首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
l-Glutamate is the major excitatory transmitter in the vertebrate retina and plays a central role in the transmission of the various retinal neurons. Glutamate is removed from the extracellular space by at least five different glutamate transporters. The cellular distribution of these has been studied so far mainly using immunocytochemistry. In the present study non-radioactive in situ hybridisation using complementary RNA probes was applied in order to identify the cell types of rat retina and optic nerve expressing generic GLT1, GLT1 variant (GLT1v or GLT1B), GLAST and EAAC1. The results were compared with immunocytochemical data achieved using affinity-purified antibodies against transporter peptides. In the immunohistochemical studies the human retina was included. The study showed that in the rat retina GLT1v and EAAC1 were coexpressed in various cell types, i.e. photoreceptor, bipolar, horizontal, amacrine, ganglion and Müller cells, whereas GLAST was only detected in Müller cells and astrocytes. In the rat optic nerve GLT1v and EAAC1 were preferentially expressed in oligodendrocytes, whereas GLAST was revealed to be present mainly in astrocytes. Generic GLT1 could not be detected in the retina or optic nerve. The cellular distribution of glutamate transporters (only immunocytochemistry) in the human retina was very similar to that of the rat retina. Remarkable results of our studies were that generic GLT1 was not detectable in the rat (and human) retina and that GLT1v and EAAC1 were demonstrable in most cell types of the retina (including photoreceptor cells and their terminals).  相似文献   

2.
The expression and activity of glutamate transporters (EAAC1, GLAST and GLT1) were examined during the development of cortical neuron-enriched cultures. Protein content and mitochondrial respiration both increased during the first 7 days, later stabilized and decreased from DIV14. Glutamate transport and extracellular concentration were relatively constant from DIV3 to 18. The kinetic parameters of glutamate transport were at DIV7:Km=19±3 μM and Vmax=1068±83 pmol/mg protein/min and at DIV14: Km=40.8±9.3 μM and Vmax=1060±235 pmol/mg protein/min. The shift in Km towards higher values suggest a more important participation of GLAST after DIV14. At DIV7 and 14, glutamate transport was poorly sensitive to dihydrokaïnate (DHK) suggesting a weak participation of GLT1 in glutamate transport. Western blot experiments and immunocytochemistry showed that EAAC1 was expressed by neurons whatever the stage of the culture. GLAST was found in astrocytes as soon as DIV3 and labeling increased during the development of the culture. There was little neuronal GLT1 immunoreactivity at DIV7, only detected by immunocytochemistry. From DIV10 to 18, an increasing astrocytic expression of GLT1 was observed, also detected by Western blotting. These results show that: (1) glutamate uptake remains stable all along the development of the cultures although the pattern of expression of the different transporters is changing, suggesting that glutamate transport is highly regulated; (2) neuronal EAAC1 may play a critical role during the early stages of the culture when it is expressed alone; and (3) the developmental expression pattern of glutamate transporters in cortical neuron-enriched cultures is quite similar to that observed in vivo during early postnatal development.  相似文献   

3.
4.
There is growing evidence that the loss of the nigrostriatal dopaminergic neurones induces an overactivity of the corticostriatal glutamatergic pathway which seems to be central to the physiopathology of parkinsonism. Moreover, glutamatergic mechanisms involving NMDA receptors have been shown to interfere with the therapeutical action of levodopa. Given the key role played by uptake processes in glutamate neurotransmission, this study examined the effects of nigrostriatal deafferentation and of levodopa treatment on the striatal expression of the glutamate transporters GLT1, GLAST and EAAC1 in the rat. No significant changes in striatal mRNA levels of these transporters were detected after either levodopa treatment (100 mg/kg; i.p., twice a day for 21 days) or unilateral lesion of the nigrostriatal pathway by intranigral 6-hydroxydopamine injection. In contrast, animals with the lesion subsequently treated with levodopa showed a selective increase (36%) in GLT1 mRNA levels in the denervated striatum versus controls. These animals also showed increased GLT1 protein expression, as assessed by immunostaining and western blotting. These data provide the first evidence that levodopa therapy may interfere with striatal glutamate transmission through change in expression of the primarily glial glutamate transporter GLT1. We further suggest that levodopa-induced GLT1 overexpression may represent a compensatory mechanism preventing neurotoxic accumulation of endogenous glutamate.  相似文献   

5.
Transport of L-cystine across the cell membrane is essential for synthesis of the major cellular antioxidant, glutathione (gamma-glutamylcysteinylglycine). In this study, uptake of L-[14C]cystine by three of the high affinity sodium-dependent mammalian glutamate transporters (GLT1, GLAST and EAAC1) individually expressed in HEK cells has been determined. All three transporters display saturable uptake of L-[14C]cystine with Michaelis affinity (K(m)) constants in the range of 20-110 microM. L-glutamate and L-homocysteate are potent inhibitors of sodium-dependent L-[14C]cystine uptake in HEK(GLAST), HEK(GLT1) and HEK(EAAC1) cells. Reduction of L-[14C]cystine to L-[14C]cysteine in the presence of 1mM cysteinylglycine increases the uptake rate in HEK(GLT1), HEK(GLAST) and HEK(EAAC1) cells, but only a small proportion (<10%) of L-[14C]cysteine uptake in HEK(GLT1) and HEK(GLAST) cells occurs by the high affinity glutamate transporters. The majority (>90%) of L-[14C]cysteine transport in these cells is mediated by the ASC transport system. In HEK(EAAC1) cells, on the other hand, L-[14C]cysteine is transported equally by the ASC and EAAC1 transporters. L-homocysteine inhibits L-[14C]cysteine transport in both HEK(GLAST) and HEK(GLT1) cells, but not in HEK(EAAC1) cells. It is concluded that the quantity of L-[14C]cyst(e)ine taken up by individual high affinity sodium-dependent glutamate transporters is determined both by the extracellular concentration of amino acids, such as glutamate and homocysteine, and by the extracellular redox potential, which will control the oxidation state of L-cystine.  相似文献   

6.
At the glutamatergic synapse the neurotransmitter is removed from the synaptic cleft by high affinity amino acid transporters located on neurons (EAAC1) and astrocytes (GLAST and GLT1), and a coordinated action of these cells is necessary in order to regulate glutamate extracellular concentration. We show here that treatment of neuronal cultures with glial soluble factors (GCM) is associated with a redistribution of EAAC1 and GLAST to the cell membrane and we analysed the effect of membrane cholesterol depletion on this regulation.

In enriched neuronal culture (90% neurons and 10% astrocytes), GCM treatment for 10 days increases EAAC1 and GLAST cell surface expression with no change in total expression. In opposite, GLT1 surface expression is not modified by GCM but total expression is increased. When cholesterol is acutely depleted from the membrane by 10 mM methyl-beta-cyclodextrin (β5-MCD, 30 min), glutamate transport activity and cell surface expressions of EAAC1 and GLAST are decreased in the enriched neuronal culture treated by GCM. In pure neuronal culture addition of GCM also increases EAAC1 cell membrane expression but surprisingly acute treatment with β5-MCD decreases glutamate uptake activity but not EAAC1 cell membrane expression. By immunocytochemistry a modification in the distribution of EAAC1 within neurons was undetectable whatever the treatment but we show that EAAC1 was no more co localized with Thy-1 in the enriched neuronal culture treated by GCM suggesting that GCM have stimulated polarity formation in neurons, an index of maturation.

In conclusion we suggest that different regulatory mechanisms are involved after GCM treatment, glutamate transporter trafficking to and from the plasma membrane in enriched neuronal culture and modulation of EAAC1 intrinsic activity and/or association with regulatory proteins at the cell membrane in the pure neuronal culture. These different regulatory pathways of EAAC1 are associated with different neuronal maturation stages.  相似文献   


7.
Rauen T 《Amino acids》2000,19(1):53-62
Summary. Glutamate is the major excitatory neurotransmitter of the mammalian retina and glutamate uptake is essential for normal transmission at glutamatergic synapses. Between photoreceptors and second order neurons, increases in light intensity are signaled by decreases in the concentration of glutamate within the synaptic cleft. In such a system the precise control of glutamate in the synaptic cleft is thus essential and glutamate transporters are thought to contribute to this process. As demonstrated here, all neuronal and macroglial cells of the retina appear to express high-affinity glutamate transporters. GLAST1, GLT1, EAAC1 and EAAT5 are expressed in the retina and exhibit unique localisation and functional properties. In the present study we summarize retinal glutamate transporter expression, identify the major glutamate uptake site in the mammalian retina and discuss the possible functional roles of different glutamate transporter subtypes in glutamatergic neurotranmission in the retina. Received August 31, 1999 Accepted September 20, 1999  相似文献   

8.
The excitatory amino acids glutamate and cysteine are actively transported into neurons from the extracellular space by the high affinity glutamate transporter EAAC1. The astrocyte glutamate transporters, GLT1 and GLAST, are the primary mediators of glutamate clearance. EAAC1 has a limited role in this function. However, uptake of cysteine into neurons via EAAC1 contributes to neuronal antioxidant function by providing cysteine substrate for glutathione synthesis. Mice in which the EAAC1 gene has been deleted were seen to have enhanced susceptibility to neuronal oxidative stress and developed brain atrophy and cognitive function decline with aging. The aim of the current study was to evaluate if EAAC1 confers protection against ischemic events. Young adult CD-1 wild-type or EAAC1(-/-) mice were subjected to 30 min of bilateral common carotid artery occlusion and evaluated for neuronal death and zinc translocation. The intensity of TSQ fluorescence in the cytoplasm of cortical neurons in the EAAC1(-/-) mice was significantly higher than wild-type mice, indicating that the cortical neurons of EAAC1(-/-) mice contain higher cytoplasmic concentrations of labile (or free) zinc. Zinc translocation into cortical neurons was also enhanced in EAAC1(-/-) mice. Three days after ischemia, Fluoro-Jade B staining revealed that EAAC1(-/-) mice had more than twice as many degenerating neurons as wild-type mice. N-acetylcysteine, a membrane-permeant cysteine pro-drug, normalized basal zinc levels, reduced TSQ (+) neurons and reduced ischemic neuronal death in the EAAC1(-/-) mice when delivered in a pre-treatment fashion. Taken together, this study implicates EAAC1-dependent cysteine uptake as an endogenous source of enhancing antioxidant function and zinc homeostasis in neurons in the ischemic brain.  相似文献   

9.
Astrocytes play a major role in the removal of glutamate from the extracellular compartment. This clearance limits the glutamate receptor activation and affects the synaptic response. This function of the astrocyte is dependent on its positioning around the synapse, as well as on the level of expression of its high-affinity glutamate transporters, GLT1 and GLAST. Using Western blot analysis and serial section electron microscopy, we studied how a change in sensory activity affected these parameters in the adult cortex. Using mice, we found that 24 h of whisker stimulation elicited a 2-fold increase in the expression of GLT1 and GLAST in the corresponding cortical column of the barrel cortex. This returns to basal levels 4 d after the stimulation was stopped, whereas the expression of the neuronal glutamate transporter EAAC1 remained unaltered throughout. Ultrastructural analysis from the same region showed that sensory stimulation also causes a significant increase in the astrocytic envelopment of excitatory synapses on dendritic spines. We conclude that a period of modified neuronal activity and synaptic release of glutamate leads to an increased astrocytic coverage of the bouton–spine interface and an increase in glutamate transporter expression in astrocytic processes.  相似文献   

10.
Abstract: Low extracellular glutamate content is maintained primarily by high-affinity sodium-dependent glutamate transport. Three glutamate transporter proteins have been cloned: GLT-1 and GLAST are astroglial, whereas EAAC1 is neuronal. The effects of axotomy on glutamate transporter expression was evaluated in adult rats following unilateral fimbria-fornix and corticostriatal lesions. The hippocampus and striatum were collected at 3, 7, 14, and 30 days postlesion. Homogenates were immunoblotted using antibodies directed against GLT-1, GLAST, EAAC1, and glial fibrillary acidic protein and assayed for glutamate transport by d -[3H]aspartate binding. GLT-1 immunoreactivity was decreased within the ipsilateral hippocampus and striatum at 14 days postlesion. GLAST immunoreactivity was decreased within the ipsilateral hippocampus and striatum at 7 and 14 days postlesion. No alterations in EAAC1 immunoreactivity were observed. d -[3H]Aspartate binding was decreased at 14 days postlesion within the ipsilateral hippocampus and at 7 and 14 days postlesion within the ipsilateral striatum. By 30 days postlesion, glutamate transporters and d -[3H]aspartate binding returned to control levels. This study demonstrates the down-regulation of primarily glial, and not neuronal, glutamate transporters following regional disconnection.  相似文献   

11.
In absence epilepsy, epileptogenic processes are suspected of involving an imbalance between GABAergic inhibition and glutamatergic excitation. Here, we describe alteration of the expression of glutamate transporters in rats with genetic absence (the Genetic Absence Epilepsy Rats from Strasbourg: GAERS). In these rats, epileptic discharges, recorded in the thalamo-cortical network, appear around 40 days after birth. In adult rats no alteration of the protein expression of the glutamate transporters was observed. In 30-day-old GAERS protein levels (quantified by western blot) were lower in the cortex by 21% and 35% for the glial transporters GLT1 and GLAST, respectively, and by 32% for the neuronal transporter EAAC1 in the thalamus compared to control rats. In addition, the expression and activity of GLAST were decreased by 50% in newborn GAERS cortical astrocytes grown in primary culture. The lack of modification of the protein levels of glutamatergic transporters in adult epileptic GAERS, in spite of mRNA variations (quantified by RT-PCR), suggests that they are not involved in the pathogeny of spike-and-wave discharges. In contrast, the alteration of glutamate transporter expression, observed before the establishment of epileptic discharges, could reflect an abnormal maturation of the glutamatergic neurone-glia circuitry.  相似文献   

12.
We have identified a novel carboxyl-terminal splice-variant of the glutamate transporter GLT1, which we denote as GLT1c. Within the rat brain only low levels of protein and message were detected, protein expression being restricted to end feet of astrocytes apposed to blood vessels or some astrocytes adjacent to the ventricles. Conversely, within the retina, this variant was selectively and heavily expressed in the synaptic terminals of both rod- and cone-photoreceptors in both humans and rats. Double-immunolabelling with antibodies to the carboxyl region of GLT1b/GLT1v, which is strongly expressed in apical dendrites of bipolar cells and in cone photoreceptors revealed that in the rat GLT1c was co-localised with GLT1b/GLT1v in cone photoreceptors but not with GLT1b/GLT1v in bipolar cells. GLT1c expression was developmentally regulated, only appearing at around postnatal day 7 in the rat retina, when photoreceptors first exhibit a dark current. Since the glutamate transporter EAAT5 is also expressed in terminals of rod photoreceptor terminals these data indicate that rod photoreceptors express two glutamate transporters with distinct properties. Similarly, cone photoreceptors express two glutamate transporters. We suggest that differential usage of these transporters by rod and cone photoreceptors may influence the kinetics of glutamate transmission by these neurons.  相似文献   

13.
14.
Glutamate transporters are thought to be assembled as trimers of identical subunits that line a central hole, possibly the permeation pathway for anions. Here, we have tested the effect of multimerization on the transporter function. To do so, we coexpressed EAAC1(WT) with the mutant transporter EAAC1(R446Q), which transports glutamine but not glutamate. Application of 50 microM glutamate or 50 microM glutamine to cells coexpressing similar numbers of both transporters resulted in anion currents of 165 and 130 pA, respectively. Application of both substrates at the same time generated an anion current of 297 pA, demonstrating that the currents catalyzed by the wild-type and mutant transporter subunits are purely additive. This result is unexpected for anion permeation through a central pore but could be explained by anion permeation through independently functioning subunits. To further test the subunit independence, we coexpressed EAAC1(WT) and EAAC1(H295K), a transporter with a 90-fold reduced glutamate affinity as compared to EAAC1(WT), and determined the glutamate concentration dependence of currents of the mixed transporter population. The data were consistent with two independent populations of transporters with apparent glutamate affinities similar to those of EAAC1(H295K) and EAAC1(WT), respectively. Finally, we coexpressed EAAC1(WT) with the pH-independent mutant transporter EAAC1(E373Q), showing two independent populations of transporters, one being pH-dependent and the other being pH-independent. In conclusion, we propose that EAAC1 assembles as trimers of identical subunits but that the individual subunits in the trimer function independently of each other.  相似文献   

15.
Abstract: The glutamate transporters in the plasma membranes of neural cells secure termination of the glutamatergic synaptic transmission and keep the glutamate levels below toxic concentrations. Astrocytes express two types of glutamate transporters, GLAST (EAAT1) and GLT1 (EAAT2). GLT1 predominates quantitatively and is responsible for most of the glutamate uptake activity in the juvenile and adult brain. However, GLT1 is severely down-regulated in amyotrophic lateral sclerosis, a progressive neurodegenerative disease. Furthermore, selective loss of this transporter occurs in cultured astroglia. Expression of GLAST, but not of GLT1, seems to be regulated via the glutamate receptor signalling. The present study was undertaken to examine whether neuronal factors, other than glutamate, influence the expression of astroglial glutamate transporters. The expression of GLT1 and GLAST was examined in primary cultures of cerebellar granule neurons, cortical neurons, and astrocytes under different experimental conditions, including those that mimic neuron-astrocyte interactions. Pure astroglial cultures expressed only GLAST, whereas astrocytes grown in the presence of neurons expressed both GLAST (at increased levels) and GLT1. The induction of GLT1 protein and its mRNA was reproduced in pure cortical astroglial cultures supplemented with conditioned media from cortical neuronal cultures or from mixed neuron-glia cultures. This treatment did not change the levels of GLAST. These results suggest that soluble neuronal factors differentially regulate the expression of GLT1 and GLAST in cultured astroglia. Further elucidation of the molecular nature of the secreted neuronal factors and corresponding signalling pathways regulating the expression of the astroglial glutamate transporters in vitro may reveal mechanisms important for the understanding and treatment of neurological diseases.  相似文献   

16.
Perisynaptic astrocytes express important glutamate transporters, especially excitatory amino acid transporter 2 (EAAT2, rodent analog GLT1) to regulate extracellular glutamate levels and modulate synaptic activation. In this study, we investigated an exciting new pathway, the exosome-mediated transfer of microRNA (in particular, miR-124a), in neuron-to-astrocyte signaling. Exosomes isolated from neuron-conditioned medium contain abundant microRNAs and small RNAs. These exosomes can be directly internalized into astrocytes and increase astrocyte miR-124a and GLT1 protein levels. Direct miR-124a transfection also significantly and selectively increases protein (but not mRNA) expression levels of GLT1 in cultured astrocytes. Consistent with our in vitro findings, intrastriatal injection of specific antisense against miR-124a into adult mice dramatically reduces GLT1 protein expression and glutamate uptake levels in striatum without reducing GLT1 mRNA levels. MiR-124a-mediated regulation of GLT1 expression appears to be indirect and is not mediated by its suppression of the putative GLT1 inhibitory ligand ephrinA3. Moreover, miR-124a is selectively reduced in the spinal cord tissue of end-stage SOD1 G93A mice, the mouse model of ALS. Subsequent exogenous delivery of miR-124a in vivo through stereotaxic injection significantly prevents further pathological loss of GLT1 proteins, as determined by GLT1 immunoreactivity in SOD1 G93A mice. Together, our study characterized a new neuron-to-astrocyte communication pathway and identified miRNAs that modulate GLT1 protein expression in astrocytes in vitro and in vivo.  相似文献   

17.
The activity of high-affinity glutamate transporters is essential for the normal function of the mammalian central nervous system. Using a combined pharmacological, confocal immunocytochemical, enzyme-based microsensor and fluorescence imaging approach, we examined glutamate uptake and transporter protein localization in single astrocytes of neuron-containing and neuron-free microislands prior to pre-synaptic transmitter secretion and during functional neuronal activity. Here, we report that the presence or absence of neurons strikingly affects the uptake capacity of the astroglial glutamate transporters GLT1 and GLAST1. Induction of transporter function is activated by neurons and this effect is mimicked by pre-incubation of astrocytes with micromolar concentrations of glutamate. Moreover, increased glutamate transporter activation is reproduced by endogenous release of glutamate via activation of neuronal nicotinic receptors. The increase in transport activity is dependent on neuronal release of glutamate, is associated with the local redistribution (clustering) of GLT1 and GLAST1 but is independent of transporter synthesis and of glutamate receptor activation. Together, these results suggest an activity-dependent neuronal feedback system for rapid astroglial glutamate transporter regulation where neuron-derived glutamate is the physiological signal that triggers transporter function.  相似文献   

18.
19.
20.
Glutamate is emerging as a major factor stimulating energy production in CNS. Brain mitochondria can utilize this neurotransmitter as respiratory substrate and specific transporters are required to mediate the glutamate entry into the mitochondrial matrix. Glutamate transporters of the Excitatory Amino Acid Transporters (EAATs) family have been previously well characterized on the cell surface of neuronal and glial cells, representing the primary players for glutamate uptake in mammalian brain. Here, by using western blot, confocal microscopy and immunoelectron microscopy, we report for the first time that the Excitatory Amino Acid Carrier 1 (EAAC1), an EAATs member, is expressed in neuronal and glial mitochondria where it participates in glutamate-stimulated ATP production, evaluated by a luciferase-luciferin system. Mitochondrial metabolic response is counteracted when different EAATs pharmacological blockers or selective EAAC1 antisense oligonucleotides were used. Since EAATs are Na(+)-dependent proteins, this raised the possibility that other transporters regulating ion gradients across mitochondrial membrane were required for glutamate response. We describe colocalization, mutual activity dependency, physical interaction between EAAC1 and the sodium/calcium exchanger 1 (NCX1) both in neuronal and glial mitochondria, and that NCX1 is an essential modulator of this glutamate transporter. Only NCX1 activity is crucial for such glutamate-stimulated ATP synthesis, as demonstrated by pharmacological blockade and selective knock-down with antisense oligonucleotides. The EAAC1/NCX1-dependent mitochondrial response to glutamate may be a general and alternative mechanism whereby this neurotransmitter sustains ATP production, since we have documented such metabolic response also in mitochondria isolated from heart. The data reported here disclose a new physiological role for mitochondrial NCX1 as the key player in glutamate-induced energy production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号