首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Artificial duplicates from pyrosequencing reads may lead to incorrect interpretation of the abundance of species and genes in metagenomic studies. Duplicated reads were filtered out in many metagenomic projects. However, since the duplicated reads observed in a pyrosequencing run also include natural (non-artificial) duplicates, simply removing all duplicates may also cause underestimation of abundance associated with natural duplicates.  相似文献   

2.
Xia LC  Cram JA  Chen T  Fuhrman JA  Sun F 《PloS one》2011,6(12):e27992
Accurate estimation of microbial community composition based on metagenomic sequencing data is fundamental for subsequent metagenomics analysis. Prevalent estimation methods are mainly based on directly summarizing alignment results or its variants; often result in biased and/or unstable estimates. We have developed a unified probabilistic framework (named GRAMMy) by explicitly modeling read assignment ambiguities, genome size biases and read distributions along the genomes. Maximum likelihood method is employed to compute Genome Relative Abundance of microbial communities using the Mixture Model theory (GRAMMy). GRAMMy has been demonstrated to give estimates that are accurate and robust across both simulated and real read benchmark datasets. We applied GRAMMy to a collection of 34 metagenomic read sets from four metagenomics projects and identified 99 frequent species (minimally 0.5% abundant in at least 50% of the data-sets) in the human gut samples. Our results show substantial improvements over previous studies, such as adjusting the over-estimated abundance for Bacteroides species for human gut samples, by providing a new reference-based strategy for metagenomic sample comparisons. GRAMMy can be used flexibly with many read assignment tools (mapping, alignment or composition-based) even with low-sensitivity mapping results from huge short-read datasets. It will be increasingly useful as an accurate and robust tool for abundance estimation with the growing size of read sets and the expanding database of reference genomes.  相似文献   

3.

Background

In recent years several different fields, such as ecology, medicine and microbiology, have experienced an unprecedented development due to the possibility of direct sequencing of microbioimic samples. Among problems that researchers in the field have to deal with, taxonomic classification of metagenomic reads is one of the most challenging. State of the art methods classify single reads with almost 100% precision. However, very often, the performance in terms of recall falls at about 50%. As a consequence, state-of-the-art methods are indeed capable of correctly classify only half of the reads in the sample. How to achieve better performances in terms of overall quality of classification remains a largely unsolved problem.

Results

In this paper we propose a method for metagenomics CLassification Improvement with Overlapping Reads (CLIOR), that exploits the information carried by the overlapping reads graph of the input read dataset to improve recall, f-measure, and the estimated abundance of species. In this work, we applied CLIOR on top of the classification produced by the classifier Clark-l. Experiments on simulated and synthetic metagenomes show that CLIOR can lead to substantial improvement of the recall rate, sometimes doubling it. On average, on simulated datasets, the increase of recall is paired with an higher precision too, while on synthetic datasets it comes at expenses of a small loss of precision. On experiments on real metagenomes CLIOR is able to assign many more reads while keeping the abundance ratios in line with previous studies.

Conclusions

Our results showed that with CLIOR is possible to boost the recall of a state-of-the-art metagenomic classifier by inferring and/or correcting the assignment of reads with missing or erroneous labeling. CLIOR is not restricted to the reads classification algorithm used in our experiments, but it may be applied to other methods too. Finally, CLIOR does not need large computational resources, and it can be run on a laptop.
  相似文献   

4.
5.

Background

The microbial communities populating human and natural environments have been extensively characterized with shotgun metagenomics, which provides an in-depth representation of the microbial diversity within a sample. Microbes thriving in urban environments may be crucially important for human health, but have received less attention than those of other environments. Ongoing efforts started to target urban microbiomes at a large scale, but the most recent computational methods to profile these metagenomes have never been applied in this context. It is thus currently unclear whether such methods, that have proven successful at distinguishing even closely related strains in human microbiomes, are also effective in urban settings for tasks such as cultivation-free pathogen detection and microbial surveillance. Here, we aimed at a) testing the currently available metagenomic profiling tools on urban metagenomics; b) characterizing the organisms in urban environment at the resolution of single strain and c) discussing the biological insights that can be inferred from such methods.

Results

We applied three complementary methods on the 1614 metagenomes of the CAMDA 2017 challenge. With MetaMLST we identified 121 known sequence-types from 15 species of clinical relevance. For instance, we identified several Acinetobacter strains that were close to the nosocomial opportunistic pathogen A. nosocomialis. With StrainPhlAn, a generalized version of the MetaMLST approach, we inferred the phylogenetic structure of Pseudomonas stutzeri strains and suggested that the strain-level heterogeneity in environmental samples is higher than in the human microbiome. Finally, we also probed the functional potential of the different strains with PanPhlAn. We further showed that SNV-based and pangenome-based profiling provide complementary information that can be combined to investigate the evolutionary trajectories of microbes and to identify specific genetic determinants of virulence and antibiotic resistances within closely related strains.

Conclusion

We show that strain-level methods developed primarily for the analysis of human microbiomes can be effective for city-associated microbiomes. In fact, (opportunistic) pathogens can be tracked and monitored across many hundreds of urban metagenomes. However, while more effort is needed to profile strains of currently uncharacterized species, this work poses the basis for high-resolution analyses of microbiomes sampled in city and mass transportation environments.

Reviewers

This article was reviewed by Alexandra Bettina Graf, Daniel Huson and Trevor Cickovski.
  相似文献   

6.
7.
8.
Due to the complexity of the protocols and a limited knowledge of the nature of microbial communities, simulating metagenomic sequences plays an important role in testing the performance of existing tools and data analysis methods with metagenomic data. We developed metagenomic read simulators with platform-specific (Sanger, pyrosequencing, Illumina) base-error models, and simulated metagenomes of differing community complexities. We first evaluated the effect of rigorous quality control on Illumina data. Although quality filtering removed a large proportion of the data, it greatly improved the accuracy and contig lengths of resulting assemblies. We then compared the quality-trimmed Illumina assemblies to those from Sanger and pyrosequencing. For the simple community (10 genomes) all sequencing technologies assembled a similar amount and accurately represented the expected functional composition. For the more complex community (100 genomes) Illumina produced the best assemblies and more correctly resembled the expected functional composition. For the most complex community (400 genomes) there was very little assembly of reads from any sequencing technology. However, due to the longer read length the Sanger reads still represented the overall functional composition reasonably well. We further examined the effect of scaffolding of contigs using paired-end Illumina reads. It dramatically increased contig lengths of the simple community and yielded minor improvements to the more complex communities. Although the increase in contig length was accompanied by increased chimericity, it resulted in more complete genes and a better characterization of the functional repertoire. The metagenomic simulators developed for this research are freely available.  相似文献   

9.

Background

Metagenomics method directly sequences and analyses genome information from microbial communities. There are usually more than hundreds of genomes from different microbial species in the same community, and the main computational tasks for metagenomic data analyses include taxonomical and functional component examination of all genomes in the microbial community. Metagenomic data analysis is both data- and computation- intensive, which requires extensive computational power. Most of the current metagenomic data analysis softwares were designed to be used on a single computer or single computer clusters, which could not match with the fast increasing number of large metagenomic projects' computational requirements. Therefore, advanced computational methods and pipelines have to be developed to cope with such need for efficient analyses.

Result

In this paper, we proposed Parallel-META, a GPU- and multi-core-CPU-based open-source pipeline for metagenomic data analysis, which enabled the efficient and parallel analysis of multiple metagenomic datasets and the visualization of the results for multiple samples. In Parallel-META, the similarity-based database search was parallelized based on GPU computing and multi-core CPU computing optimization. Experiments have shown that Parallel-META has at least 15 times speed-up compared to traditional metagenomic data analysis method, with the same accuracy of the results http://www.computationalbioenergy.org/parallel-meta.html.

Conclusion

The parallel processing of current metagenomic data would be very promising: with current speed up of 15 times and above, binning would not be a very time-consuming process any more. Therefore, some deeper analysis of the metagenomic data, such as the comparison of different samples, would be feasible in the pipeline, and some of these functionalities have been included into the Parallel-META pipeline.
  相似文献   

10.
Here, shotgun metagenomic sequencing was conducted to reveal the hydrogen-oxidizing autotrophic-denitrifying metabolism in an enriched Thauera-dominated consortium. A draft genome named Thauera R4 of over 90 % completeness (3.8 Mb) was retrieved mainly by a coverage-defined binning method from 3.5 Gb paired-end Illumina reads. We identified 1,263 genes (accounting for 33 % of total genes in the finished genome of Thauera aminoaromatica MZ1T) with average nucleotide identity of 87.6 % shared between Thauera R4 and T. aminoaromatica MZ1T. Although Thauera R4 and T. aminoaromatica shared quite similar nitrogen metabolism and a high nucleotide similarity (98.8 %) in their 16S ribosomal RNA genes, they showed different functional potentials in several important environmentally relevant processes. Unlike T. aminoaromatica MZ1T, Thauera R4 carries an operon of [NiFe]-hydrogenase (EC 1.12.99.6) catalyzing molecular hydrogen oxidation in nitrate-rich solution. Moreover, Thauera R4 is a mixtrophic bacterium possessing key enzymes for autotrophic CO2-fixation and heterotrophic acetate assimilation metabolism. This Thauera R4 bin provides another genetic reference to better understand the niches of Thauera and demonstrates a model pipeline to reveal functional profiles and reconstruct novel and dominant genomes from a simplified mixed culture in environmental studies.  相似文献   

11.
GSTaxClassifier (Genomic Signature based Taxonomic Classifier) is a program for metagenomics analysis of shotgun DNA sequences. The program includes
  1. a simple but effective algorithm, a modification of the Bayesian method, to predict the most probable genomic origins of sequences at different taxonomical ranks, on the basis of genome databases;
  2. a function to generate genomic profiles of reference sequences with tri-, tetra-, penta-, and hexa-nucleotide motifs for setting a user-defined database;
  3. two different formats (tabular- and tree-based summaries) to display taxonomic predictions with improved analytical methods; and
  4. effective ways to retrieve, search, and summarize results by integrating the predictions into the NCBI tree-based taxonomic information.
GSTaxClassifier takes input nucleotide sequences and using a modified Bayesian model evaluates the genomic signatures between metagenomic query sequences and reference genome databases. The simulation studies of a numerical data sets showed that GSTaxClassifier could serve as a useful program for metagenomics studies, which is freely available at http://helix2.biotech.ufl.edu:26878/metagenomics/.  相似文献   

12.
Ab initio gene identification in metagenomic sequences   总被引:1,自引:0,他引:1  
We describe an algorithm for gene identification in DNA sequences derived from shotgun sequencing of microbial communities. Accurate ab initio gene prediction in a short nucleotide sequence of anonymous origin is hampered by uncertainty in model parameters. While several machine learning approaches could be proposed to bypass this difficulty, one effective method is to estimate parameters from dependencies, formed in evolution, between frequencies of oligonucleotides in protein-coding regions and genome nucleotide composition. Original version of the method was proposed in 1999 and has been used since for (i) reconstructing codon frequency vector needed for gene finding in viral genomes and (ii) initializing parameters of self-training gene finding algorithms. With advent of new prokaryotic genomes en masse it became possible to enhance the original approach by using direct polynomial and logistic approximations of oligonucleotide frequencies, as well as by separating models for bacteria and archaea. These advances have increased the accuracy of model reconstruction and, subsequently, gene prediction. We describe the refined method and assess its accuracy on known prokaryotic genomes split into short sequences. Also, we show that as a result of application of the new method, several thousands of new genes could be added to existing annotations of several human and mouse gut metagenomes.  相似文献   

13.
Over the last 60 years, the use of hexachlorocyclohexane (HCH) as a pesticide has resulted in the production of >4 million tons of HCH waste, which has been dumped in open sinks across the globe. Here, the combination of the genomes of two genetic subspecies (Sphingobium japonicum UT26 and Sphingobium indicum B90A; isolated from two discrete geographical locations, Japan and India, respectively) capable of degrading HCH, with metagenomic data from an HCH dumpsite (∼450 mg HCH per g soil), enabled the reconstruction and validation of the last-common ancestor (LCA) genotype. Mapping the LCA genotype (3128 genes) to the subspecies genomes demonstrated that >20% of the genes in each subspecies were absent in the LCA. This includes two enzymes from the ‘upper'' HCH degradation pathway, suggesting that the ancestor was unable to degrade HCH isomers, but descendants acquired lin genes by transposon-mediated lateral gene transfer. In addition, anthranilate and homogentisate degradation traits were found to be strain (selectively retained only by UT26) and environment (absent in the LCA and subspecies, but prevalent in the metagenome) specific, respectively. One draft secondary chromosome, two near complete plasmids and eight complete lin transposons were assembled from the metagenomic DNA. Collectively, these results reinforce the elastic nature of the genus Sphingobium, and describe the evolutionary acquisition mechanism of a xenobiotic degradation phenotype in response to environmental pollution. This also demonstrates for the first time the use of metagenomic data in ancestral genotype reconstruction, highlighting its potential to provide significant insight into the development of such phenotypes.  相似文献   

14.
Pignatelli M  Moya A 《PloS one》2011,6(5):e19984
A frequent step in metagenomic data analysis comprises the assembly of the sequenced reads. Many assembly tools have been published in the last years targeting data coming from next-generation sequencing (NGS) technologies but these assemblers have not been designed for or tested in multi-genome scenarios that characterize metagenomic studies. Here we provide a critical assessment of current de novo short reads assembly tools in multi-genome scenarios using complex simulated metagenomic data. With this approach we tested the fidelity of different assemblers in metagenomic studies demonstrating that even under the simplest compositions the number of chimeric contigs involving different species is noticeable. We further showed that the assembly process reduces the accuracy of the functional classification of the metagenomic data and that these errors can be overcome raising the coverage of the studied metagenome. The results presented here highlight the particular difficulties that de novo genome assemblers face in multi-genome scenarios demonstrating that these difficulties, that often compromise the functional classification of the analyzed data, can be overcome with a high sequencing effort.  相似文献   

15.
16.
17.
18.
MOTIVATION: Analysis of gene expression data can provide insights into the time-lagged co-regulation of genes/gene clusters. However, existing methods such as the Event Method and the Edge Detection Method are inefficient as they compare only two genes at a time. More importantly, they neglect some important information due to their scoring criterian. In this paper, we propose an efficient algorithm to identify time-lagged co-regulated gene clusters. The algorithm facilitates localized comparison and processes several genes simultaneously to generate detailed and complete time-lagged information for genes/gene clusters. RESULTS: We experimented with the time-series Yeast gene dataset and compared our algorithm with the Event Method. Our results show that our algorithm is not only efficient, but also delivers more reliable and detailed information on time-lagged co-regulation between genes/gene clusters. AVAILABILITY: The software is available upon request. CONTACT: jiliping@comp.nus.edu.sg SUPPLEMENTARY INFORMATION: Supplementary tables and figures for this paper can be found at http://www.comp.nus.edu.sg/~jiliping/p2.htm.  相似文献   

19.
The 454 Genome Sequencer (GS) FLX System is one of the next-generation sequencing systems featured by long reads, high accuracy, and ultra-high throughput. Based on the mechanism of emulsion PCR, a unique DNA template would only generate a unique sequence read after being amplified and sequenced on GS FLX. However, biased amplification of DNA templates might occur in the process of emulsion PCR, which results in production of artificial duplicate reads. Under the condition that each DNA template is unique to another, 3.49%-18.14% of total reads in GS FLX-sequencing data were found to be artificial duplicate reads. These duplicate reads may lead to misunderstanding of sequencing data and special attention should be paid to the potential biases they introduced to the data.  相似文献   

20.
Using metagenomic ‘parts lists’ to infer global patterns on microbial ecology remains a significant challenge. To deduce important ecological indicators such as environmental adaptation, molecular trait dispersal, diversity variation and primary production from the gene pool of an ecosystem, we integrated 25 ocean metagenomes with geographical, meteorological and geophysicochemical data. We find that climatic factors (temperature, sunlight) are the major determinants of the biomolecular repertoire of each sample and the main limiting factor on functional trait dispersal (absence of biogeographic provincialism). Molecular functional richness and diversity show a distinct latitudinal gradient peaking at 20°N and correlate with primary production. The latter can also be predicted from the molecular functional composition of an environmental sample. Together, our results show that the functional community composition derived from metagenomes is an important quantitative readout for molecular trait‐based biogeography and ecology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号