首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Roth ED  Yu X  Rao G  Knierim JJ 《PloS one》2012,7(4):e36035
Insight into the processing dynamics and other neurophysiological properties of different hippocampal subfields is critically important for understanding hippocampal function. In this study, we compared shifts in the center of mass (COM) of CA3 and CA1 place fields in a familiar and completely novel environment. Place fields in CA1 and CA3 were simultaneously recorded as rats ran along a closed loop track in a familiar room followed by a session in a completely novel room. This process was repeated each day over a 4-day period. CA3 place fields shifted backward (opposite to the direction of motion of the rat) only in novel environments. This backward shift gradually diminished across days, as the novel environment became more familiar with repeated exposures. Conversely, CA1 place fields shifted backward across all days in both familiar and novel environments. Prior studies demonstrated that CA1 place fields on average do not exhibit a backward shift during the first exposure to an environment in which the familiar cues are rearranged into a novel configuration, although CA3 place fields showed a strong backward shift. Under the completely novel conditions of the present study, no dissociation was observed between CA3 and CA1 during the first novel session (although a strong dissociation was observed in the familiar sessions and the later novel sessions). In summary, this is the first study to use simultaneous recordings in CA1 and CA3 to compare place field COM shift and other associated properties in truly novel and familiar environments. This study further demonstrates functional differentiation between CA1 and CA3 as the plasticity of CA1 place fields is affected differently by exposure to a completely novel environment in comparison to an altered, familiar environment, whereas the plasticity of CA3 place fields is affected similarly during both types of environmental novelty.  相似文献   

2.
Yu X  Yoganarasimha D  Knierim JJ 《Neuron》2006,52(4):717-729
The head direction cell system is composed of multiple regions associated with the hippocampal formation. The dynamics of head direction tuning curves (HDTCs) were compared with those of hippocampal place fields. In both familiar and cue-altered environments, as a rat ran an increasing number of laps on a track, the center of mass (COM) of the HDTC tended to shift backward, similar to shifting observed in place cells. However, important differences existed between these cells in terms of the shift patterns relative to the cue-altered conditions, the proportion of backward versus forward shifts, and the time course of shift resetting. The demonstration of backward COM shifts in head direction cells and place cells suggests that similar plasticity mechanisms (such as temporally asymmetric LTP induction or spike timing-dependent plasticity) may be at work in both brain systems, and these processes may reflect a general mechanism for storing learned sequences of neural activity patterns.  相似文献   

3.
Park E  Dvorak D  Fenton AA 《PloS one》2011,6(7):e22349
Previously we reported that the hippocampus place code must be an ensemble code because place cells in the CA1 region of hippocampus have multiple place fields in a more natural, larger-than-standard enclosure with stairs that permitted movements in 3-D. Here, we further investigated the nature of hippocampal place codes by characterizing the spatial firing properties of place cells in the CA1, CA3, and dentate gyrus (DG) hippocampal subdivisions as rats foraged in a standard 76-cm cylinder as well as a larger-than-standard box (1.8 m×1.4 m) that did not have stairs or any internal structure to permit movements in 3-D. The rats were trained to forage continuously for 1 hour using computer-controlled food delivery. We confirmed that most place cells have single place fields in the standard cylinder and that the positional firing pattern remapped between the cylinder and the large enclosure. Importantly, place cells in the CA1, CA3 and DG areas all characteristically had multiple place fields that were irregularly spaced, as we had reported previously for CA1. We conclude that multiple place fields are a fundamental characteristic of hippocampal place cells that simplifies to a single field in sufficiently small spaces. An ensemble place code is compatible with these observations, which contradict any dedicated coding scheme.  相似文献   

4.
Guzowski JF  Knierim JJ  Moser EI 《Neuron》2004,44(4):581-584
Computational models based on hippocampal connectivity have proposed that CA3 is uniquely positioned as an autoassociative memory network, capable of performing the competing functions of pattern completion and pattern separation. Recently, three independent studies, two using parallel neurophysiological recording methods and one using immediate-early gene imaging, have examined the responses of CA3 and CA1 ensembles to alterations of environmental context in rats. The results provide converging evidence that CA3 is capable of performing nonlinear transformations of sensory input patterns, whereas CA1 may represent changes in input in a more linear fashion.  相似文献   

5.
How does the information of spatiotemporal sequence stemming from the hippocampal CA3 area affect the postsynaptic membrane potentials of the hippocampal CA1 neurons? In a recent study, we observed hierarchical clusters of the distribution of membrane potentials of CA1 neurons, arranged according to the history of input sequences (Fukushima et al Cogn Neurodyn 1(4):305–316, 2007). In the present paper, we deal with the dynamical mechanism generating such a hierarchical distribution. The recording data were investigated using return map analysis. We also deal with a collective behavior at population level, using a reconstructed multi-cell recording data set. At both individual cell and population levels, a return map of the response sequence of CA1 pyramidal cells was well approximated by a set of contractive affine transformations, where the transformations represent self-organized rules by which the input pattern sequences are encoded. These findings provide direct evidence that the information of temporal sequences generated in CA3 can be self-similarly represented in the membrane potentials of CA1 pyramidal cells.  相似文献   

6.
Mizuseki K  Royer S  Diba K  Buzsáki G 《Hippocampus》2012,22(8):1659-1680
The CA3 and CA1 pyramidal neurons are the major principal cell types of the hippocampus proper. The strongly recurrent collateral system of CA3 cells and the largely parallel-organized CA1 neurons suggest that these regions perform distinct computations. However, a comprehensive comparison between CA1 and CA3 pyramidal cells in terms of firing properties, network dynamics, and behavioral correlations is sparse in the intact animal. We performed large-scale recordings in the dorsal hippocampus of rats to quantify the similarities and differences between CA1 (n > 3,600) and CA3 (n > 2,200) pyramidal cells during sleep and exploration in multiple environments. CA1 and CA3 neurons differed significantly in firing rates, spike burst propensity, spike entrainment by the theta rhythm, and other aspects of spiking dynamics in a brain state-dependent manner. A smaller proportion of CA3 than CA1 cells displayed prominent place fields, but place fields of CA3 neurons were more compact, more stable, and carried more spatial information per spike than those of CA1 pyramidal cells. Several other features of the two cell types were specific to the testing environment. CA3 neurons showed less pronounced phase precession and a weaker position versus spike-phase relationship than CA1 cells. Our findings suggest that these distinct activity dynamics of CA1 and CA3 pyramidal cells support their distinct computational roles.  相似文献   

7.
Hippocampal CA1 and CA3 pyramidal neuron place cells encode the spatial location of an animal through localized firing patterns called "place fields." To explore the mechanisms that control place cell firing and their relationship to spatial memory, we studied mice with enhanced spatial memory resulting from forebrain-specific knockout of the HCN1 hyperpolarization-activated cation channel. HCN1 is strongly expressed in CA1 neurons and in entorhinal cortex grid cells, which provide spatial information to the hippocampus. Both CA1 and CA3 place fields were larger but more stable in the knockout mice, with the effect greater in CA1 than CA3. As HCN1 is only weakly expressed in CA3 place cells, their altered activity likely reflects loss of HCN1 in grid cells. The more pronounced changes in CA1 likely reflect the intrinsic contribution of HCN1. The enhanced place field stability may underlie the effect of HCN1 deletion to facilitate spatial learning and memory.  相似文献   

8.
Hippocampal unit activity in the right and left CA1 and CA3 fields was studied in rats divided in two groups by the method of "emotional resonance": the animals which did ("A") and did not stop ("E") crying of a partner rat. The rate of neuronal firing was studied in the state of hunger, satiation, and under exposure to intracranial electrical stimulation of the emotional positive and negative structures of the brain. It was shown that units increasing their activity after satiation prevailed in the CA1 field, whereas, in the CA3 field, the majority of neurons decreased the firing rate under these conditions. Intracranial stimulation, especially positive, increased the rate of firing in both hippocampal fields. Under exposure to emotional stimuli, "A" rats displayed asymmetric unit activity only in the CA1 field, whereas in "E" rats, activity was asymmetric only in the CA3 field. Under these conditions in both groups of animals, the left-side activity was more intense than the right-side activity independently of the emotion sign.  相似文献   

9.
Hippocampus stores spatial representations, or maps, which are recalled each time a subject is placed in the corresponding environment. Across different environments of similar geometry, these representations show strong orthogonality in CA3 of hippocampus, whereas in the CA1 subfield a considerable overlap between the maps can be seen. The lower orthogonality decreases reliability of various decoders developed in an attempt to identify which of the stored maps is active at the moment. Especially, the problem with decoding emerges with a need to analyze data at high temporal resolution. Here, we introduce a functional-connectivity-based decoder, which accounts for the pairwise correlations between the spiking activities of neurons in each map and does not require any positional information, i.e. any knowledge about place fields. We first show, on recordings of hippocampal activity in constant environmental conditions, that our decoder outperforms existing decoding methods in CA1. Our decoder is then applied to data from teleportation experiments, in which an instantaneous switch between the environment identity triggers a recall of the corresponding spatial representation . We test the sensitivity of our approach on the transition dynamics between the respective memory states (maps). We find that the rate of spontaneous state shifts (flickering) after a teleportation event is increased not only within the first few seconds as already reported, but this instability is sustained across much longer (> 1 min.) periods.  相似文献   

10.
In our previous report [Tsukada, M., Aihara, T., Saito, H., Kato, H., 1996. Neural Netw. 9, 1357-1365], the temporal pattern sensitivity of long-term potentiation (LTP) in hippocampal CA1 neurons was estimated by using Markov chain stimuli (MS) with different values of the serial correlation coefficient rho1 between successive interstimulus-intervals. In this paper, the effect of chaotic stimuli (CS) on induction of LTP in the hippocampal CA1 area was investigated in comparison with that of MS and periodic pattern stimuli (PS). The CS were produced by a modified Bernoulli map, so that interstimulus sequences with various values of rho1 can be generated by changing the parameter B. These stimuli had an identical first order statistics (mean interstimulus-interval), but their higher order statistics such as the serial correlation coefficients were different. The LTP induced by CS at B = 2 was significantly larger in magnitude than that of PS and MS, and also depended on the initial value of CS at B = 2 and 3. These results suggest that chaotic signals play an important role for memory coding in the hippocampal CA1 network.  相似文献   

11.
The glial cell line-derived neurotrophic factor (GDNF) is a potent survival factor for several neuronal populations in different brain regions, including the hippocampus. However, no information is available on the: (1) hippocampal subregions involved in the GDNF-neuroprotective actions upon excitotoxicity, (2) identity of GDNF-responsive hippocampal cells, (3) transduction pathways involved in the GDNF-mediated neuroprotection in the hippocampus. We addressed these questions in organotypic hippocampal slices exposed to GDNF in presence of N-methyl-D-aspartate (NMDA) by immunoblotting, immunohistochemistry, and confocal analysis. In hippocampal slices GDNF acts through the activation of the tyrosine kinase receptor, Ret, without involving the NCAM-mediated pathway. Both Ret and ERK phosphorylation mainly occurred in the CA3 region where the two activated proteins co-localized. GDNF protected in a greater extent CA3 rather than CA1 following NMDA exposure. This neuroprotective effect targeted preferentially neurons, as assessed by NeuN staining. GDNF neuroprotection was associated with a significant increase of Ret phosphorylation in both CA3 and CA1. Interestingly, confocal images revealed that upon NMDA exposure, Ret activation occurred in microglial cells in the CA3 and CA1 following GDNF exposure. Collectively, this study shows that CA3 and CA1 hippocampal regions are highly responsive to GDNF-induced Ret activation and neuroprotection, and suggest that, upon excitotoxicity, such neuroprotection involves a GDNF modulation of microglial cell activity.  相似文献   

12.
Place-specific firing in the hippocampus is determined by path integration-based spatial representations in the grid-cell network of the medial entorhinal cortex. Output from this network is conveyed directly to CA1 of the hippocampus by projections from principal neurons in layer III, but also indirectly by axons from layer II to the dentate gyrus and CA3. The direct pathway is sufficient for spatial firing in CA1, but it is not known whether similar firing can also be supported by the input from CA3. To test this possibility, we made selective lesions in layer III of medial entorhinal cortex by local infusion of the neurotoxin gamma-acetylenic GABA. Firing fields in CA1 became larger and more dispersed after cell loss in layer III, whereas CA3 cells, which receive layer II input, still had sharp firing fields. Thus, the direct projection is necessary for precise spatial firing in the CA1 place cell population.  相似文献   

13.
Na+-dependent uptake of L-[3H]proline was measured in a crude synaptosomal preparation from the entire rat hippocampal formation or from isolated hippocampal regions. Among hippocampal regions, Na+-dependent proline uptake was significantly greater in areas CA1 and CA2-CA3-CA4 than in the fascia dentata, whereas there was no marked regional difference in the distribution of Na+-dependent gamma-[14C]aminobutyric acid ([14C]GABA) uptake. A bilateral kainic acid lesion, which destroyed most of the CA3 hippocampal pyramidal cells, reduced Na+-dependent proline uptake by an average of 41% in area CA1 and 52% in area CA2-CA3-CA4, without affecting the Na+-dependent uptake of GABA. In the fascia dentata, neither proline nor GABA uptake was significantly altered. Kinetic studies suggested that hippocampal synaptosomes take up proline by both a high-affinity (KT = 6.7 microM) and a low-affinity (KT = 290 microM) Na+-dependent process, whereas L-[14C]glutamate is taken up predominantly by a high-affinity (KT = 6.1 microM) process. A bilateral kainic acid lesion reduced the Vmax of high-affinity proline uptake by an average of 72%, the Vmax of low-affinity proline uptake by 44%, and the Vmax of high affinity glutamate uptake by 43%, without significantly changing the affinity of the transport carriers for substrate. Ipsilateral-commissural projections of CA3 hippocampal pyramidal cells appear to possess nearly as great a capacity for taking up proline as for taking up glutamate, a probable transmitter of these pathways. Therefore proline may play an important role in transmission at synapses made by the CA3-derived Schaffer collateral, commissural, and ipsilateral associational fibers.  相似文献   

14.
Lesion and pharmacological intervention studies have suggested that in both human patients and animals the hippocampus plays a crucial role in the rapid acquisition and storage of information from a novel one-time experience. However, how the hippocampus plays this role is poorly known. Here, we show that mice with NMDA receptor (NR) deletion restricted to CA3 pyramidal cells in adulthood are impaired in rapidly acquiring the memory of novel hidden platform locations in a delayed matching-to-place version of the Morris water maze task but are normal when tested with previously experienced platform locations. CA1 place cells in the mutant animals had place field sizes that were significantly larger in novel environments, but normal in familiar environments relative to those of control mice. These results suggest that CA3 NRs play a crucial role in rapid hippocampal encoding of novel information for fast learning of one-time experience.  相似文献   

15.
The hormone leptin crosses the blood brain barrier and regulates numerous neuronal functions, including hippocampal synaptic plasticity. Here we show that application of leptin resulted in the reversal of long-term potentiation (LTP) at hippocampal CA1 synapses. The ability of leptin to depotentiate CA1 synapses was concentration-dependent and it displayed a distinct temporal profile. Leptin-induced depotentiation was not associated with any change in the paired pulse facilitation ratio or the coefficient of variance, indicating a post-synaptic locus of expression. Moreover, the synaptic activation of NMDA receptors was required for leptin-induced depotentiation as the effects of leptin were blocked by the competitive NMDA receptor antagonist, D-aminophosphovaleric acid (D-AP5). The signaling mechanisms underlying leptin-induced depotentiation involved activation of the calcium/calmodulin-dependent protein phosphatase, calcineurin, but were independent of c- jun NH2 terminal kinase. Furthermore, leptin-induced depotentiation was accompanied by a reduction in α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor rectification indicating that loss of glutamate receptor 2 (GluR2)-lacking AMPA receptors underlies this process. These data indicate that leptin reverses hippocampal LTP via a process involving calcineurin-dependent internalization of GluR2-lacking AMPA receptors which further highlights the key role for this hormone in regulating hippocampal synaptic plasticity and neuronal development.  相似文献   

16.
The hippocampal CA1 region is most susceptible to cerebral ischemia in both rodents and humans, whereas CA3 is remarkably resistant. Here, we investigated the possible role of membrane lipids in differential susceptibility in these regions. Transient ischemia was induced in rats via bilateral occlusion of common carotid arteries and membrane lipids were analyzed by mass spectrometry. While lipid profile differences between the intact CA1 and CA3 were rather minor, ischemia caused significant pyramidal cell death with concomittant reduction of phosphatidylserine, phosphatidylinositol, phosphatidylethanolamine, plasmalogen and sphingomyelin only in CA1. The phospholipid loss was evenly distributed in most molecular species. Ischemia also significantly increased cell death mediator ceramides only in CA1. Our data suggests that differential susceptibility to ischemia between CA1 and CA3 is not linked to their unique phospholipid profile. Also, selective activation of phospholipase A2, which primarily releases polyunsaturated fatty acids, might not be characteristic to cell death in CA1.  相似文献   

17.
Abstract: The relative roles of the superoxide and hydroxyl radicals in oxidative stress-induced neuronal damage were investigated using organotypic hippocampal slice cultures. Cultures exposed to 100 µ M duroquinone, a superoxide-generating compound, for 3 h developed CA1-selective lesions over a period of 24 h. The damage accounted for ∼64% of the CA1 subfield, whereas CA3 showed just 6% damage, a pattern of damage comparable to that observed following hypoxia/ischaemia. Duroquinone-induced damage was attenuated by a spin-trap agent. In contrast, hydroxyl radical-mediated damage, generated by exposure to 30 µ M ferrous sulphate for 1 h, resulted in a CA3-dominant lesion. The damage developed over 24 h, similar to that observed with duroquinone, but with ∼45% damage in CA3 compared with only 7% in CA1. These data demonstrate a selective vulnerability of the CA1 pyramidal neurones to superoxide-induced damage and suggest that of the free radicals generated following hypoxia/ischaemia, superoxide, rather than hydroxyl radical, is instrumental in producing neuronal damage.  相似文献   

18.
The hippocampal CA1 region is sensitive to hypoxic and ischemic injury but can be protected by ischemic preconditioning (IPC). However, the mechanism through which IPC protects hippocampal CA1 neurons is still under investigation. Additionally, the role of autophagy in determining the fate of hippocampal neurons is unclear. Here, we examined whether IPC induced autophagy to alleviate hippocampal CA1 neuronal death in vitro and in vivo with oxygen glucose deprivation (OGD) and bilateral carotid artery occlusion (BCCAO) models. Survival of hippocampal neurons increased from 51.5% ± 6.3% in the non-IPC group (55 min of OGD) to 77.3% ± 7.9% in the IPC group (15 min of OGD, followed by 55 min of OGD 24 h later). The number of hippocampal CA1 layer neurons increased from 182 ± 26 cells/mm2 in the non-IPC group (20 min of BCCAO) to 278 ± 55 cells/mm2 in the IPC group (1 min × 3 BCCAO, followed by 20 min of BCCAO 24 h later). Akt phosphorylation and microtubule-associated protein light chain 3 (LC3)-II/LC3-I expression were increased in the preconditioning group. Moreover, the protective effects of IPC were abolished only by inhibiting the activity of autophagy, but not by blocking the activation of Akt in vitro. Using in vivo experiments, we found that LC3 expression was upregulated, accompanied by an increase in neuronal survival in hippocampal CA1 neurons in the preconditioning group. The neuroprotective effects of IPC on hippocampal CA1 neurons were completely inhibited by treatment with 3-MA. In contrast, hippocampal CA3 neurons did not show changes in autophagic activity or beneficial effects of IPC. These data suggested that IPC may attenuate ischemic injury in hippocampal CA1 neurons through induction of Akt-independent autophagy.  相似文献   

19.
Temporal encoding of place sequences by hippocampal cell assemblies   总被引:2,自引:0,他引:2  
Dragoi G  Buzsáki G 《Neuron》2006,50(1):145-157
Both episodic memory and spatial navigation require temporal encoding of the relationships between events or locations. In a linear maze, ordered spatial distances between sequential locations were represented by the temporal relations of hippocampal place cell pairs within cycles of theta oscillation in a compressed manner. Such correlations could arise due to spike "phase precession" of independent neurons driven by common theta pacemaker or as a result of temporal coordination among specific hippocampal cell assemblies. We found that temporal correlation between place cell pairs was stronger than predicted by a pacemaker drive of independent neurons, indicating a critical role for synaptic interactions and precise timing within and across cell assemblies in place sequence representation. CA1 and CA3 ensembles, identifying spatial locations, were active preferentially on opposite phases of theta cycles. These observations suggest that interleaving CA3 neuronal sequences bind CA1 assemblies representing overlapping past, present, and future locations into single episodes.  相似文献   

20.
The hippocampal formation (HF) is well documented as having a feedforward, unidirectional circuit organization termed the trisynaptic pathway. This circuit organization exists along the septotemporal axis of the HF, but the circuit connectivity across septal to temporal regions is less well described. The emergence of viral genetic mapping techniques enhances our ability to determine the detailed complexity of HF circuitry. In earlier work, we mapped a subiculum (SUB) back projection to CA1 prompted by the discovery of theta wave back propagation from the SUB to CA1 and CA3. We reason that this circuitry may represent multiple extended noncanonical pathways involving the subicular complex and hippocampal subregions CA1 and CA3. In the present study, multiple retrograde viral tracing approaches produced robust mapping results, which supports this prediction. We find significant noncanonical synaptic inputs to dorsal hippocampal CA3 from ventral CA1 (vCA1), perirhinal cortex (Prh), and the subicular complex. Thus, CA1 inputs to CA3 run opposite the trisynaptic pathway and in a temporal to septal direction. Our retrograde viral tracing results are confirmed by anterograde-directed viral mapping of projections from input mapped regions to hippocampal dorsal CA3 (dCA3). We find that genetic inactivation of the projection of vCA1 to dCA3 impairs object-related spatial learning and memory but does not modulate anxiety-related behaviors. Our data provide a circuit foundation to explore novel functional roles contributed by these noncanonical hippocampal circuit connections to hippocampal circuit dynamics and learning and memory behaviors.

This study reveals extensive non-canonical synaptic inputs to dorsal hippocampal CA3 from ventral CA1, perirhinal cortex and subicular complex, and shows that genetic inactivation of projection from ventral CA1 to dorsal CA3 impairs object-related spatial learning and memory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号