MICs), and PCR (polymerase chain reaction) was applied to screen for macrolide antibiotics resistance genes. The macrolide antibiotics resistance genes were cloned, and their functions were identified. Of the 13 antibiotics tested, P. aeruginosa strains showed high resistance rates (ranging from 69.5–82.1%), and MIC levels (MIC90 > 256 μg/ml) to macrolide antibiotics. Of the 131 known macrolide resistance genes, only two genes, mphE and msrE, were identified in 262 clinical P. aeruginosa isolates. Four strains (1.53%, 4/262) carried both the msrE and mphE genes, and an additional three strains (1.15%, 3/262) harbored the mphE gene alone. The cloned msrE and mphE genes conferred higher resistance levels to three second-generation macrolides compared to two first-generation ones. Analysis of MsrE and MphE protein polymorphisms revealed that they are highly conserved, with only 1–3 amino acids differences between the proteins of the same type. It can be concluded that even though the strains showed high resistance levels to macrolides, known macrolide resistance genes are seldom present in clinical P. aeruginosa strains, demonstrating that a mechanism other than this warranted by the mphE and msrE genes may play a more critical role in the bacteria’s resistance to macrolides.Key words: Pseudomonas aeruginosa, macrolide, resistance gene, mphE, msrE  相似文献   

10.
Aim: To determine if exposure of Pseudomonas aeruginosa biofilms to chloraminated drinking water can lead to individual bacteria with resistance to antibiotics. Methods and Results: Biofilms of P. aeruginosa PA14 were grown in drinking water in a Kadouri drip‐fed reactor; the biofilms were treated with either 0·5 mg l‐1 or 1·0 mg l‐1 of chloramine for 15 or 21 days; control biofilms were grown in water without chloramine. Fewer isolates with antibiotic resistance were obtained from the chloramine‐treated biofilms as compared to the control. Minimum inhibitory concentrations (MIC) for selected antibiotic‐resistant isolates were determined using ciprofloxacin, tobramycin, gentamicin, rifampicin and chloramphenicol. All of the isolates tested had increased resistance over the wildtype to ciprofloxacin, rifampicin and chloramphenicol, but were not resistant to tobramycin or gentamicin. Conclusions: Under these test conditions, there was no detectable increase in antibiotic resistance in P. aeruginosa exposed as biofilms to disinfectant residues in chloraminated drinking water. Significance and Impact of the study: Chloramine in drinking water, while unable to kill biofilm bacteria, does not increase the potential of P. aeruginosa to become resistant to antibiotics.  相似文献   

11.
Pseudomonas aeruginosa is an opportunistic human pathogen, which can cause severe urinary tract infections (UTIs). Because of the high intrinsic antibiotic resistance of P. aeruginosa and its ability to develop new resistances during antibiotic treatment, these infections are difficult to eradicate. The antibiotic susceptibility of 32 P. aeruginosa isolates from acute and chronic UTIs were analysed under standardized conditions showing 19% multi-drug resistant strains. Furthermore, the antibiotic tolerance of two P. aeruginosa strains to ciprofloxacin and tobramycin was analysed under urinary tract-relevant conditions which considered nutrient composition, biofilm growth, growth phase, and oxygen concentration. These conditions significantly enhance the antibiotic tolerance of P. aeruginosa up to 6000-fold indicating an adaptation of the bacterium to the specific conditions present in the urinary tract. This reversible phenomenon is possibly due to the increased formation of persister cells and is based on iron limitation in artificial urine. The results suggest that the general high antibiotic resistance of P. aeruginosa urinary tract isolates together with the increasing tolerance of P. aeruginosa grown under urinary tract conditions decrease the efficiency of antibiotic treatment of UTIs.  相似文献   

12.
Quorum sensing (QS) regulates virulence and biofilm formation in Pseudomonas aeruginosa and other medically relevant bacteria. Human paraoxonases (hPONs) are a family of closely related enzymes with multiple functions, including inactivation of the QS signal molecule in P. aeruginosa. However, there is no direct evidence to show the functions of hPONs on biofilm formation and antibiotic resistance in P. aeruginosa. In the present study, hPONs (hPON1, hPON2, and hPON3) genes were respectively cloned into the pMEKm12 shuttle vector and transformed into P. aeruginosa strain PAO1. Expression of the three recombinant proteins was confirmed by Western blotting, and growth of the recombinant strains was not affected by the hPONs gene expression. Biofilm formation and antibiotics resistance of the hPONs recombinant strains were analyzed. Our results showed that biofilm formation was significantly inhibited in all of the three hPONs recombinant strains. Interestingly, this inhibition can be reverted by addition of the corresponding hPONs polyclonal antibodies in the culture media, further indicating that the inhibition of biofilm formation was due to hPONs protein expression. In addition, we also demonstrated that hPONs expression decreased resistance of P. aeruginosa to gentamicin and ceftazidima, two antibiotics clinically used for the treatment of P. aeruginosa infection.  相似文献   

13.
The rise of antibiotic resistance and the reduced amount of novel antibiotics support the need of developing novel strategies to fight infections, based on improving the use of the antibiotics we already have. Collateral sensitivity is an evolutionary trade-off associated with the acquisition of antibiotic resistance that can be exploited to tackle this relevant health problem. However, different works have shown that patterns of collateral sensitivity are not always conserved, thus precluding the exploitation of this evolutionary trade-off to fight infections. In this work, we identify a robust pattern of collateral sensitivity to fosfomycin in Pseudomonas aeruginosa antibiotic-resistant mutants, selected by antibiotics belonging to different structural families. We characterize the underlying mechanism of the collateral sensitivity observed, which is a reduced expression of the genes encoding the peptidoglycan-recycling pathway, which preserves the peptidoglycan synthesis in situations where its de novo synthesis is blocked, and a reduced expression of fosA, encoding a fosfomycin-inactivating enzyme. We propose that the identification of robust collateral sensitivity patterns, as well as the understanding of the molecular mechanisms behind these phenotypes, would provide valuable information to design evolution-based strategies to treat bacterial infections.  相似文献   

14.
Summary The occurrence and antibiotic resistance of Escherichia coli in tropical seafood was studied. A 3-tube MPN method was used for determining the level of faecal contamination of fresh and processed seafood. Of the 188 samples tested which included finfish, shellfish, water and ice, 155 were positive for the presence of faecal coliforms following incubation at 44.5 °C. However, E. coli was isolated from only 47% of the samples positive for faecal coliforms. The antibiotic resistance of 116 strains isolated from seafood was tested using 14 different antibiotics including ampicillin, cephalothin, chloramphenicol, ciprofloxacin, gentamycin, nalidixic acid, streptomycin and vancomycin. Seven strains were resistant to more than five antibiotics of which one was resistant to eight antibiotics. The multiple drug resistant strains harboured plasmids of varying sizes. Antibiotic susceptibility studies revealed that seafood from India contains multiple antibiotic resistant strains of E. coli which may serve as a reservoir for antibiotic resistance genes in the aquatic environment. All the strains used in this study did not harbour any virulence genes commonly associated with pathogenic E. coli, when tested by polymerase chain reaction (PCR).  相似文献   

15.
The efficacy of antibiotic treatments targeting polymicrobial communities is not well predicted by conventional in vitro susceptibility testing based on determining minimum inhibitory concentration (MIC) in monocultures. One reason for this is that inter-species interactions can alter the community members’ susceptibility to antibiotics. Here we quantify, and identify mechanisms for, community-modulated changes of efficacy for clinically relevant antibiotics against the pathogen Pseudomonas aeruginosa in model cystic fibrosis (CF) lung communities derived from clinical samples. We demonstrate that multi-drug resistant Stenotrophomonas maltophilia can provide high levels of antibiotic protection to otherwise sensitive P. aeruginosa. Exposure protection to imipenem was provided by chromosomally encoded metallo-β-lactamase that detoxified the environment; protection was dependent upon S. maltophilia cell density and was provided by S. maltophilia strains isolated from CF sputum, increasing the MIC of P. aeruginosa by up to 16-fold. In contrast, the presence of S. maltophilia provided no protection against meropenem, another routinely used carbapenem. Mathematical ordinary differential equation modelling shows that the level of exposure protection provided against different carbapenems can be explained by differences in antibiotic efficacy and inactivation rate. Together, these findings reveal that exploitation of pre-occurring antimicrobial resistance, and inter-specific competition, can have large impacts on pathogen antibiotic susceptibility, highlighting the importance of microbial ecology for designing successful antibiotic treatments for multispecies communities.Subject terms: Antibiotics, Bacterial infection, Microbial ecology  相似文献   

16.
17.
Forty-eight isolates resistant to at least two antibiotics were selected from 53 antibiotic-resistant enterococci from chicken and pig meat and faeces and analysed for specific resistance determinants. Of the 48 multidrug-resistant (MDR) strains, 31 were resistant to two antibiotics (29 to erythromycin and tetracycline, 1 to erythromycin and vancomycin, 1 to vancomycin and tetracycline), 14 to three (erythromycin, tetracycline and vancomycin or ampicillin) and 3 to four (erythromycin, vancomycin, ampicillin and gentamicin). erm(B), tet(M), vanA and aac (6′)-Ie aph (2′′)-Ia were the antibiotic resistance genes most frequently detected. All 48 MDR enterococci were susceptible to linezolid and daptomycin. Enterococcus faecalis (16), Enterococcus faecium (8), Enterococcus mundtii (2) and Enterococcus gallinarum (1) were identified in meat, and E. faecium (13) and Enterococcus durans (13) in faeces. Clonal spread was not detected, suggesting a large role of gene transfer in the dissemination of antibiotic resistance. Conjugative transfer of resistance genes was more successful when donors were enterococcal strains isolated from faeces; co-transfer of vanA and erm(B) to a human E. faecium occurred from both E. faecium and E. durans pig faecal strains. These data show that multidrug resistance can be found in food and animal species other than E. faecium and E. faecalis, and that these species can efficiently transfer antibiotic resistance to human strains in inter-specific matings. In particular, the occurrence of MDR E. durans in the animal reservoir could have a role in the emergence of human enterococcal infections difficult to eradicate with antibiotics.  相似文献   

18.
For many years, device-associated infections and particularly device-associated nosocomial infections have been of considerable concern. Recently, this concern was heightened as a result of increased antibiotic resistance among the common causal agents of nosocomial infections, the appearance of new strains which are intrinsically resistant to the antibiotics of choice, and the emerging understanding of the role biofilms may play in device-associated infections and the development of increased antibiotic resistance. Pseudomonas aeruginosa and Candida albicans are consistently identified as some of the more important agents of nosocomial infections. In light of the recent information regarding device-associated nosocomial infections, understanding the nature of P. aeruginosa and C. albicans infections is increasingly important. These two microorganisms demonstrate: (1) an ability to form biofilms on the majority of devices employed currently, (2) increased resistance/tolerance to antibiotics when associated with biofilms, (3) documented infections noted for virtually all indwelling devices, (4) opportunistic pathogenicity, and (5) persistence in the hospital environment. To these five demonstrated characteristics, two additional areas of interest are emerging: (a) the as yet unclear relationship of these two microorganisms to those species of highly resistant Pseudomonas spp and Candida spp that are of increasing concern with device-related infections, and (b) the recent research showing the dynamic interaction of P. aeruginosa and C. albicans in patients with cystic fibrosis. An understanding of these two opportunistic pathogens in the context of their ecosystems/biofilms also has significant potential for the development of novel and effective approaches for the control and treatment of device-associated infections.  相似文献   

19.
The purpose of this study was to evaluate the primary resistance rates of recent clinical Helicobacter pylori isolates to the most commonly used antibiotics in Iran. Two hundreds and ten patients presenting with gastric maladies between January and July of 2009 were enrolled in this study. Endoscopy was performed, and biopsy specimens were collected from each patient for subsequent bacterial culture of H. pylori. Single colony isolates from each patient were then used for antimicrobial susceptibility testing. The disk diffusion method was used to determine susceptibility patterns. One hundred and ninety-seven of the patients were H. pylori positive (93.8%). The rates of resistance to tetracycline, amoxicillin, ciprofloxacin, metronidazole, clarithromycin, and furizoladone were 37.1%, 23.9%, 34.5%, 65.5%, 45.2%, and 61.4%, respectively. A significant association between amoxicillin resistance and disease state (P<0.05) was identified. Furthermore, some double, triple, quadruple, and quintuple combinations of antibiotic resistance were found to be associated with disease state. This study evaluated the prevalence of H. pylori resistance to the most commonly prescribed antibiotics used in Iran and showed that resistance rates were generally higher than previously reported. This data adds to the growing body of evidence that suggests there is increasing antibiotic resistance among H. pylori isolates, which likely is responsible for the decreasing efficacy of anti-H. pylori therapy at the local and global level. Hence, there is a need for continued monitoring of resistance patterns, especially at the local level, and for incorporation of that information into treatment regimens for H. pylori infections.  相似文献   

20.
Pseudomonas aeruginosa is one of the major nosocomial pathogen that can causes a wide variety of acute and chronic infections P. aeruginosa is a dreaded bacteria not just because of the high intrinsic and acquired antibiotic resistance rates but also the biofilm formation and production of multiple virulence factors. We investigated the in vitro activities of antibiotics (ceftazidime, tobramycin, ciprofloxacin, doripenem, piperacillin and colistin) and antimicrobial cationic peptides (AMPs; LL-37, CAMA: cecropin(1–7)-melittin A(2–9) amide, melittin, defensin and magainin-II) alone or in combination against biofilms of laboratory strain ATCC 27853 and 4 clinical strains of P. aeruginosa. The minimum inhibitory concentrations (MIC), minimum bactericidal concentration (MBC) and minimum biofilm eradication concentrations (MBEC) were determined by microbroth dilution technique. The MBEC values of antibiotics and AMPs were 80–>5120 and 640–>640 mg/L, respectively. When combined with the LL-37 or CAMA at 1/10× MBEC, the MBEC values of antibiotics that active against biofilms, were decreased up to 8-fold. All of the antibiotics, and AMPs were able to inhibit the attachment of bacteria at the 1/10× MIC and biofilm formation at 1× or 1/10× MIC concentrations. Time killing curve studies showed 3-log10 killing against biofilms in 24 h with almost all studied antibiotics and AMPs. Synergism were seen in most of the studied combinations especially CAMA/LL-37 + ciprofloxacin against at least one or two strains’ biofilms. Since biofilms are not affected the antibiotics at therapeutic concentrations, using a combination of antimicrobial agents including AMPs, or inhibition of biofilm formation by blocking the attachment of bacteria to surfaces might be alternative methods to fight with biofilm associated infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号