共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Protein engineering of disulfide bonds in subtilisin BPN' 总被引:7,自引:0,他引:7
Five single-disulfide mutants were studied in subtilisin BPN', a cysteine-free, secreted serine protease from Bacillus amyloliquefaciens. The disulfides were engineered between residues 26-232, 29-119, 36-210, 41-80, and 148-243. These bonds connected a variety of secondary structural elements, located in buried or exposed positions at least 10 A from the catalytic Ser-221, and linked residues that were separated by 39 up to 206 amino acids. All disulfide bonds formed in the enzyme when the expressed protein was secreted from Bacillus subtilis, and the disulfides had only minor effects on the enzyme kinetics. Although these disulfide bonds varied by over 50-fold in their equilibrium constants for reduction with dithiothreitol, there was no correlation between the strength of the disulfide bond and the stability it imparted to the enzyme to irreversible inactivation. In some cases, the disulfide-bonded protein was stabilized greatly relative to its reduced counterpart. However, no disulfide mutant was substantially more stable than wild-type subtilisin BPN'. Some of these results can be rationalized by destabilizing effects of the cysteine mutations that disrupt interactions present in the folded enzyme structure. It is also possible that the rate of irreversible inactivation depends upon the kinetics and not the thermodynamics of unfolding and so the entropically stabilizing effect expected from a disulfide bond may not apply. 相似文献
3.
4.
5.
Felix Jakob Ronny Martinez John Mandawe Hendrik Hellmuth Petra Siegert Karl-Heinz Maurer Ulrich Schwaneberg 《Applied microbiology and biotechnology》2013,97(15):6793-6802
In proteins, a posttranslational deamidation process converts asparagine (Asn) and glutamine (Gln) residues into negatively charged aspartic (Asp) and glutamic acid (Glu), respectively. This process changes the protein net charge affecting enzyme activity, pH optimum, and stability. Understanding the principles which affect these enzyme properties would be valuable for protein engineering in general. In this work, three criteria for selecting amino acid substitutions of the deamidation type in the Bacillus gibsonii alkaline protease (BgAP) are proposed and systematically studied in their influence on pH-dependent activity and thermal resistance. Out of 113 possible surface amino acids, 18 (11 Asn and 7 Gln) residues of BgAP were selected and evaluated based on three proposed criteria: (1) The Asn or Gln residues should not be conserved, (2) should be surface exposed, and (3) neighbored by glycine. “Deamidation” in five (N97, N253, Q37, Q200, and Q256) out of eight (N97, N154, N250, N253, Q37, Q107, Q200, and Q256) amino acids meeting all criteria resulted in increased proteolytic activity. In addition, pH activity profiles of the variants N253D and Q256E and the combined variant N253DQ256E were dramatically shifted towards higher activity at lower pH (range of 8.5–10). Variant N253DQ256E showed twice the specific activity of wild-type BgAP and its thermal resistance increased by 2.4 °C at pH?8.5. These property changes suggest that mimicking surface deamidation by substituting Gln by Glu and/or Asn by Asp might be a simple and fast protein reengineering approach for modulating enzyme properties such as activity, pH optimum, and thermal resistance. 相似文献
6.
Protein engineering of subtilisin BPN': enhanced stabilization through the introduction of two cysteines to form a disulfide bond 总被引:12,自引:0,他引:12
M W Pantoliano R C Ladner P N Bryan M L Rollence J F Wood T L Poulos 《Biochemistry》1987,26(8):2077-2082
Introduction of a disulfide bond by site-directed mutagenesis was found to enhance the stability of subtilisin BPN' (EC 3.4.21.14) under a variety of conditions. The location of the new disulfide bond was selected with the aid of a computer program, which scored various sites according to the amount of distortion that an introduced disulfide linkage would create in a 1.3-A X-ray model of native subtilisin BPN'. Of the several amino acid pairs identified by this program as suitable candidates, Thr-22 and Ser-87 were selected by using the additional requirement that the individual cysteine substitutions occur at positions that exhibit some degree of variability in related subtilisin amino acid sequences. A subtilisin variant containing cysteine residues at positions 22 and 87 was created by site-directed mutagenesis and was shown to have an activity essentially equivalent to that of the wild-type enzyme. Differential scanning calorimetry experiments demonstrated the variant protein to have a melting temperature 3.1 degrees C higher than that of the wild-type protein and 5.8 degrees C higher than that of the reduced form (-SH HS-) of the variant protein. Kinetic experiments performed under a variety of conditions, including 8 M urea, showed that the Cys-22/Cys-87 disulfide variant undergoes thermal inactivation at half the rate of that of the wild-type enzyme. The increased thermal stability of this disulfide variant is consistent with a decrease in entropy for the unfolded state relative to the unfolded state that contains no cross-link, as would be predicted from the statistical thermodynamics of polymers. 相似文献
7.
Protein engineering 总被引:3,自引:0,他引:3
8.
Bryan PN 《Biotechnology advances》1987,5(2):221-224
The techniques of protein engineering are proving to be a revolutionary experimental tool for understanding protein structure-function relationships. Even at this early stage, proteins of improved characteristics for specific industrial and therapeutic uses have already been produced. Tailoring enzymatic properties for non-physiological substrate conditions, altering pH optima, changing substrate specificity, and improving stability have already been demonstrated to be feasible. Nevertheless, the ability to make useful proteins which radically differ from a natural structure or designing altogether new structures exceeds present understanding. 相似文献
9.
10.
Improving the stability of proteins is an important goal in many biomedical and industrial applications. A logical approach is to emulate stabilizing molecular interactions found in nature. Disulfide bonds are covalent interactions that provide substantial stability to many proteins and conform to well-defined geometric conformations, thus making them appealing candidates in protein engineering efforts. Disulfide engineering is the directed design of novel disulfide bonds into target proteins. This important biotechnological tool has achieved considerable success in a wide range of applications, yet the rules that govern the stabilizing effects of disulfide bonds are not fully characterized. Contrary to expectations, many designed disulfide bonds have resulted in decreased stability of the modified protein. We review progress in disulfide engineering, with an emphasis on the issue of stability and computational methods that facilitate engineering efforts. 相似文献
11.
12.
13.
Protein engineering of lantibiotics 总被引:6,自引:0,他引:6
Oscar P. Kuipers Gabriele Bierbaum Birgit Ottenwälder Helen M. Dodd Nicky Horn Jörg Metzger Thomas Kupke Volker Gnau Roger Bongers Patrick van den Bogaard Hans Kosters Harry S. Rollema Willem M. de Vos Roland J. Siezen Günther Jung Friedrich Götz Hans-Georg Sahl Michael J. Gasson 《Antonie van Leeuwenhoek》1996,69(2):161-170
Whereas protein engineering of enzymes and structural proteins nowadays is an established research tool for studying structure-function relationships of polypeptides and for improving their properties, the engineering of posttranslationally modified peptides, such as the lantibiotics, is just coming of age. The engineering of lantibiotics is less straightforward than that of unmodified proteins, since expression systems should be developed not only for the structural genes but also for the genes encoding the biosynthetic enzymes, immunity protein and regulatory proteins. Moreover, correct posttranslational modification of specific residues could in many cases be a prerequisite for production and secretion of the active lantibiotic, which limits the number of successful mutations one can apply. This paper describes the development of expression systems for the structural lantibiotic genes for nisin A, nisin Z, gallidermin, epidermin and Pep5, and gives examples of recently produced site-directed mutants of these lantibiotics. Characterization of the mutants yielded valuable information on biosynthetic requirements for production. Moreover, regions in the lantibiotics were identified that are of crucial importance for antimicrobial activity. Eventually, this knowledge will lead to the rational design of lantibiotics optimally suited for fighting specific undesirable microorganisms. The mutants are of additional value for studies directed towards the elucidation of the mode of action of lantibiotics. 相似文献
14.
Bifunctional alpha-amylase/subtilisin inhibitors have been implicated in plant defence and regulation of endogenous alpha-amylase action. The barley alpha-amylase/subtilisin inhibitor (BASI) inhibits the barley alpha-amylase 2 (AMY2) and subtilisin-type serine proteases. BASI belongs to the Kunitz-type trypsin inhibitor family of the beta-trefoil fold proteins. Diverse approaches including site-directed mutagenesis, hybrid constructions, and crystallography have been used to characterise the structures and contact residues in the AMY2/BASI complex. The three-dimensional structure of the AMY2/BASI complex is characterised by a completely hydrated Ca2+ situated at the protein interface that connects the three catalytic carboxyl groups in AMY2 with side chains in BASI via water molecules. Using surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC), we have recently demonstrated Ca2+-modulated kinetics of the AMY2/BASI interaction and found that the complex formation involves minimal structural changes. The modulation of the interaction by calcium ions makes it unique among the currently known binding mechanisms of proteinaceous alpha-amylase inhibitors. 相似文献
15.
《Biotechnology and bioengineering》2007,97(4):Fmvii-Fmvii
16.
T L Blundell G Elliott S P Gardner T Hubbard S Islam M Johnson D Mantafounis P Murray-Rust J Overington J E Pitts 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》1989,324(1224):447-460
Rapid advances in site-directed mutagenesis and total gene synthesis combined with new expression systems in prokaryotic and eukaryotic cells have provided the molecular biologist with tools for modification of existing proteins to improve catalytic activity, stability and selectivity, for construction of chimeric molecules and for synthesis of completely novel molecules that may be endowed with some useful activity. Such protein engineering can be seen as a cycle in which the structures of engineered molecules are studied by X-ray analysis and two-dimensional nuclear magnetic resonance. The results are used in the improvement of the design by using knowledge-based procedures that exploit facts, rules and observations about proteins of known three-dimensional structure. 相似文献
17.
NAD+-dependent formate dehydrogenase (FDH, EC 1.2.1.2) is one of the best enzymes for the purpose of NADH regeneration in dehydrogenase-based synthesis of optically active compounds. Low operational stability and high production cost of native FDHs limit their application in commercial production of chiral compounds. The review summarizes the results on engineering of bacterial and yeast FDHs aimed at improving their chemical and thermal stability, catalytic activity, switch in coenzyme specificity from NAD+ to NADP+ and overexpression in Escherichia coli cells. 相似文献
18.
19.
J S Sandhu 《Critical reviews in biotechnology》1992,12(5-6):437-462
This article reviews the technical advances in antibody engineering and the clinical applications of these molecules. Recombinant DNA technology facilitates the construction and expression of engineered antibodies. These novel molecules are designed to meet specific applications. Although genomic and cDNA cloning have been used widely in the past to isolate the relevant antibody V domains, at present, the PCR-based cloning is the preferred system. Bacterial and mammalian expression systems are used commonly for the production of antibodies, antibody fragments, and antibody fusion proteins. A range of chimeric antibodies with murine V domains joined to C regions from human and other species have been produced and found to exhibit the expected binding characteristics and effector functions. Humanized antibodies have been developed to minimize the HAMA response, and bifunctional immunoglobulins are being used in tumor therapy and diagnosis. Single chain antibodies and fusion proteins with antibody specificities jointed to nonimmunoglobulin sequences provide a source of antibody-like molecules with novel properties. The potential applications of minimal recognition units and antigenized antibodies are described. Combinatorial libraries produced in bacteriophage present an alternative to hybridomas for the production of antibodies with the desired antigen binding specificities. Future developments in this field are discussed also. 相似文献